summaryrefslogtreecommitdiff
path: root/Documentation/filesystems/mount_api.txt
blob: 944d1965e917e9a91496637ab484d5197d68223d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
			     ====================
			     FILESYSTEM MOUNT API
			     ====================

CONTENTS

 (1) Overview.

 (2) The filesystem context.

 (3) The filesystem context operations.

 (4) Filesystem context security.

 (5) VFS filesystem context operations.

 (6) Parameter description.

 (7) Parameter helper functions.


========
OVERVIEW
========

The creation of new mounts is now to be done in a multistep process:

 (1) Create a filesystem context.

 (2) Parse the parameters and attach them to the context.  Parameters are
     expected to be passed individually from userspace, though legacy binary
     parameters can also be handled.

 (3) Validate and pre-process the context.

 (4) Get or create a superblock and mountable root.

 (5) Perform the mount.

 (6) Return an error message attached to the context.

 (7) Destroy the context.

To support this, the file_system_type struct gains a new field:

	int (*init_fs_context)(struct fs_context *fc);

which is invoked to set up the filesystem-specific parts of a filesystem
context, including the additional space.

Note that security initialisation is done *after* the filesystem is called so
that the namespaces may be adjusted first.


======================
THE FILESYSTEM CONTEXT
======================

The creation and reconfiguration of a superblock is governed by a filesystem
context.  This is represented by the fs_context structure:

	struct fs_context {
		const struct fs_context_operations *ops;
		struct file_system_type *fs_type;
		void			*fs_private;
		struct dentry		*root;
		struct user_namespace	*user_ns;
		struct net		*net_ns;
		const struct cred	*cred;
		char			*source;
		char			*subtype;
		void			*security;
		void			*s_fs_info;
		unsigned int		sb_flags;
		unsigned int		sb_flags_mask;
		enum fs_context_purpose	purpose:8;
		bool			sloppy:1;
		bool			silent:1;
		...
	};

The fs_context fields are as follows:

 (*) const struct fs_context_operations *ops

     These are operations that can be done on a filesystem context (see
     below).  This must be set by the ->init_fs_context() file_system_type
     operation.

 (*) struct file_system_type *fs_type

     A pointer to the file_system_type of the filesystem that is being
     constructed or reconfigured.  This retains a reference on the type owner.

 (*) void *fs_private

     A pointer to the file system's private data.  This is where the filesystem
     will need to store any options it parses.

 (*) struct dentry *root

     A pointer to the root of the mountable tree (and indirectly, the
     superblock thereof).  This is filled in by the ->get_tree() op.  If this
     is set, an active reference on root->d_sb must also be held.

 (*) struct user_namespace *user_ns
 (*) struct net *net_ns

     There are a subset of the namespaces in use by the invoking process.  They
     retain references on each namespace.  The subscribed namespaces may be
     replaced by the filesystem to reflect other sources, such as the parent
     mount superblock on an automount.

 (*) const struct cred *cred

     The mounter's credentials.  This retains a reference on the credentials.

 (*) char *source

     This specifies the source.  It may be a block device (e.g. /dev/sda1) or
     something more exotic, such as the "host:/path" that NFS desires.

 (*) char *subtype

     This is a string to be added to the type displayed in /proc/mounts to
     qualify it (used by FUSE).  This is available for the filesystem to set if
     desired.

 (*) void *security

     A place for the LSMs to hang their security data for the superblock.  The
     relevant security operations are described below.

 (*) void *s_fs_info

     The proposed s_fs_info for a new superblock, set in the superblock by
     sget_fc().  This can be used to distinguish superblocks.

 (*) unsigned int sb_flags
 (*) unsigned int sb_flags_mask

     Which bits SB_* flags are to be set/cleared in super_block::s_flags.

 (*) enum fs_context_purpose

     This indicates the purpose for which the context is intended.  The
     available values are:

	FS_CONTEXT_FOR_MOUNT,		-- New superblock for explicit mount
	FS_CONTEXT_FOR_SUBMOUNT		-- New automatic submount of extant mount
	FS_CONTEXT_FOR_RECONFIGURE	-- Change an existing mount

 (*) bool sloppy
 (*) bool silent

     These are set if the sloppy or silent mount options are given.

