summaryrefslogtreecommitdiff
path: root/arch/x86/virt/vmx
AgeCommit message (Collapse)AuthorFilesLines
2025-06-10x86/virt/tdx: Avoid indirect calls to TDX assembly functionsKai Huang1-2/+3
Two 'static inline' TDX helper functions (sc_retry() and sc_retry_prerr()) take function pointer arguments which refer to assembly functions. Normally, the compiler inlines the TDX helper, realizes that the function pointer targets are completely static -- thus can be resolved at compile time -- and generates direct call instructions. But, other times (like when CONFIG_CC_OPTIMIZE_FOR_SIZE=y), the compiler declines to inline the helpers and will instead generate indirect call instructions. Indirect calls to assembly functions require special annotation (for various Control Flow Integrity mechanisms). But TDX assembly functions lack the special annotations and can only be called directly. Annotate both the helpers as '__always_inline' to prod the compiler into maintaining the direct calls. There is no guarantee here, but Peter has volunteered to report the compiler bug if this assumption ever breaks[1]. Fixes: 1e66a7e27539 ("x86/virt/tdx: Handle SEAMCALL no entropy error in common code") Fixes: df01f5ae07dd ("x86/virt/tdx: Add SEAMCALL error printing for module initialization") Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/lkml/20250605145914.GW39944@noisy.programming.kicks-ass.net/ [1] Link: https://lore.kernel.org/all/20250606130737.30713-1-kai.huang%40intel.com
2025-05-26x86/tdx: mark tdh_vp_enter() as __flattenPaolo Bonzini1-1/+1
In some cases tdx_tdvpr_pa() is not fully inlined into tdh_vp_enter(), which causes the following warning: vmlinux.o: warning: objtool: tdh_vp_enter+0x8: call to tdx_tdvpr_pa() leaves .noinstr.text section This happens if the compiler considers tdx_tdvpr_pa() to be "large", for example because CONFIG_SPARSEMEM adds two function calls to page_to_section() and __section_mem_map_addr(): ({ const struct page *__pg = (pg); \ int __sec = page_to_section(__pg); \ (unsigned long)(__pg - __section_mem_map_addr(__nr_to_section(__sec))); \ }) Because exiting the noinstr section is a no-no, just mark tdh_vp_enter() for full inlining. Reported-by: kernel test robot <lkp@intel.com> Analyzed-by: Xiaoyao Li <xiaoyao.li@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202505240530.5KktQ5mX-lkp@intel.com/ Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrapper to enter/exit TDX guestKai Huang3-0/+12
Intel TDX protects guest VM's from malicious host and certain physical attacks. TDX introduces a new operation mode, Secure Arbitration Mode (SEAM) to isolate and protect guest VM's. A TDX guest VM runs in SEAM and, unlike VMX, direct control and interaction with the guest by the host VMM is not possible. Instead, Intel TDX Module, which also runs in SEAM, provides a SEAMCALL API. The SEAMCALL that provides the ability to enter a guest is TDH.VP.ENTER. The TDX Module processes TDH.VP.ENTER, and enters the guest via VMX VMLAUNCH/VMRESUME instructions. When a guest VM-exit requires host VMM interaction, the TDH.VP.ENTER SEAMCALL returns to the host VMM (KVM). Add tdh_vp_enter() to wrap the SEAMCALL invocation of TDH.VP.ENTER; tdh_vp_enter() needs to be noinstr because VM entry in KVM is noinstr as well, which is for two reasons: * marking the area as CT_STATE_GUEST via guest_state_enter_irqoff() and guest_state_exit_irqoff() * IRET must be avoided between VM-exit and NMI handling, in order to avoid prematurely releasing the NMI inhibit. TDH.VP.ENTER is different from other SEAMCALLs in several ways: it uses more arguments, and after it returns some host state may need to be restored. Therefore tdh_vp_enter() uses __seamcall_saved_ret() instead of __seamcall_ret(); since it is the only caller of __seamcall_saved_ret(), it can be made noinstr also. TDH.VP.ENTER arguments are passed through General Purpose Registers (GPRs). For the special case of the TD guest invoking TDG.VP.VMCALL, nearly any GPR can be used, as well as XMM0 to XMM15. Notably, RBP is not used, and Linux mandates the TDX Module feature NO_RBP_MOD, which is enforced elsewhere. Additionally, XMM registers are not required for the existing Guest Hypervisor Communication Interface and are handled by existing KVM code should they be modified by the guest. There are 2 input formats and 5 output formats for TDH.VP.ENTER arguments. Input #1 : Initial entry or following a previous async. TD Exit Input #2 : Following a previous TDCALL(TDG.VP.VMCALL) Output #1 : On Error (No TD Entry) Output #2 : Async. Exits with a VMX Architectural Exit Reason Output #3 : Async. Exits with a non-VMX TD Exit Status Output #4 : Async. Exits with Cross-TD Exit Details Output #5 : On TDCALL(TDG.VP.VMCALL) Currently, to keep things simple, the wrapper function does not attempt to support different formats, and just passes all the GPRs that could be used. The GPR values are held by KVM in the area set aside for guest GPRs. KVM code uses the guest GPR area (vcpu->arch.regs[]) to set up for or process results of tdh_vp_enter(). Therefore changing tdh_vp_enter() to use more complex argument formats would also alter the way KVM code interacts with tdh_vp_enter(). Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Message-ID: <20241121201448.36170-2-adrian.hunter@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers for TD measurement of initial contentsIsaku Yamahata2-0/+29
