summaryrefslogtreecommitdiff
path: root/Documentation/filesystems/ceph.rst
blob: 6d2276a87a5ac1c566f0423e000497acd9dae165 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
.. SPDX-License-Identifier: GPL-2.0

============================
Ceph Distributed File System
============================

Ceph is a distributed network file system designed to provide good
performance, reliability, and scalability.

Basic features include:

 * POSIX semantics
 * Seamless scaling from 1 to many thousands of nodes
 * High availability and reliability.  No single point of failure.
 * N-way replication of data across storage nodes
 * Fast recovery from node failures
 * Automatic rebalancing of data on node addition/removal
 * Easy deployment: most FS components are userspace daemons

Also,

 * Flexible snapshots (on any directory)
 * Recursive accounting (nested files, directories, bytes)

In contrast to cluster filesystems like GFS, OCFS2, and GPFS that rely
on symmetric access by all clients to shared block devices, Ceph
separates data and metadata management into independent server
clusters, similar to Lustre.  Unlike Lustre, however, metadata and
storage nodes run entirely as user space daemons.  File data is striped
across storage nodes in large chunks to distribute workload and
facilitate high throughputs.  When storage nodes fail, data is
re-replicated in a distributed fashion by the storage nodes themselves
(with some minimal coordination from a cluster monitor), making the
system extremely efficient and scalable.

Metadata servers effectively form a large, consistent, distributed
in-memory cache above the file namespace that is extremely scalable,
dynamically redistributes metadata in response to workload changes,
and can tolerate arbitrary (well, non-Byzantine) node failures.  The
metadata server takes a somewhat unconventional approach to metadata
storage to significantly improve performance for common workloads.  In
particular, inodes with only a single link are embedded in
directories, allowing entire directories of dentries and inodes to be
loaded into its cache with a single I/O operation.  The contents of
extremely large directories can be fragmented and managed by
independent metadata servers, allowing scalable concurrent access.

The system offers automatic data rebalancing/migration when scaling
from a small cluster of just a few nodes to many hundreds, without
requiring an administrator carve the data set into static volumes or
go through the tedious process of migrating data between servers.
When the file system approaches full, new nodes can be easily added
and things will "just work."

Ceph includes flexible snapshot mechanism that allows a user to create
a snapshot on any subdirectory (and its nested contents) in the
system.  Snapshot creation and deletion are as simple as 'mkdir
.snap/foo' and 'rmdir .snap/foo'.

Snapshot names have two limitations:

* They can not start with an underscore ('_'), as these names are reserved
  for internal usage by the MDS.
* They can not exceed 240 characters in size.  This is because the MDS makes
  use of long snapshot names internally, which follow the format:
  `_<SNAPSHOT-NAME>_<INODE-NUMBER>`.  Since filenames in general can't have
  more than 255 characters, and `<node-id>` takes 13 characters, the long
  snapshot names can take as much as 255 - 1 - 1 - 13 = 240.

Ceph also provides some recursive accounting on directories for nested files
and bytes.  You can run the commands::

 getfattr -n ceph.dir.rfiles /some/dir
 getfattr -n ceph.dir.rbytes /some/dir

to get the total number of nested files and their combined size, respectively.
This makes the identification of large disk space consumers relatively quick,
as no 'du' or similar recursive scan of the file system is required.

Finally, Ceph also allows quotas to be set on any directory in the system.
The quota can restrict the number of bytes or the number of files stored
beneath that point in the directory hierarchy.  Quotas can be set using
extended attributes 'ceph.quota.max_files' and 'ceph.quota.max_bytes', eg::

 setfattr -n ceph.quota.max_bytes -v 100000000 /some/dir
 getfattr -n ceph.quota.max_bytes /some/dir

A limitation of the current quotas implementation is that it relies on the
cooperation of the client mounting the file system to stop writers when a
limit is reached.  A modified or adversarial client cannot be prevented
from writing as much data as it needs.