     [NOTE] sloppy is probably unnecessary when userspace passes over one
     option at a time since the error can just be ignored if userspace deems it
     to be unimportant.

     [NOTE] silent is probably redundant with sb_flags & SB_SILENT.

The mount context is created by calling vfs_new_fs_context() or
vfs_dup_fs_context() and is destroyed with put_fs_context().  Note that the
structure is not refcounted.

VFS, security and filesystem mount options are set individually with
vfs_parse_mount_option().  Options provided by the old mount(2) system call as
a page of data can be parsed with generic_parse_monolithic().

When mounting, the filesystem is allowed to take data from any of the pointers
and attach it to the superblock (or whatever), provided it clears the pointer
in the mount context.

The filesystem is also allowed to allocate resources and pin them with the
mount context.  For instance, NFS might pin the appropriate protocol version
module.


=================================
THE FILESYSTEM CONTEXT OPERATIONS
=================================

The filesystem context points to a table of operations:

	struct fs_context_operations {
		void (*free)(struct fs_context *fc);
		int (*dup)(struct fs_context *fc, struct fs_context *src_fc);
		int (*parse_param)(struct fs_context *fc,
				   struct struct fs_parameter *param);
		int (*parse_monolithic)(struct fs_context *fc, void *data);
		int (*get_tree)(struct fs_context *fc);
		int (*reconfigure)(struct fs_context *fc);
	};

These operations are invoked by the various stages of the mount procedure to
manage the filesystem context.  They are as follows:

 (*) void (*free)(struct fs_context *fc);

     Called to clean up the filesystem-specific part of the filesystem context
     when the context is destroyed.  It should be aware that parts of the
     context may have been removed and NULL'd out by ->get_tree().

 (*) int (*dup)(struct fs_context *fc, struct fs_context *src_fc);

     Called when a filesystem context has been duplicated to duplicate the
     filesystem-private data.  An error may be returned to indicate failure to
     do this.

     [!] Note that even if this fails, put_fs_context() will be called
	 immediately thereafter, so ->dup() *must* make the
	 filesystem-private data safe for ->free().

 (*) int (*parse_param)(struct fs_context *fc,
			struct struct fs_parameter *param);

     Called when a parameter is being added to the filesystem context.  param
     points to the key name and maybe a value object.  VFS-specific options
     will have been weeded out and fc->sb_flags updated in the context.
     Security options will also have been weeded out and fc->security updated.

     The parameter can be parsed with fs_parse() and fs_lookup_param().  Note
     that the source(s) are presented as parameters named "source".

     If successful, 0 should be returned or a negative error code otherwise.

 (*) int (*parse_monolithic)(struct fs_context *fc, void *data);

     Called when the mount(2) system call is invoked to pass the entire data
     page in one go.  If this is expected to be just a list of "key[=val]"
     items separated by commas, then this may be set to NULL.

     The return value is as for ->parse_param().

     If the filesystem (e.g. NFS) needs to examine the data first and then
     finds it's the standard key-val list then it may pass it off to
     generic_parse_monolithic().

 (*) int (*get_tree)(struct fs_context *fc);

     Called to get or create the mountable root and superblock, using the
     information stored in the filesystem context (reconfiguration goes via a
     different vector).  It may detach any resources it desires from the
     filesystem context and transfer them to the superblock it creates.

     On success it should set fc->root to the mountable root and return 0.  In
     the case of an error, it should return a negative error code.

     The phase on a userspace-driven context will be set to only allow this to
     be called once on any particular context.

 (*) int (*reconfigure)(struct fs_context *fc);

     Called to effect reconfiguration of a superblock using information stored
     in the filesystem context.  It may detach any resources it desires from
     the filesystem context and transfer them to the superblock.  The
     superblock can be found from fc->root->d_sb.