The TDX module measures the TD during the build process and saves the measurement in TDCS.MRTD to facilitate TD attestation of the initial contents of the TD. Wrap the SEAMCALL TDH.MR.EXTEND with tdh_mr_extend() and TDH.MR.FINALIZE with tdh_mr_finalize() to enable the host kernel to assist the TDX module in performing the measurement. The measurement in TDCS.MRTD is a SHA-384 digest of the build process. SEAMCALLs TDH.MNG.INIT and TDH.MEM.PAGE.ADD initialize and contribute to the MRTD digest calculation. The caller of tdh_mr_extend() should break the TD private page into chunks of size TDX_EXTENDMR_CHUNKSIZE and invoke tdh_mr_extend() to add the page content into the digest calculation. Failures are possible with TDH.MR.EXTEND (e.g., due to SEPT walking). The caller of tdh_mr_extend() can check the function return value and retrieve extended error information from the function output parameters. Calling tdh_mr_finalize() completes the measurement. The TDX module then turns the TD into the runnable state. Further TDH.MEM.PAGE.ADD and TDH.MR.EXTEND calls will fail. TDH.MR.FINALIZE may fail due to errors such as the TD having no vCPUs or contentions. Check function return value when calling tdh_mr_finalize() to determine the exact reason for failure. Take proper locks on the caller's side to avoid contention failures, or handle the BUSY error in specific ways (e.g., retry). Return the SEAMCALL error code directly to the caller. Do not attempt to handle it in the core kernel. [Kai: Switched from generic seamcall export] [Yan: Re-wrote the changelog] Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Message-ID: <20241112073709.22171-1-yan.y.zhao@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers to remove a TD private pageIsaku Yamahata2-0/+28
TDX architecture introduces the concept of private GPA vs shared GPA, depending on the GPA.SHARED bit. The TDX module maintains a single Secure EPT (S-EPT or SEPT) tree per TD to translate TD's private memory accessed using a private GPA. Wrap the SEAMCALL TDH.MEM.PAGE.REMOVE with tdh_mem_page_remove() and TDH_PHYMEM_PAGE_WBINVD with tdh_phymem_page_wbinvd_hkid() to unmap a TD private page from the SEPT, remove the TD private page from the TDX module and flush cache lines to memory after removal of the private page. Callers should specify "GPA" and "level" when calling tdh_mem_page_remove() to indicate to the TDX module which TD private page to unmap and remove. TDH.MEM.PAGE.REMOVE may fail, and the caller of tdh_mem_page_remove() can check the function return value and retrieve extended error information from the function output parameters. Follow the TLB tracking protocol before calling tdh_mem_page_remove() to remove a TD private page to avoid SEAMCALL failure. After removing a TD's private page, the TDX module does not write back and invalidate cache lines associated with the page and the page's keyID (i.e., the TD's guest keyID). Therefore, provide tdh_phymem_page_wbinvd_hkid() to allow the caller to pass in the TD's guest keyID and invoke TDH_PHYMEM_PAGE_WBINVD to perform this action. Before reusing the page, the host kernel needs to map the page with keyID 0 and invoke movdir64b() to convert the TD private page to a normal shared page. TDH.MEM.PAGE.REMOVE and TDH_PHYMEM_PAGE_WBINVD may meet contentions inside the TDX module for TDX's internal resources. To avoid staying in SEAM mode for too long, TDX module will return a BUSY error code to the kernel instead of spinning on the locks. The caller may need to handle this error in specific ways (e.g., retry). The wrappers return the SEAMCALL error code directly to the caller. Don't attempt to handle it in the core kernel. [Kai: Switched from generic seamcall export] [Yan: Re-wrote the changelog] Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Message-ID: <20241112073658.22157-1-yan.y.zhao@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers to manage TDX TLB trackingIsaku Yamahata2-0/+29
TDX module defines a TLB tracking protocol to make sure that no logical processor holds any stale Secure EPT (S-EPT or SEPT) TLB translations for a given TD private GPA range. After a successful TDH.MEM.RANGE.BLOCK, TDH.MEM.TRACK, and kicking off all vCPUs, TDX module ensures that the subsequent TDH.VP.ENTER on each vCPU will flush all stale TLB entries for the specified GPA ranges in TDH.MEM.RANGE.BLOCK. Wrap the TDH.MEM.RANGE.BLOCK with tdh_mem_range_block() and TDH.MEM.TRACK with tdh_mem_track() to enable the kernel to assist the TDX module in TLB tracking management. The caller of tdh_mem_range_block() needs to specify "GPA" and "level" to request the TDX module to block the subsequent creation of TLB translation for a GPA range. This GPA range can correspond to a SEPT page or a TD private page at any level. Contentions and errors are possible with the SEAMCALL TDH.MEM.RANGE.BLOCK. Therefore, the caller of tdh_mem_range_block() needs to check the function return value and retrieve extended error info from the function output params. Upon TDH.MEM.RANGE.BLOCK success, no new TLB entries will be created for the specified private GPA range, though the existing TLB translations may still persist. TDH.MEM.TRACK will then advance the TD's epoch counter to ensure TDX module will flush TLBs in all vCPUs once the vCPUs re-enter the TD. TDH.MEM.TRACK will fail to advance TD's epoch counter if there are vCPUs still running in non-root mode at the previous TD epoch counter. So to ensure private GPA translations are flushed, callers must first call tdh_mem_range_block(), then tdh_mem_track(), and lastly send IPIs to kick all the vCPUs and force them to re-enter, thus triggering the TLB flush. Don't export a single operation and instead export functions that just expose the block and track operations; this is for a couple reasons: 1. The vCPU kick should use KVM's functionality for doing this, which can better target sending IPIs to only the minimum required pCPUs. 