Mount Syntax
============

The basic mount syntax is::

 # mount -t ceph user@fsid.fs_name=/[subdir] mnt -o mon_addr=monip1[:port][/monip2[:port]]

You only need to specify a single monitor, as the client will get the
full list when it connects.  (However, if the monitor you specify
happens to be down, the mount won't succeed.)  The port can be left
off if the monitor is using the default.  So if the monitor is at
1.2.3.4::

 # mount -t ceph cephuser@07fe3187-00d9-42a3-814b-72a4d5e7d5be.cephfs=/ /mnt/ceph -o mon_addr=1.2.3.4

is sufficient.  If /sbin/mount.ceph is installed, a hostname can be
used instead of an IP address and the cluster FSID can be left out
(as the mount helper will fill it in by reading the ceph configuration
file)::

  # mount -t ceph cephuser@cephfs=/ /mnt/ceph -o mon_addr=mon-addr

Multiple monitor addresses can be passed by separating each address with a slash (`/`)::

  # mount -t ceph cephuser@cephfs=/ /mnt/ceph -o mon_addr=192.168.1.100/192.168.1.101

When using the mount helper, monitor address can be read from ceph
configuration file if available. Note that, the cluster FSID (passed as part
of the device string) is validated by checking it with the FSID reported by
the monitor.

Mount Options
=============

  mon_addr=ip_address[:port][/ip_address[:port]]
	Monitor address to the cluster. This is used to bootstrap the
        connection to the cluster. Once connection is established, the
        monitor addresses in the monitor map are followed.

  fsid=cluster-id
	FSID of the cluster (from `ceph fsid` command).

  ip=A.B.C.D[:N]
	Specify the IP and/or port the client should bind to locally.
	There is normally not much reason to do this.  If the IP is not
	specified, the client's IP address is determined by looking at the
	address its connection to the monitor originates from.

  wsize=X
	Specify the maximum write size in bytes.  Default: 64 MB.

  rsize=X
	Specify the maximum read size in bytes.  Default: 64 MB.

  rasize=X
	Specify the maximum readahead size in bytes.  Default: 8 MB.

  mount_timeout=X
	Specify the timeout value for mount (in seconds), in the case
	of a non-responsive Ceph file system.  The default is 60
	seconds.

  caps_max=X
	Specify the maximum number of caps to hold. Unused caps are released
	when number of caps exceeds the limit. The default is 0 (no limit)

  rbytes
	When stat() is called on a directory, set st_size to 'rbytes',
	the summation of file sizes over all files nested beneath that
	directory.  This is the default.

  norbytes
	When stat() is called on a directory, set st_size to the
	number of entries in that directory.

  nocrc
	Disable CRC32C calculation for data writes.  If set, the storage node
	must rely on TCP's error correction to detect data corruption
	in the data payload.

  dcache
        Use the dcache contents to perform negative lookups and
        readdir when the client has the entire directory contents in
        its cache.  (This does not change correctness; the client uses
        cached metadata only when a lease or capability ensures it is
        valid.)

  nodcache
        Do not use the dcache as above.  This avoids a significant amount of
        complex code, sacrificing performance without affecting correctness,
        and is useful for tracking down bugs.

  noasyncreaddir
	Do not use the dcache as above for readdir.

  noquotadf
        Report overall filesystem usage in statfs instead of using the root
        directory quota.

  nocopyfrom
        Don't use the RADOS 'copy-from' operation to perform remote object
        copies.  Currently, it's only used in copy_file_range, which will revert
        to the default VFS implementation if this option is used.

  recover_session=<no|clean>
	Set auto reconnect mode in the case where the client is blocklisted. The
	available modes are "no" and "clean". The default is "no".

	* no: never attempt to reconnect when client detects that it has been
	  blocklisted. Operations will generally fail after being blocklisted.

	* clean: client reconnects to the ceph cluster automatically when it
	  detects that it has been blocklisted. During reconnect, client drops
	  dirty data/metadata, invalidates page caches and writable file handles.
	  After reconnect, file locks become stale because the MDS loses track
	  of them. If an inode contains any stale file locks, read/write on the
	  inode is not allowed until applications release all stale file locks.

More Information
================

For more information on Ceph, see the home page at
	https://ceph.com/

The Linux kernel client source tree is available at
	- https://github.com/ceph/ceph-client.git

and the source for the full system is at
	https://github.com/ceph/ceph.git