     On success it should return 0.  In the case of an error, it should return
     a negative error code.

     [NOTE] reconfigure is intended as a replacement for remount_fs.


===========================
FILESYSTEM CONTEXT SECURITY
===========================

The filesystem context contains a security pointer that the LSMs can use for
building up a security context for the superblock to be mounted.  There are a
number of operations used by the new mount code for this purpose:

 (*) int security_fs_context_alloc(struct fs_context *fc,
				   struct dentry *reference);

     Called to initialise fc->security (which is preset to NULL) and allocate
     any resources needed.  It should return 0 on success or a negative error
     code on failure.

     reference will be non-NULL if the context is being created for superblock
     reconfiguration (FS_CONTEXT_FOR_RECONFIGURE) in which case it indicates
     the root dentry of the superblock to be reconfigured.  It will also be
     non-NULL in the case of a submount (FS_CONTEXT_FOR_SUBMOUNT) in which case
     it indicates the automount point.

 (*) int security_fs_context_dup(struct fs_context *fc,
				 struct fs_context *src_fc);

     Called to initialise fc->security (which is preset to NULL) and allocate
     any resources needed.  The original filesystem context is pointed to by
     src_fc and may be used for reference.  It should return 0 on success or a
     negative error code on failure.

 (*) void security_fs_context_free(struct fs_context *fc);

     Called to clean up anything attached to fc->security.  Note that the
     contents may have been transferred to a superblock and the pointer cleared
     during get_tree.

 (*) int security_fs_context_parse_param(struct fs_context *fc,
					 struct fs_parameter *param);

     Called for each mount parameter, including the source.  The arguments are
     as for the ->parse_param() method.  It should return 0 to indicate that
     the parameter should be passed on to the filesystem, 1 to indicate that
     the parameter should be discarded or an error to indicate that the
     parameter should be rejected.

     The value pointed to by param may be modified (if a string) or stolen
     (provided the value pointer is NULL'd out).  If it is stolen, 1 must be
     returned to prevent it being passed to the filesystem.

 (*) int security_fs_context_validate(struct fs_context *fc);

     Called after all the options have been parsed to validate the collection
     as a whole and to do any necessary allocation so that
     security_sb_get_tree() and security_sb_reconfigure() are less likely to
     fail.  It should return 0 or a negative error code.

     In the case of reconfiguration, the target superblock will be accessible
     via fc->root.

 (*) int security_sb_get_tree(struct fs_context *fc);

     Called during the mount procedure to verify that the specified superblock
     is allowed to be mounted and to transfer the security data there.  It
     should return 0 or a negative error code.

 (*) void security_sb_reconfigure(struct fs_context *fc);

     Called to apply any reconfiguration to an LSM's context.  It must not
     fail.  Error checking and resource allocation must be done in advance by
     the parameter parsing and validation hooks.

 (*) int security_sb_mountpoint(struct fs_context *fc, struct path *mountpoint,
				unsigned int mnt_flags);

     Called during the mount procedure to verify that the root dentry attached
     to the context is permitted to be attached to the specified mountpoint.
     It should return 0 on success or a negative error code on failure.


=================================
VFS FILESYSTEM CONTEXT OPERATIONS
=================================

There are four operations for creating a filesystem context and
one for destroying a context:

 (*) struct fs_context *vfs_new_fs_context(struct file_system_type *fs_type,
					   struct dentry *reference,
					   unsigned int sb_flags,
					   unsigned int sb_flags_mask,
					   enum fs_context_purpose purpose);

     Create a filesystem context for a given filesystem type and purpose.  This
     allocates the filesystem context, sets the superblock flags, initialises
     the security and calls fs_type->init_fs_context() to initialise the
     filesystem private data.

     reference can be NULL or it may indicate the root dentry of a superblock
     that is going to be reconfigured (FS_CONTEXT_FOR_RECONFIGURE) or
     the automount point that triggered a submount (FS_CONTEXT_FOR_SUBMOUNT).
     This is provided as a source of namespace information.