2. tdh_mem_track() doesn't need to be executed if a vCPU has not entered a TD, which is information only KVM knows. 3. Leaving the operations separate will allow for batching many tdh_mem_range_block() calls before a tdh_mem_track(). While this batching will not be done initially by KVM, it demonstrates that keeping mem block and track as separate operations is a generally good design. Contentions are also possible in TDH.MEM.TRACK. For example, TDH.MEM.TRACK may contend with TDH.VP.ENTER when advancing the TD epoch counter. tdh_mem_track() does not provide the retries for the caller. Callers can choose to avoid contentions or retry on their own. [Kai: Switched from generic seamcall export] [Yan: Re-wrote the changelog] Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Message-ID: <20241112073648.22143-1-yan.y.zhao@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers to add TD private pagesIsaku Yamahata2-0/+41
TDX architecture introduces the concept of private GPA vs shared GPA, depending on the GPA.SHARED bit. The TDX module maintains a Secure EPT (S-EPT or SEPT) tree per TD to translate TD's private memory accessed using a private GPA. Wrap the SEAMCALL TDH.MEM.PAGE.ADD with tdh_mem_page_add() and TDH.MEM.PAGE.AUG with tdh_mem_page_aug() to add TD private pages and map them to the TD's private GPAs in the SEPT. Callers of tdh_mem_page_add() and tdh_mem_page_aug() allocate and provide normal pages to the wrappers, who further pass those pages to the TDX module. Before passing the pages to the TDX module, tdh_mem_page_add() and tdh_mem_page_aug() perform a CLFLUSH on the page mapped with keyID 0 to ensure that any dirty cache lines don't write back later and clobber TD memory or control structures. Don't worry about the other MK-TME keyIDs because the kernel doesn't use them. The TDX docs specify that this flush is not needed unless the TDX module exposes the CLFLUSH_BEFORE_ALLOC feature bit. Do the CLFLUSH unconditionally for two reasons: make the solution simpler by having a single path that can handle both !CLFLUSH_BEFORE_ALLOC and CLFLUSH_BEFORE_ALLOC cases. Avoid wading into any correctness uncertainty by going with a conservative solution to start. Call tdh_mem_page_add() to add a private page to a TD during the TD's build time (i.e., before TDH.MR.FINALIZE). Specify which GPA the 4K private page will map to. No need to specify level info since TDH.MEM.PAGE.ADD only adds pages at 4K level. To provide initial contents to TD, provide an additional source page residing in memory managed by the host kernel itself (encrypted with a shared keyID). The TDX module will copy the initial contents from the source page in shared memory into the private page after mapping the page in the SEPT to the specified private GPA. The TDX module allows the source page to be the same page as the private page to be added. In that case, the TDX module converts and encrypts the source page as a TD private page. Call tdh_mem_page_aug() to add a private page to a TD during the TD's runtime (i.e., after TDH.MR.FINALIZE). TDH.MEM.PAGE.AUG supports adding huge pages. Specify which GPA the private page will map to, along with level info embedded in the lower bits of the GPA. The TDX module will recognize the added page as the TD's private page after the TD's acceptance with TDCALL TDG.MEM.PAGE.ACCEPT. tdh_mem_page_add() and tdh_mem_page_aug() may fail. Callers can check function return value and retrieve extended error info from the function output parameters. The TDX module has many internal locks. To avoid staying in SEAM mode for too long, SEAMCALLs returns a BUSY error code to the kernel instead of spinning on the locks. Depending on the specific SEAMCALL, the caller may need to handle this error in specific ways (e.g., retry). Therefore, return the SEAMCALL error code directly to the caller. Don't attempt to handle it in the core kernel. [Kai: Switched from generic seamcall export] [Yan: Re-wrote the changelog] Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Message-ID: <20241112073636.22129-1-yan.y.zhao@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrapper tdh_mem_sept_add() to add SEPT pagesIsaku Yamahata2-0/+20
TDX architecture introduces the concept of private GPA vs shared GPA, depending on the GPA.SHARED bit. The TDX module maintains a Secure EPT (S-EPT or SEPT) tree per TD for private GPA to HPA translation. Wrap the TDH.MEM.SEPT.ADD SEAMCALL with tdh_mem_sept_add() to provide pages to the TDX module for building a TD's SEPT tree. (Refer to these pages as SEPT pages). Callers need to allocate and provide a normal page to tdh_mem_sept_add(), which then passes the page to the TDX module via the SEAMCALL TDH.MEM.SEPT.ADD. The TDX module then installs the page into SEPT tree and encrypts this SEPT page with the TD's guest keyID. The kernel cannot use the SEPT page until after reclaiming it via TDH.MEM.SEPT.REMOVE or TDH.PHYMEM.PAGE.RECLAIM. Before passing the page to the TDX module, tdh_mem_sept_add() performs a CLFLUSH on the page mapped with keyID 0 to ensure that any