Age | Commit message (Collapse) | Author | Files | Lines |
|
Since the input data length passed to zlib_compress_folios() can be
arbitrary, always setting strm.avail_in to a multiple of PAGE_SIZE may
cause read-in bytes to exceed the input range. Currently this triggers
an assert in btrfs_compress_folios() on the debug kernel (see below).
Fix strm.avail_in calculation for S390 hardware acceleration path.
assertion failed: *total_in <= orig_len, in fs/btrfs/compression.c:1041
------------[ cut here ]------------
kernel BUG at fs/btrfs/compression.c:1041!
monitor event: 0040 ilc:2 [#1] PREEMPT SMP
CPU: 16 UID: 0 PID: 325 Comm: kworker/u273:3 Not tainted 6.13.0-20241204.rc1.git6.fae3b21430ca.300.fc41.s390x+debug #1
Hardware name: IBM 3931 A01 703 (z/VM 7.4.0)
Workqueue: btrfs-delalloc btrfs_work_helper
Krnl PSW : 0704d00180000000 0000021761df6538 (btrfs_compress_folios+0x198/0x1a0)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: 0000000080000000 0000000000000001 0000000000000047 0000000000000000
0000000000000006 ffffff01757bb000 000001976232fcc0 000000000000130c
000001976232fcd0 000001976232fcc8 00000118ff4a0e30 0000000000000001
00000111821ab400 0000011100000000 0000021761df6534 000001976232fb58
Krnl Code: 0000021761df6528: c020006f5ef4 larl %r2,0000021762be2310
0000021761df652e: c0e5ffbd09d5 brasl %r14,00000217615978d8
#0000021761df6534: af000000 mc 0,0
>0000021761df6538: 0707 bcr 0,%r7
0000021761df653a: 0707 bcr 0,%r7
0000021761df653c: 0707 bcr 0,%r7
0000021761df653e: 0707 bcr 0,%r7
0000021761df6540: c004004bb7ec brcl 0,000002176276d518
Call Trace:
[<0000021761df6538>] btrfs_compress_folios+0x198/0x1a0
([<0000021761df6534>] btrfs_compress_folios+0x194/0x1a0)
[<0000021761d97788>] compress_file_range+0x3b8/0x6d0
[<0000021761dcee7c>] btrfs_work_helper+0x10c/0x160
[<0000021761645760>] process_one_work+0x2b0/0x5d0
[<000002176164637e>] worker_thread+0x20e/0x3e0
[<000002176165221a>] kthread+0x15a/0x170
[<00000217615b859c>] __ret_from_fork+0x3c/0x60
[<00000217626e72d2>] ret_from_fork+0xa/0x38
INFO: lockdep is turned off.
Last Breaking-Event-Address:
[<0000021761597924>] _printk+0x4c/0x58
Kernel panic - not syncing: Fatal exception: panic_on_oops
Fixes: fd1e75d0105d ("btrfs: make compression path to be subpage compatible")
CC: stable@vger.kernel.org # 6.12+
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Mikhail Zaslonko <zaslonko@linux.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Inside zlib_compress_folios(), each time we switch the input page cache,
the @start is increased by PAGE_SIZE.
But for the incoming compression support for sector size < page size
(previously we support compression only when the range is fully page
aligned), this is not going to handle the following case:
0 32K 64K 96K
| |///////////||///////////|
@start has the initial value 32K, indicating the start filepos of the
to-be-compressed range.
And when grabbing the first page as input, we always call "start +=
PAGE_SIZE;".
But since @start is starting at 32K, it will be increased by 64K,
resulting it to be 96K for the next range, causing incorrect input range
and corruption for the future subpage compression.
Fix it by only increase @start by the input size.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The old page API is being gradually replaced and converted to use folio
to improve code readability and avoid repeated conversion between page
and folio. And memcpy_to_page() can be replaced with memcpy_to_folio().
But there is no memzero_folio(), but it can be replaced equivalently by
folio_zero_range().
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently btrfs compression path is not really subpage compatible, every
thing is still done in page unit.