 (*) struct fs_context *vfs_dup_fs_context(struct fs_context *src_fc);

     Duplicate a filesystem context, copying any options noted and duplicating
     or additionally referencing any resources held therein.  This is available
     for use where a filesystem has to get a mount within a mount, such as NFS4
     does by internally mounting the root of the target server and then doing a
     private pathwalk to the target directory.

     The purpose in the new context is inherited from the old one.

 (*) void put_fs_context(struct fs_context *fc);

     Destroy a filesystem context, releasing any resources it holds.  This
     calls the ->free() operation.  This is intended to be called by anyone who
     created a filesystem context.

     [!] filesystem contexts are not refcounted, so this causes unconditional
	 destruction.

In all the above operations, apart from the put op, the return is a mount
context pointer or a negative error code.

For the remaining operations, if an error occurs, a negative error code will be
returned.

 (*) int vfs_get_tree(struct fs_context *fc);

     Get or create the mountable root and superblock, using the parameters in
     the filesystem context to select/configure the superblock.  This invokes
     the ->validate() op and then the ->get_tree() op.

     [NOTE] ->validate() could perhaps be rolled into ->get_tree() and
     ->reconfigure().

 (*) struct vfsmount *vfs_create_mount(struct fs_context *fc);

     Create a mount given the parameters in the specified filesystem context.
     Note that this does not attach the mount to anything.

 (*) int vfs_parse_fs_param(struct fs_context *fc,
			    struct fs_parameter *param);

     Supply a single mount parameter to the filesystem context.  This include
     the specification of the source/device which is specified as the "source"
     parameter (which may be specified multiple times if the filesystem
     supports that).

     param specifies the parameter key name and the value.  The parameter is
     first checked to see if it corresponds to a standard mount flag (in which
     case it is used to set an SB_xxx flag and consumed) or a security option
     (in which case the LSM consumes it) before it is passed on to the
     filesystem.

     The parameter value is typed and can be one of:

	fs_value_is_flag,		Parameter not given a value.
	fs_value_is_string,		Value is a string
	fs_value_is_blob,		Value is a binary blob
	fs_value_is_filename,		Value is a filename* + dirfd
	fs_value_is_filename_empty,	Value is a filename* + dirfd + AT_EMPTY_PATH
	fs_value_is_file,		Value is an open file (file*)

     If there is a value, that value is stored in a union in the struct in one
     of param->{string,blob,name,file}.  Note that the function may steal and
     clear the pointer, but then becomes responsible for disposing of the
     object.

 (*) int vfs_parse_fs_string(struct fs_context *fc, char *key,
			     const char *value, size_t v_size);

     A wrapper around vfs_parse_fs_param() that just passes a constant string.

 (*) int generic_parse_monolithic(struct fs_context *fc, void *data);

     Parse a sys_mount() data page, assuming the form to be a text list
     consisting of key[=val] options separated by commas.  Each item in the
     list is passed to vfs_mount_option().  This is the default when the
     ->parse_monolithic() operation is NULL.


=====================
PARAMETER DESCRIPTION
=====================

Parameters are described using structures defined in linux/fs_parser.h.
There's a core description struct that links everything together:

	struct fs_parameter_description {
		const char	name[16];
		u8		nr_params;
		u8		nr_alt_keys;
		u8		nr_enums;
		bool		ignore_unknown;
		bool		no_source;
		const char *const *keys;
		const struct constant_table *alt_keys;
		const struct fs_parameter_spec *specs;
		const struct fs_parameter_enum *enums;
	};

For example:

	enum afs_param {
		Opt_autocell,
		Opt_bar,
		Opt_dyn,
		Opt_foo,
		Opt_source,
		nr__afs_params
	};

	static const struct fs_parameter_description afs_fs_parameters = {
		.name		= "kAFS",
		.nr_params	= nr__afs_params,
		.nr_alt_keys	= ARRAY_SIZE(afs_param_alt_keys),
		.nr_enums	= ARRAY_SIZE(afs_param_enums),
		.keys		= afs_param_keys,
		.alt_keys	= afs_param_alt_keys,
		.specs		= afs_param_specs,
		.enums		= afs_param_enums,
	};

The members are as follows:

 (1) const char name[16];

     The name to be used in error messages generated by the parse helper
     functions.