dirty cache lines don't write back later and clobber TD memory or control structures. Don't worry about the other MK-TME keyIDs because the kernel doesn't use them. The TDX docs specify that this flush is not needed unless the TDX module exposes the CLFLUSH_BEFORE_ALLOC feature bit. Do the CLFLUSH unconditionally for two reasons: make the solution simpler by having a single path that can handle both !CLFLUSH_BEFORE_ALLOC and CLFLUSH_BEFORE_ALLOC cases. Avoid wading into any correctness uncertainty by going with a conservative solution to start. Callers should specify "GPA" and "level" for the TDX module to install the SEPT page at the specified position in the SEPT. Do not include the root page level in "level" since TDH.MEM.SEPT.ADD can only add non-root pages to the SEPT. Ensure "level" is between 1 and 3 for a 4-level SEPT or between 1 and 4 for a 5-level SEPT. Call tdh_mem_sept_add() during the TD's build time or during the TD's runtime. Check for errors from the function return value and retrieve extended error info from the function output parameters. The TDX module has many internal locks. To avoid staying in SEAM mode for too long, SEAMCALLs returns a BUSY error code to the kernel instead of spinning on the locks. Depending on the specific SEAMCALL, the caller may need to handle this error in specific ways (e.g., retry). Therefore, return the SEAMCALL error code directly to the caller. Don't attempt to handle it in the core kernel. TDH.MEM.SEPT.ADD effectively manages two internal resources of the TDX module: it installs page table pages in the SEPT tree and also updates the TDX module's page metadata (PAMT). Don't add a wrapper for the matching SEAMCALL for removing a SEPT page (TDH.MEM.SEPT.REMOVE) because KVM, as the only in-kernel user, will only tear down the SEPT tree when the TD is being torn down. When this happens it can just do other operations that reclaim the SEPT pages for the host kernels to use, update the PAMT and let the SEPT get trashed. [Kai: Switched from generic seamcall export] [Yan: Re-wrote the changelog] Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Yan Zhao <yan.y.zhao@intel.com> Message-ID: <20241112073624.22114-1-yan.y.zhao@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: TDX: Register TDX host key IDs to cgroup misc controllerZhiming Hu1-0/+6
TDX host key IDs (HKID) are limit resources in a machine, and the misc cgroup lets the machine owner track their usage and limits the possibility of abusing them outside the owner's control. The cgroup v2 miscellaneous subsystem was introduced to control the resource of AMD SEV & SEV-ES ASIDs. Likewise introduce HKIDs as a misc resource. Signed-off-by: Zhiming Hu <zhiming.hu@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14KVM: VMX: Initialize TDX during KVM module loadKai Huang3-45/+14
Before KVM can use TDX to create and run TDX guests, TDX needs to be initialized from two perspectives: 1) TDX module must be initialized properly to a working state; 2) A per-cpu TDX initialization, a.k.a the TDH.SYS.LP.INIT SEAMCALL must be done on any logical cpu before it can run any other TDX SEAMCALLs. The TDX host core-kernel provides two functions to do the above two respectively: tdx_enable() and tdx_cpu_enable(). There are two options in terms of when to initialize TDX: initialize TDX at KVM module loading time, or when creating the first TDX guest. Choose to initialize TDX during KVM module loading time: Initializing TDX module is both memory and CPU time consuming: 1) the kernel needs to allocate a non-trivial size(~1/256) of system memory as metadata used by TDX module to track each TDX-usable memory page's status; 2) the TDX module needs to initialize this metadata, one entry for each TDX-usable memory page. Also, the kernel uses alloc_contig_pages() to allocate those metadata chunks, because they are large and need to be physically contiguous. alloc_contig_pages() can fail. If initializing TDX when creating the first TDX guest, then there's chance that KVM won't be able to run any TDX guests albeit KVM _declares_ to be able to support TDX. This isn't good for the user. On the other hand, initializing TDX at KVM module loading time can make sure KVM is providing a consistent view of whether KVM can support TDX to the user. Always only try to initialize TDX after VMX has been initialized. TDX is based on VMX, and if VMX fails to initialize then TDX is likely to be broken anyway. Also, in practice, supporting TDX will require part of VMX and common x86 infrastructure in working order, so TDX cannot be enabled alone w/o VMX support. There are two cases that can result in failure to initialize TDX: 1) TDX cannot be supported (e.g., because of TDX is not supported or enabled by hardware, or module is not loaded, or missing some dependency in KVM's configuration); 2) Any unexpected error during TDX bring-up. For the first case only mark TDX is disabled but still allow KVM module to be loaded. For the second case just fail to load the KVM module so that the user can be aware. Because TDX costs additional memory, don't enable TDX by default. Add a new module parameter 'enable_tdx' to allow the user to opt-in. Note, the name tdx_init() has already been taken by the early boot code. Use tdx_bringup() for initializing TDX (and tdx_cleanup() since KVM doesn't actually teardown TDX). They don't match vt_init()/vt_exit(), vmx_init()/vmx_exit() etc but it's not end of the world. Also, once initialized, the