That's fine for regular sector size and subpage routine. As even for
subpage routine compression is only enabled if the whole range is page
aligned, so reading the page cache in page unit is totally fine.
However in preparation for the future subpage perfect compression
support, we need to change the compression routine to properly handle a
subpage range.
This patch would prepare both zlib and zstd to only read the subpage
range for compression.
Lzo is already doing subpage aware read, as lzo's on-disk format is
already sectorsize dependent.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Add more verbose and specific messages to all main error points in
compression code for all algorithms. Currently there's no way to know
which inode is affected or where in the data errors happened.
The messages follow a common format:
- what happened
- error code if relevant
- root and inode
- additional data like offsets or lengths
There's no helper for the messages as they differ in some details and
that would be cumbersome to generalize to a single function. As all the
errors are "almost never happens" there are the unlikely annotations
done as compression is hot path.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
For both compression and decompression paths, we always require a
"struct page **pages" and "unsigned long nr_pages", this involves quite
some part of the btrfs compression paths:
- All the compression entry points
- compressed_bio structure
This affects both compression and decompression.
- async_extent structure
Unfortunately with all those involved parts, there is no good way to
split the conversion into smaller patches while still passing compiling.
So do this in one big conversion in one go.
Please note this is direct page->folio conversion, no change on the page
sized folio requirement yet.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently we have two wrappers to allocate and free a page for
compression usage:
- btrfs_alloc_compr_page()
- btrfs_free_compr_page()
The allocator would try to grab a page from the pool, and only allocate
a new page if the pool is empty.
The reclaimer would check if the pool is full, and if not full it would
put the page into the pool.
This patch converts both helpers to use folio interfaces, and allowing
further conversion of compression path to folios.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
For all the supported compression algorithms, the compression path would
always need to grab the page cache, then do the compression.
Normally we would get a page reference without any problem, since the
write path should have already locked the pages in the write range.
For the sake of error handling, we should handle the page cache miss
case.
Adds a common wrapper, btrfs_compress_find_get_page(), which calls
find_get_page(), and do the error handling along with an error message.
Callers inside compression path would only need to call
btrfs_compress_find_get_page(), and error out if it returned any error.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There is a spelling mistake in a warning message. Fix it.
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
If we have a filesystem with 4k sectorsize, and an inlined compressed
extent created like this:
item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160
generation 8 transid 8 size 4096 nbytes 4096
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24
index 2 namelen 14 name: source_inlined
item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69
generation 8 type 0 (inline)
inline extent data size 48 ram_bytes 4096 compression 1 (zlib)
Which has an inline compressed extent at file offset 0, and its
decompressed size is 4K, allowing us to reflink that 4K range to another
location (which will not be compressed).
If we do such reflink on a subpage system, it would fail like this:
# xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
XFS_IOC_CLONE_RANGE: Input/output error
[CAUSE]
In zlib_decompress(), we didn't treat @start_byte as just a page offset,
but also use it as an indicator on whether we should switch our output
buffer.
In reality, for subpage cases, although @start_byte can be non-zero,
we should never switch input/output buffer, since the whole input/output
buffer should never exceed one sector.
Note: The above assumption is only not true if we're going to support
multi-page sectorsize.
Thus the current code using @start_byte as a condition to switch
input/output buffer or finish the decompression is completely incorrect.
[FIX]
The fix involves several modifications:
- Rename @start_byte to @dest_pgoff to properly express its meaning
- Add an extra ASSERT() inside btrfs_decompress() to make sure the
input/output size never exceeds one sector.
- Use Z_FINISH flag to make sure the decompression happens in one go
- Remove the loop needed to switch input/output buffers
- Use correct destination offset inside the destination page
- Consider early end as an error
After the fix, even on 64K page sized aarch64, above reflink now
works as expected:
# xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest
linked 4096/4096 bytes at offset 61440
And resulted a correct file layout:
item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160
generation 10 transid 10 size 65536 nbytes 4096
block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0
sequence 1 flags 0x0(none)
item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14
index 3 namelen 4 name: dest
item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83
location key (0 UNKNOWN.0 0) type XATTR
transid 10 data_len 37 name_len 16
name: security.selinux
data unconfined_u:object_r:unlabeled_t:s0
item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53
generation 10 type 1 (regular)
extent data disk byte 13631488 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression 0 (none)
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is a preparation for managing compression pages in a cache-like
manner, instead of asking the allocator each time. The common allocation
and free wrappers are introduced and are functionally equivalent to the
current code.