 (2) u8 nr_params;

     The number of discrete parameter identifiers.  This indicates the number
     of elements in the ->types[] array and also limits the values that may be
     used in the values that the ->keys[] array maps to.

     It is expected that, for example, two parameters that are related, say
     "acl" and "noacl" with have the same ID, but will be flagged to indicate
     that one is the inverse of the other.  The value can then be picked out
     from the parse result.

 (3) const struct fs_parameter_specification *specs;

     Table of parameter specifications, where the entries are of type:

	struct fs_parameter_type {
		enum fs_parameter_spec	type:8;
		u8			flags;
	};

     and the parameter identifier is the index to the array.  'type' indicates
     the desired value type and must be one of:

	TYPE NAME		EXPECTED VALUE		RESULT IN
	=======================	=======================	=====================
	fs_param_is_flag	No value		n/a
	fs_param_is_bool	Boolean value		result->boolean
	fs_param_is_u32		32-bit unsigned int	result->uint_32
	fs_param_is_u32_octal	32-bit octal int	result->uint_32
	fs_param_is_u32_hex	32-bit hex int		result->uint_32
	fs_param_is_s32		32-bit signed int	result->int_32
	fs_param_is_enum	Enum value name 	result->uint_32
	fs_param_is_string	Arbitrary string	param->string
	fs_param_is_blob	Binary blob		param->blob
	fs_param_is_blockdev	Blockdev path		* Needs lookup
	fs_param_is_path	Path			* Needs lookup
	fs_param_is_fd		File descriptor		param->file

     And each parameter can be qualified with 'flags':

     	fs_param_v_optional	The value is optional
	fs_param_neg_with_no	If key name is prefixed with "no", it is false
	fs_param_neg_with_empty	If value is "", it is false
	fs_param_deprecated	The parameter is deprecated.

     For example:

	static const struct fs_parameter_spec afs_param_specs[nr__afs_params] = {
		[Opt_autocell]	= { fs_param_is flag },
		[Opt_bar]	= { fs_param_is_enum },
		[Opt_dyn]	= { fs_param_is flag },
		[Opt_foo]	= { fs_param_is_bool, fs_param_neg_with_no },
		[Opt_source]	= { fs_param_is_string },
	};

     Note that if the value is of fs_param_is_bool type, fs_parse() will try
     to match any string value against "0", "1", "no", "yes", "false", "true".

     [!] NOTE that the table must be sorted according to primary key name so
     	 that ->keys[] is also sorted.

 (4) const char *const *keys;

     Table of primary key names for the parameters.  There must be one entry
     per defined parameter.  The table is optional if ->nr_params is 0.  The
     table is just an array of names e.g.:

	static const char *const afs_param_keys[nr__afs_params] = {
		[Opt_autocell]	= "autocell",
		[Opt_bar]	= "bar",
		[Opt_dyn]	= "dyn",
		[Opt_foo]	= "foo",
		[Opt_source]	= "source",
	};

     [!] NOTE that the table must be sorted such that the table can be searched
     	 with bsearch() using strcmp().  This means that the Opt_* values must
     	 correspond to the entries in this table.

 (5) const struct constant_table *alt_keys;
     u8 nr_alt_keys;

     Table of additional key names and their mappings to parameter ID plus the
     number of elements in the table.  This is optional.  The table is just an
     array of { name, integer } pairs, e.g.:

	static const struct constant_table afs_param_keys[] = {
		{ "baz",	Opt_bar },
		{ "dynamic",	Opt_dyn },
	};

     [!] NOTE that the table must be sorted such that strcmp() can be used with
     	 bsearch() to search the entries.