TDX module cannot be disabled and enabled again w/o the TDX module runtime update, which isn't supported by the kernel. After TDX is enabled, nothing needs to be done when KVM disables hardware virtualization, e.g., when offlining CPU, or during suspend/resume. TDX host core-kernel code internally tracks TDX status and can handle "multiple enabling" scenario. Similar to KVM_AMD_SEV, add a new KVM_INTEL_TDX Kconfig to guide KVM TDX code. Make it depend on INTEL_TDX_HOST but not replace INTEL_TDX_HOST because in the longer term there's a use case that requires making SEAMCALLs w/o KVM as mentioned by Dan [1]. Link: https://lore.kernel.org/6723fc2070a96_60c3294dc@dwillia2-mobl3.amr.corp.intel.com.notmuch/ [1] Signed-off-by: Kai Huang <kai.huang@intel.com> Message-ID: <162f9dee05c729203b9ad6688db1ca2960b4b502.1731664295.git.kai.huang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add tdx_guest_keyid_alloc/free() to alloc and free TDX guest KeyIDIsaku Yamahata1-0/+17
Intel TDX protects guest VMs from malicious host and certain physical attacks. Pre-TDX Intel hardware has support for a memory encryption architecture called MK-TME, which repurposes several high bits of physical address as "KeyID". The BIOS reserves a sub-range of MK-TME KeyIDs as "TDX private KeyIDs". Each TDX guest must be assigned with a unique TDX KeyID when it is created. The kernel reserves the first TDX private KeyID for crypto-protection of specific TDX module data which has a lifecycle that exceeds the KeyID reserved for the TD's use. The rest of the KeyIDs are left for TDX guests to use. Create a small KeyID allocator. Export tdx_guest_keyid_alloc()/tdx_guest_keyid_free() to allocate and free TDX guest KeyID for KVM to use. Don't provide the stub functions when CONFIG_INTEL_TDX_HOST=n since they are not supposed to be called in this case. Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20241030190039.77971-5-rick.p.edgecombe@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Read essential global metadata for KVMKai Huang2-0/+69
KVM needs two classes of global metadata to create and run TDX guests: - "TD Control Structures" - "TD Configurability" The first class contains the sizes of TDX guest per-VM and per-vCPU control structures. KVM will need to use them to allocate enough space for those control structures. The second class contains info which reports things like which features are configurable to TDX guest etc. KVM will need to use them to properly configure TDX guests. Read them for KVM TDX to use. The code change is auto-generated by re-running the script in [1] after uncommenting the "td_conf" and "td_ctrl" part to regenerate the tdx_global_metadata.{hc} and update them to the existing ones in the kernel. #python tdx.py global_metadata.json tdx_global_metadata.h \ tdx_global_metadata.c The 'global_metadata.json' can be fetched from [2]. Note that as of this writing, the JSON file only allows a maximum of 32 CPUID entries. While this is enough for current contents of the CPUID leaves, there were plans to change the JSON per TDX module release which would change the ABI and potentially prevent future versions of the TDX module from working with older kernels. While discussions are ongoing with the TDX module team on what exactly constitutes an ABI breakage, in the meantime the TDX module team has agreed to not increase the number of CPUID entries beyond 128 without an opt in. Therefore the file was tweaked by hand to change the maximum number of CPUID_CONFIGs. Link: https://lore.kernel.org/kvm/0853b155ec9aac09c594caa60914ed6ea4dc0a71.camel@intel.com/ [1] Link: https://cdrdv2.intel.com/v1/dl/getContent/795381 [2] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20241030190039.77971-4-rick.p.edgecombe@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: allocate tdx_sys_info in static memoryPaolo Bonzini1-5/+6
Adding all the information that KVM needs increases the size of struct tdx_sys_info, to the point that you can get warnings about the stack size of init_tdx_module(). Since KVM also needs to read the TDX metadata after init_tdx_module() returns, make the variable a global. Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers for TDX flush operationsRick Edgecombe2-0/+22
Intel TDX protects guest VMs from malicious host and certain physical attacks. The TDX module has the concept of flushing vCPUs. These flushes include both a flush of the translation caches and also any other state internal to the TDX module. Before freeing a KeyID, this flush operation needs to be done. KVM will need to perform the flush on each pCPU associated with the TD, and also perform a TD scoped operation that checks if the flush has been done on all vCPU's associated with the TD. Add a tdh_vp_flush() function to be used to call TDH.VP.FLUSH on each pCPU associated with the TD during TD teardown. It will also be called when disabling TDX and during vCPU migration between pCPUs. Add tdh_mng_vpflushdone() to be used by KVM to call TDH.MNG.VPFLUSHDONE. KVM will use this during TD teardown to verify that TDH.VP.FLUSH has been called sufficiently, and advance the state machine that will allow for reclaiming the TD's KeyID. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Message-ID: <20241203010317.827803-7-rick.p.edgecombe@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers for TDX VM/vCPU field accessRick Edgecombe2-0/+50