The freeing helpers need to be carefully placed where the last reference
is dropped. This is either after directly allocating (error handling)
or when there are no other users of the pages (after copying the contents).
It's safe to not use the helper and use put_page() that will handle the
reference count. Not using the helper means there's lower number of
pages that could be reused without passing them back to allocator.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The workspaces for compression are typically much larger than a page and
for high zstd levels in the range of megabytes. There's a fallback to
vmalloc but this can still fail (see the report).
Some of the workspaces are preallocated at module load time so we have a
safe fallback, otherwise when a new workspace is needed it's allocated
but if this fails then the process waits. Which means the warning is
only causing noise and we can use the GFP flag to disable it.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=217466
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
All algorithms have to fill the remainder of the orig_bio with zeroes,
so do it in common code.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
KMSAN reports uses of uninitialized memory in zlib's longest_match()
called on memory originating from zlib_alloc_workspace().
This issue is known by zlib maintainers and is claimed to be harmless,
but to be on the safe side we'd better initialize the memory.
Link: https://zlib.net/zlib_faq.html#faq36
Reported-by: syzbot+14d9e7602ebdf7ec0a60@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The input buffers passed down to compression must never be changed,
switch type to u8 as it's a raw byte buffer and use const.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The copy_page helper may use an optimized version for full page copy
(eg. on s390 there's a special instruction for that), there's one more
left to convert.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The use of kmap() is being deprecated in favor of kmap_local_page(). With
kmap_local_page(), the mapping is per thread, CPU local and not globally
visible.
Therefore, use kmap_local_page() / kunmap_local() in zlib_decompress_bio()
because in this function the mappings are per thread and are not visible
in other contexts.
Tested with xfstests on QEMU + KVM 32-bits VM with 4GB of RAM and
HIGHMEM64G enabled. This patch passes 26/26 tests of group "compress".
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The use of kmap() is being deprecated in favor of kmap_local_page(). With
kmap_local_page(), the mapping is per thread, CPU local and not globally
visible.
Therefore, use kmap_local_page() / kunmap_local() in zlib_compress_pages()
because in this function the mappings are per thread and are not visible
in other contexts. Furthermore, drop the mappings of "out_page" which is
allocated within zlib_compress_pages() with alloc_page(GFP_NOFS) and use
page_address().
Tested with xfstests on a QEMU + KVM 32-bits VM with 4GB of RAM booting
a kernel with HIGHMEM64G enabled. This patch passes 26/26 tests of group
"compress".
CC: Qu Wenruo <wqu@suse.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This reverts commit 696ab562e6df9fbafd6052d8ce4aafcb2ed16069.
The kmaps in compression code are still needed and cause crashes on
32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004
with enabled LZO or ZSTD compression.
Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There are several bugs inside the function btrfs_decompress_buf2page()
- @start_byte doesn't take bvec.bv_offset into consideration
Thus it can't handle case where the target range is not page aligned.
- Too many helper variables
There are tons of helper variables, @buf_offset, @current_buf_start,
@start_byte, @prev_start_byte, @working_bytes, @bytes.
This hurts anyone who wants to read the function.
- No obvious main cursor for the iteartion
A new problem caused by previous problem.
- Comments for parameter list makes no sense
Like @buf_start is the offset to @buf, or offset inside the full
decompressed extent? (Spoiler alert, the later case)
And @total_out acts more like @buf_start + @size_of_buf.
The worst is @disk_start.
The real meaning of it is the file offset of the full decompressed
extent.