     The parameter ID can also be fs_param_key_removed to indicate that a
     deprecated parameter has been removed and that an error will be given.
     This differs from fs_param_deprecated where the parameter may still have
     an effect.

     Further, the behaviour of the parameter may differ when an alternate name
     is used (for instance with NFS, "v3", "v4.2", etc. are alternate names).

 (6) const struct fs_parameter_enum *enums;
     u8 nr_enums;

     Table of enum value names to integer mappings and the number of elements
     stored therein.  This is of type:

	struct fs_parameter_enum {
		u8		param_id;
		char		name[14];
		u8		value;
	};

     Where the array is an unsorted list of { parameter ID, name }-keyed
     elements that indicate the value to map to, e.g.:

	static const struct fs_parameter_enum afs_param_enums[] = {
		{ Opt_bar,   "x",      1},
		{ Opt_bar,   "y",      23},
		{ Opt_bar,   "z",      42},
	};

     If a parameter of type fs_param_is_enum is encountered, fs_parse() will
     try to look the value up in the enum table and the result will be stored
     in the parse result.

 (7) bool no_source;

     If this is set, fs_parse() will ignore any "source" parameter and not
     pass it to the filesystem.

The parser should be pointed to by the parser pointer in the file_system_type
struct as this will provide validation on registration (if
CONFIG_VALIDATE_FS_PARSER=y) and will allow the description to be queried from
userspace using the fsinfo() syscall.


==========================
PARAMETER HELPER FUNCTIONS
==========================

A number of helper functions are provided to help a filesystem or an LSM
process the parameters it is given.

 (*) int lookup_constant(const struct constant_table tbl[],
			 const char *name, int not_found);

     Look up a constant by name in a table of name -> integer mappings.  The
     table is an array of elements of the following type:

	struct constant_table {
		const char	*name;
		int		value;
	};

     and it must be sorted such that it can be searched using bsearch() using
     strcmp().  If a match is found, the corresponding value is returned.  If a
     match isn't found, the not_found value is returned instead.

 (*) bool validate_constant_table(const struct constant_table *tbl,
				  size_t tbl_size,
				  int low, int high, int special);

     Validate a constant table.  Checks that all the elements are appropriately
     ordered, that there are no duplicates and that the values are between low
     and high inclusive, though provision is made for one allowable special
     value outside of that range.  If no special value is required, special
     should just be set to lie inside the low-to-high range.

     If all is good, true is returned.  If the table is invalid, errors are
     logged to dmesg, the stack is dumped and false is returned.

 (*) int fs_parse(struct fs_context *fc,
		  const struct fs_param_parser *parser,
		  struct fs_parameter *param,
		  struct fs_param_parse_result *result);

     This is the main interpreter of parameters.  It uses the parameter
     description (parser) to look up the name of the parameter to use and to
     convert that to a parameter ID (stored in result->key).

     If successful, and if the parameter type indicates the result is a
     boolean, integer or enum type, the value is converted by this function and
     the result stored in result->{boolean,int_32,uint_32}.

     If a match isn't initially made, the key is prefixed with "no" and no
     value is present then an attempt will be made to look up the key with the
     prefix removed.  If this matches a parameter for which the type has flag
     fs_param_neg_with_no set, then a match will be made and the value will be
     set to false/0/NULL.

     If the parameter is successfully matched and, optionally, parsed
     correctly, 1 is returned.  If the parameter isn't matched and
     parser->ignore_unknown is set, then 0 is returned.  Otherwise -EINVAL is
     returned.

 (*) bool fs_validate_description(const struct fs_parameter_description *desc);

     This is validates the parameter description.  It returns true if the
     description is good and false if it is not.

 (*) int fs_lookup_param(struct fs_context *fc,
			 struct fs_parameter *value,
			 bool want_bdev,
			 struct path *_path);

     This takes a parameter that carries a string or filename type and attempts
     to do a path lookup on it.  If the parameter expects a blockdev, a check
     is made that the inode actually represents one.

     Returns 0 if successful and *_path will be set; returns a negative error
     code if not.