Intel TDX protects guest VMs from malicious host and certain physical attacks. The TDX module has TD scoped and vCPU scoped "metadata fields". These fields are a bit like VMCS fields, and stored in data structures maintained by the TDX module. Export 3 SEAMCALLs for use in reading and writing these fields: Make tdh_mng_rd() use MNG.VP.RD to read the TD scoped metadata. Make tdh_vp_rd()/tdh_vp_wr() use TDH.VP.RD/WR to read/write the vCPU scoped metadata. KVM will use these by creating inline helpers that target various metadata sizes. Export the raw SEAMCALL leaf, to avoid exporting the large number of various sized helpers. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Message-ID: <20241203010317.827803-6-rick.p.edgecombe@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers for TDX page cache managementRick Edgecombe2-0/+45
Intel TDX protects guest VMs from malicious host and certain physical attacks. The TDX module uses pages provided by the host for both control structures and for TD guest pages. These pages are encrypted using the MK-TME encryption engine, with its special requirements around cache invalidation. For its own security, the TDX module ensures pages are flushed properly and track which usage they are currently assigned. For creating and tearing down TD VMs and vCPUs KVM will need to use the TDH.PHYMEM.PAGE.RECLAIM, TDH.PHYMEM.CACHE.WB, and TDH.PHYMEM.PAGE.WBINVD SEAMCALLs. Add tdh_phymem_page_reclaim() to enable KVM to call TDH.PHYMEM.PAGE.RECLAIM to reclaim the page for use by the host kernel. This effectively resets its state in the TDX module's page tracking (PAMT), if the page is available to be reclaimed. This will be used by KVM to reclaim the various types of pages owned by the TDX module. It will have a small wrapper in KVM that retries in the case of a relevant error code. Don't implement this wrapper in arch/x86 because KVM's solution around retrying SEAMCALLs will be better located in a single place. Add tdh_phymem_cache_wb() to enable KVM to call TDH.PHYMEM.CACHE.WB to do a cache write back in a way that the TDX module can verify, before it allows a KeyID to be freed. The KVM code will use this to have a small wrapper that handles retries. Since the TDH.PHYMEM.CACHE.WB operation is interruptible, have tdh_phymem_cache_wb() take a resume argument to pass this info to the TDX module for restarts. It is worth noting that this SEAMCALL uses a SEAM specific MSR to do the write back in sections. In this way it does export some new functionality that affects CPU state. Add tdh_phymem_page_wbinvd_tdr() to enable KVM to call TDH.PHYMEM.PAGE.WBINVD to do a cache write back and invalidate of a TDR, using the global KeyID. The underlying TDH.PHYMEM.PAGE.WBINVD SEAMCALL requires the related KeyID to be encoded into the SEAMCALL args. Since the global KeyID is not exposed to KVM, a dedicated wrapper is needed for TDR focused TDH.PHYMEM.PAGE.WBINVD operations. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Message-ID: <20241203010317.827803-5-rick.p.edgecombe@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers for TDX vCPU creationRick Edgecombe2-0/+54
Intel TDX protects guest VMs from malicious host and certain physical attacks. It defines various control structures that hold state for virtualized components of the TD (i.e. VMs or vCPUs) These control structures are stored in pages given to the TDX module and encrypted with either the global KeyID or the guest KeyIDs. To manipulate these control structures the TDX module defines a few SEAMCALLs. KVM will use these during the process of creating a vCPU as follows: 1) Call TDH.VP.CREATE to create a TD vCPU Root (TDVPR) page for each vCPU. 2) Call TDH.VP.ADDCX to add per-vCPU control pages (TDCX) for each vCPU. 3) Call TDH.VP.INIT to initialize the TDCX for each vCPU. To reclaim these pages for use by the kernel other SEAMCALLs are needed, which will be added in future patches. Export functions to allow KVM to make these SEAMCALLs. Export two variants for TDH.VP.CREATE, in order to support the planned logic of KVM to support TDX modules with and without the ENUM_TOPOLOGY feature. If KVM can drop support for the !ENUM_TOPOLOGY case, this could go down a single version. Leave that for later discussion. The TDX module provides SEAMCALLs to hand pages to the TDX module for storing TDX controlled state. SEAMCALLs that operate on this state are directed to the appropriate TD vCPU using references to the pages originally provided for managing the vCPU's state. So the host kernel needs to track these pages, both as an ID for specifying which vCPU to operate on, and to allow them to be eventually reclaimed. The vCPU associated pages are called TDVPR (Trust Domain Virtual Processor Root) and TDCX (Trust Domain Control Extension). Introduce "struct tdx_vp" for holding references to pages provided to the TDX module for the TD vCPU associated state. Don't plan for any vCPU associated state that is controlled by KVM to live in this struct. Only expect it to hold data for concepts specific to the TDX architecture, for which there can't already be preexisting storage for in KVM. Add both the TDVPR page and an array of TDCX pages, even though the SEAMCALL wrappers will only need to know about the TDVPR pages for directing the SEAMCALLs to the right vCPU. Adding the TDCX pages to this struct will let all of the vCPU associated pages handed to the TDX module be tracked in one location. For a type to specify physical pages, use KVM's hpa_t type. Do this for KVM's benefit This is the common type used to hold physical addresses in KVM, so will make interoperability easier. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Message-ID: <20241203010317.827803-4-rick.p.edgecombe@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers for TDX TD creationRick Edgecombe2-0/+54