This patch will rework the whole function by:
- Add a proper comment with ASCII art to explain the parameter list
- Rework parameter list
The old @buf_start is renamed to @decompressed, to show how many bytes
are already decompressed inside the full decompressed extent.
The old @total_out is replaced by @buf_len, which is the decompressed
data size.
For old @disk_start and @bio, just pass @compressed_bio in.
- Use single main cursor
The main cursor will be @cur_file_offset, to show what's the current
file offset.
Other helper variables will be declared inside the main loop, and only
minimal amount of helper variables:
* offset_inside_decompressed_buf: The only real helper
* copy_start_file_offset: File offset we start memcpy
* bvec_file_offset: File offset of current bvec
Even with all these extensive comments, the final function is still
smaller than the original function, which is definitely a win.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
As we don't use highmem pages anymore, drop the kmap/kunmap. The kmap is
simply page_address and kunmap is a no-op.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The highmem flag is used for allocating pages for compression and for
raid56 pages. The high memory makes sense on 32bit systems but is not
without problems. On 64bit system's it's just another layer of wrappers.
The time the pages are allocated for compression or raid56 is relatively
short (about a transaction commit), so the pages are not blocked
indefinitely. As the number of pages depends on the amount of data being
written/read, there's a theoretical problem. A fast device on a 32bit
system could use most of the low memory pool, while with the highmem
allocation that would not happen. This was possibly the original idea
long time ago, but nowadays we optimize for 64bit systems.
This patch removes all usage of the __GFP_HIGHMEM flag for page
allocation, the kmap/kunmap are still in place and will be removed in
followup patches. Remaining is masking out the bit in
alloc_extent_state and __lookup_free_space_inode, that can safely stay.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There are many places where kmap/memset/kunmap patterns occur.
Use the newly lifted memzero_page() to eliminate direct uses of kmap and
leverage the new core functions use of kmap_local_page().
The development of this patch was aided by the following coccinelle
script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap/memset/kunmap pattern and replace with memset*page calls
//
// NOTE: Offsets and other expressions may be more complex than what the script
// will automatically generate. Therefore a catchall rule is provided to find
// the pattern which then must be evaluated by hand.
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
// Comments:
// Options:
//
// Then the memset pattern
//
@ memset_rule1 @
expression page, V, L, Off;
identifier ptr;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
-memset(ptr, 0, L);
+memzero_page(page, 0, L);
|
-memset(ptr + Off, 0, L);
+memzero_page(page, Off, L);
|
-memset(ptr, V, L);
+memset_page(page, V, 0, L);
|
-memset(ptr + Off, V, L);
+memset_page(page, V, Off, L);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memset_rule1
@
identifier memset_rule1.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
//
// Catch all
//
@ memset_rule2 @
expression page;
identifier ptr;
expression GenTo, GenSize, GenValue;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
//
// Some call sites have complex expressions within the memset/memcpy
// The follow are catch alls which need to be evaluated by hand.
//
-memset(GenTo, 0, GenSize);
+memzero_pageExtra(page, GenTo, GenSize);
|
-memset(GenTo, GenValue, GenSize);
+memset_pageExtra(page, GenValue, GenTo, GenSize);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memset_rule2
@
identifier memset_rule2.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
// </smpl>
Link: https://lkml.kernel.org/r/20210309212137.2610186-4-ira.weiny@intel.com
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are many places where the pattern kmap/memcpy/kunmap occurs.
This pattern was lifted to the core common functions
memcpy_[to|from]_page().
Use these new functions to reduce the code, eliminate direct uses of
kmap, and leverage the new core functions use of kmap_local_page().
Also, there is 1 place where a kmap/memcpy is followed by an
optional memset. Here we leave the kmap open coded to avoid remapping
the page but use kmap_local_page() directly.
Development of this patch was aided by the coccinelle script:
// <smpl>
// SPDX-License-Identifier: GPL-2.0-only
// Find kmap/memcpy/kunmap pattern and replace with memcpy*page calls
//
// NOTE: Offsets and other expressions may be more complex than what the script
// will automatically generate. Therefore a catchall rule is provided to find
// the pattern which then must be evaluated by hand.