Intel TDX protects guest VMs from malicious hosts and certain physical attacks. It defines various control structures that hold state for things like TDs or vCPUs. These control structures are stored in pages given to the TDX module and encrypted with either the global KeyID or the guest KeyIDs. To manipulate these control structures the TDX module defines a few SEAMCALLs. KVM will use these during the process of creating a TD as follows: 1) Allocate a unique TDX KeyID for a new guest. 1) Call TDH.MNG.CREATE to create a "TD Root" (TDR) page, together with the new allocated KeyID. Unlike the rest of the TDX guest, the TDR page is crypto-protected by the 'global KeyID'. 2) Call the previously added TDH.MNG.KEY.CONFIG on each package to configure the KeyID for the guest. After this step, the KeyID to protect the guest is ready and the rest of the guest will be protected by this KeyID. 3) Call TDH.MNG.ADDCX to add TD Control Structure (TDCS) pages. 4) Call TDH.MNG.INIT to initialize the TDCS. To reclaim these pages for use by the kernel other SEAMCALLs are needed, which will be added in future patches. Add tdh_mng_addcx(), tdh_mng_create() and tdh_mng_init() to export these SEAMCALLs so that KVM can use them to create TDs. For SEAMCALLs that give a page to the TDX module to be encrypted, CLFLUSH the page mapped with KeyID 0, such that any dirty cache lines don't write back later and clobber TD memory or control structures. Don't worry about the other MK-TME KeyIDs because the kernel doesn't use them. The TDX docs specify that this flush is not needed unless the TDX module exposes the CLFLUSH_BEFORE_ALLOC feature bit. Be conservative and always flush. Add a helper function to facilitate this. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Message-ID: <20241203010317.827803-3-rick.p.edgecombe@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-14x86/virt/tdx: Add SEAMCALL wrappers for TDX KeyID managementRick Edgecombe2-7/+34
Intel TDX protects guest VMs from malicious host and certain physical attacks. Pre-TDX Intel hardware has support for a memory encryption architecture called MK-TME, which repurposes several high bits of physical address as "KeyID". TDX ends up with reserving a sub-range of MK-TME KeyIDs as "TDX private KeyIDs". Like MK-TME, these KeyIDs can be associated with an ephemeral key. For TDX this association is done by the TDX module. It also has its own tracking for which KeyIDs are in use. To do this ephemeral key setup and manipulate the TDX module's internal tracking, KVM will use the following SEAMCALLs: TDH.MNG.KEY.CONFIG: Mark the KeyID as in use, and initialize its ephemeral key. TDH.MNG.KEY.FREEID: Mark the KeyID as not in use. These SEAMCALLs both operate on TDR structures, which are setup using the previously added TDH.MNG.CREATE SEAMCALL. KVM's use of these operations will go like: - tdx_guest_keyid_alloc() - Initialize TD and TDR page with TDH.MNG.CREATE (not yet-added), passing KeyID - TDH.MNG.KEY.CONFIG to initialize the key - TD runs, teardown is started - TDH.MNG.KEY.FREEID - tdx_guest_keyid_free() Don't try to combine the tdx_guest_keyid_alloc() and TDH.MNG.KEY.CONFIG operations because TDH.MNG.CREATE and some locking need to be done in the middle. Don't combine TDH.MNG.KEY.FREEID and tdx_guest_keyid_free() so they are symmetrical with the creation path. So implement tdh_mng_key_config() and tdh_mng_key_freeid() as separate functions than tdx_guest_keyid_alloc() and tdx_guest_keyid_free(). The TDX module provides SEAMCALLs to hand pages to the TDX module for storing TDX controlled state. SEAMCALLs that operate on this state are directed to the appropriate TD VM using references to the pages originally provided for managing the TD's state. So the host kernel needs to track these pages, both as an ID for specifying which TD to operate on, and to allow them to be eventually reclaimed. The TD VM associated pages are called TDR (Trust Domain Root) and TDCS (Trust Domain Control Structure). Introduce "struct tdx_td" for holding references to pages provided to the TDX module for this TD VM associated state. Don't plan for any TD associated state that is controlled by KVM to live in this struct. Only expect it to hold data for concepts specific to the TDX architecture, for which there can't already be preexisting storage for in KVM. Add both the TDR page and an array of TDCS pages, even though the SEAMCALL wrappers will only need to know about the TDR pages for directing the SEAMCALLs to the right TD. Adding the TDCS pages to this struct will let all of the TD VM associated pages handed to the TDX module be tracked in one location. For a type to specify physical pages, use KVM's hpa_t type. Do this for KVM's benefit This is the common type used to hold physical addresses in KVM, so will make interoperability easier. Co-developed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Message-ID: <20241203010317.827803-2-rick.p.edgecombe@intel.com> Acked-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-19x86/virt/tdx: Require the module to assert it has the NO_RBP_MOD mitigationKai Huang2-0/+21