//
// Confidence: Low
// Copyright: (C) 2021 Intel Corporation
// URL: http://coccinelle.lip6.fr/
// Comments:
// Options:
//
// simple memcpy version
//
@ memcpy_rule1 @
expression page, T, F, B, Off;
identifier ptr;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
-memcpy(ptr + Off, F, B);
+memcpy_to_page(page, Off, F, B);
|
-memcpy(ptr, F, B);
+memcpy_to_page(page, 0, F, B);
|
-memcpy(T, ptr + Off, B);
+memcpy_from_page(T, page, Off, B);
|
-memcpy(T, ptr, B);
+memcpy_from_page(T, page, 0, B);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memcpy_rule1
@
identifier memcpy_rule1.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
//
// Some callers kmap without a temp pointer
//
@ memcpy_rule2 @
expression page, T, Off, F, B;
@@
<+...
(
-memcpy(kmap(page) + Off, F, B);
+memcpy_to_page(page, Off, F, B);
|
-memcpy(kmap(page), F, B);
+memcpy_to_page(page, 0, F, B);
|
-memcpy(T, kmap(page) + Off, B);
+memcpy_from_page(T, page, Off, B);
|
-memcpy(T, kmap(page), B);
+memcpy_from_page(T, page, 0, B);
)
...+>
-kunmap(page);
// No need for the ptr variable removal
//
// Catch all
//
@ memcpy_rule3 @
expression page;
expression GenTo, GenFrom, GenSize;
identifier ptr;
type VP;
@@
(
-VP ptr = kmap(page);
|
-ptr = kmap(page);
|
-VP ptr = kmap_atomic(page);
|
-ptr = kmap_atomic(page);
)
<+...
(
//
// Some call sites have complex expressions within the memcpy
// match a catch all to be evaluated by hand.
//
-memcpy(GenTo, GenFrom, GenSize);
+memcpy_to_pageExtra(page, GenTo, GenFrom, GenSize);
+memcpy_from_pageExtra(GenTo, page, GenFrom, GenSize);
)
...+>
(
-kunmap(page);
|
-kunmap_atomic(ptr);
)
// Remove any pointers left unused
@
depends on memcpy_rule3
@
identifier memcpy_rule3.ptr;
type VP, VP1;
@@
-VP ptr;
... when != ptr;
? VP1 ptr;
// <smpl>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
In order to benefit from s390 zlib hardware compression support,
increase the btrfs zlib workspace buffer size from 1 to 4 pages (if s390
zlib hardware support is enabled on the machine).
This brings up to 60% better performance in hardware on s390 compared to
the PAGE_SIZE buffer and much more compared to the software zlib
processing in btrfs. In case of memory pressure, fall back to a single
page buffer during workspace allocation.
The data compressed with larger input buffers will still conform to zlib
standard and thus can be decompressed also on a systems that uses only
PAGE_SIZE buffer for btrfs zlib.
Link: http://lkml.kernel.org/r/20200108105103.29028-1-zaslonko@linux.ibm.com
Signed-off-by: Mikhail Zaslonko <zaslonko@linux.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: David Sterba <dsterba@suse.com>
Cc: Richard Purdie <rpurdie@rpsys.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Eduard Shishkin <edward6@linux.ibm.com>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Replace indirect calls to free_workspace by switch and calls to the
specific callbacks. This is mainly to get rid of the indirection due to
spectre vulnerability mitigations.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Replace indirect calls to alloc_workspace by switch and calls to the
specific callbacks. This is mainly to get rid of the indirection due to
spectre vulnerability mitigations.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We can infer the workspace_manager from type and the type will be used
in the following patch to call a common helper for alloc_workspace.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Similar to get_workspace, majority of the callbacks is trivial, we don't
gain anything by the indirection, so replace them by a switch function.
Trivial callback implementations use the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Majority of the callbacks is trivial, we don't gain anything by the
indirection, so replace them by a switch function.
ZLIB needs to adjust level in the callback and ZSTD workspace management
is complex, the rest is call to the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The indirect calls will be replaced by a switch in compression.c.
(Switch is faster than indirect calls with when Spectre mitigations are
enabled).
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Replace loop calling to all algos with a list of direct calls to the
cleanup manager callback. When that becomes trivial it is replaced by
direct call to the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
With the access to the workspace structures, we can look it up together
with the compression ops inside the workspace manager cleanup helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Replace loop calling to all algos with a list of direct calls to the
init manager callback. When that becomes trivial it is replaced by
direct call to the helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
With the access to the workspace structures, we can look it up together
with the compression ops inside the workspace manager init helper.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There's a lot of indirection when the generic code calls into
algo-specific callbacks to reach the private workspace manager structure
and back to the generic code.
To simplify that, export the workspace manager for heuristic, LZO and
ZLIB, while ZSTD is going to use it's own manager.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The indirect calls bring some overhead due to spectre vulnerability
mitigations. The number of cases is small and below the threshold
(10-20) where indirect call would be better.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Export compress_pages, decompress_bio and decompress callbacks for all
compression algos. The indirect calls will be replaced by a switch.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The set_level callbacks do not do anything special and can be replaced
by a helper that uses the levels defined in the tables.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The maximum and default levels do not change and can be defined
directly. The set_level callback was a temporary solution and will be
removed.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently, the only user of set_level() is zlib which sets an internal
workspace parameter. As level is now plumbed into get_workspace(), this
can be handled there rather than separately.
This repurposes set_level() to bound the level passed in so it can be
used when setting the mounts compression level and as well as verifying
the level before getting a workspace. The other benefit is this divides
the meaning of compress(0) and get_workspace(0). The former means we
want to use the default compression level of the compression type. The
latter means we can use any workspace available.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Zlib compression supports multiple levels, but doesn't require changing
in how a workspace itself is created and managed. Zstd introduces a
different memory requirement such that higher levels of compression
require more memory.
This requires changes in how the alloc()/get() methods work for zstd.
This pach plumbs compression level through the interface as a parameter
in preparation for zstd compression levels. This gives the compression
types opportunity to create/manage based on the compression level.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The previous patch added generic helpers for get_workspace() and
put_workspace(). Now, we can migrate ownership of the workspace_manager
to be in the compression type code as the compression code itself
doesn't care beyond being able to get a workspace. The init/cleanup and
get/put methods are abstracted so each compression algorithm can decide
how they want to manage their workspaces.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It is very easy to miss places that rely on a certain bitshifting for
decoding the type_level overloading. Add helpers to do this instead.
Cc: Omar Sandoval <osandov@osandov.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Remove GPL boilerplate text (long, short, one-line) and keep the rest,
ie. personal, company or original source copyright statements. Add the
SPDX header.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Preliminary support for setting compression level for zlib, the
following works:
$ mount -o compess=zlib # default
$ mount -o compess=zlib0 # same
$ mount -o compess=zlib9 # level 9, slower sync, less data
$ mount -o compess=zlib1 # level 1, faster sync, more data
$ mount -o remount,compress=zlib3 # level set by remount
The compress-force works the same as compress'. The level is visible in
the same format in /proc/mounts. Level set via file property does not
work yet.
Required patch: "btrfs: prepare for extensions in compression options"
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The compression workspace buffers are larger than a page so we use
vmalloc, unconditionally. This is not always necessary as there might be
contiguous memory available.
Let's use the kvmalloc helpers that will try kmalloc first and fallback
to vmalloc. For that they require GFP_KERNEL flags. As we now have the
alloc_workspace calls protected by memalloc_nofs in the critical
contexts, we can safely use GFP_KERNEL.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
As alloc_workspace is now protected by memalloc_nofs where needed,
we can switch the kmalloc to use GFP_KERNEL.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
struct compressed_bio pointer can be used instead.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The value of max_out can be calculated from the parameters passed to the
compressors, which is number of pages and the page size, and we don't
have to needlessly pass it around.
Signed-off-by: David Sterba <dsterba@suse.com>
|