Old TDX modules can clobber RBP in the TDH.VP.ENTER SEAMCALL. However RBP is used as frame pointer in the x86_64 calling convention, and clobbering RBP could result in bad things like being unable to unwind the stack if any non-maskable exceptions (NMI, #MC etc) happens in that gap. A new "NO_RBP_MOD" feature was introduced to more recent TDX modules to not clobber RBP. KVM will need to use the TDH.VP.ENTER SEAMCALL to run TDX guests. It won't be safe to run TDX guests w/o this feature. To prevent it, just don't initialize the TDX module if this feature is not supported [1]. Note the bit definitions of TDX_FEATURES0 are not auto-generated in tdx_global_metadata.h. Manually define a macro for it in "tdx.h". Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/fc0e8ab7-86d4-4428-be31-82e1ece6dd21@intel.com/ [1] Link: https://lore.kernel.org/all/76ae5025502c84d799e3a56a6fc4f69a82da8f93.1734188033.git.kai.huang%40intel.com
2024-12-19x86/virt/tdx: Switch to use auto-generated global metadata reading codeKai Huang2-104/+2
Continue the process to have a centralized solution for TDX global metadata reading. Now that the new autogenerated solution is ready for use, switch to it and remove the old one. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/all/fc025d1e13b92900323f47cfe9aac3157bf08ee7.1734188033.git.kai.huang%40intel.com
2024-12-19x86/virt/tdx: Use dedicated struct members for PAMT entry sizesKai Huang2-6/+12
Currently, the 'struct tdmr_sys_info_tdmr' which includes TDMR related fields defines the PAMT entry sizes for TDX supported page sizes (4KB, 2MB and 1GB) as an array: struct tdx_sys_info_tdmr { ... u16 pamt_entry_sizes[TDX_PS_NR]; }; PAMT entry sizes are needed when allocating PAMTs for each TDMR. Using the array to contain PAMT entry sizes reduces the number of arguments that need to be passed when calling tdmr_set_up_pamt(). It also makes the code pattern like below clearer: for (pgsz = TDX_PS_4K; pgsz < TDX_PS_NR; pgsz++) { pamt_size[pgsz] = tdmr_get_pamt_sz(tdmr, pgsz, pamt_entry_size[pgsz]); tdmr_pamt_size += pamt_size[pgsz]; } However, the auto-generated metadata reading code generates a structure member for each field. The 'global_metadata.json' has a dedicated field for each PAMT entry size, and the new 'struct tdx_sys_info_tdmr' looks like: struct tdx_sys_info_tdmr { ... u16 pamt_4k_entry_size; u16 pamt_2m_entry_size; u16 pamt_1g_entry_size; }; Prepare to use the autogenerated code by making the existing 'struct tdx_sys_info_tdmr' look like the generated one. When passing to tdmrs_set_up_pamt_all(), build a local array of PAMT entry sizes from the structure so the code to allocate PAMTs can stay the same. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/all/ccf46f3dacb01be1fb8309592616d443ac17caba.1734188033.git.kai.huang%40intel.com
2024-12-19x86/virt/tdx: Use auto-generated code to read global metadataPaolo Bonzini2-0/+73
The TDX module provides a set of "Global Metadata Fields". They report things like TDX module version, supported features, and fields related to create/run TDX guests and so on. Currently the kernel only reads "TD Memory Region" (TDMR) related fields for module initialization. There are needs to read more global metadata fields for future use: - Supported features ("TDX_FEATURES0") to fail module initialization when the module doesn't support "not clobbering host RBP when exiting from TDX guest" feature [1]. - KVM TDX baseline support and other features like TDX Connect will need to read more. The current global metadata reading code has limitations (e.g., it only has a primitive helper to read metadata field with 16-bit element size, while TDX supports 8/16/32/64 bits metadata element sizes). It needs tweaks in order to read more metadata fields. But even with the tweaks, when new code is added to read a new field, the reviewers will still need to review against the spec to make sure the new code doesn't screw up things like using the wrong metadata field ID (each metadata field is associated with a unique field ID, which is a TDX-defined u64 constant) etc. TDX documents all global metadata fields in a 'global_metadata.json' file as part of TDX spec [2]. JSON format is machine readable. Instead of tweaking the metadata reading code, use a script to generate the code so that: 1) Using the generated C is simple. 2) Adding a field is simple, e.g., the script just pulls the field ID out of the JSON for a given field thus no manual review is needed. Specifically, to match the layout of the 'struct tdx_sys_info' and its sub-structures, the script uses a table with each entry containing the the name of the sub-structures (which reflects the "Class") and the "Field Name" of all its fields, and auto-generate: 1) The 'struct tdx_sys_info' and all 'struct tdx_sys_info_xx' sub-structures in 'tdx_global_metadata.h'. 2) The main function 'get_tdx_sys_info()' which reads all metadata to 'struct tdx_sys_info' and the 'get_tdx_sys_info_xx()' functions which read 'struct tdx_sys_info_xx()' in 'tdx_global_metadata.c'. Using the generated C is simple: 1) include "tdx_global_metadata.h" to the local "tdx.h"; 2) explicitly include "tdx_global_metadata.c" to the local "tdx.c" after the read_sys_metadata_field() primitive (which is a wrapper of TDH.SYS.RD SEAMCALL to read global metadata). Adding a field is also simple: 1) just add the new field to an existing structure, or add it with a new structure; 2) re-run the script to generate the new code; 3) update the existing tdx_global_metadata.{hc} with the new ones. For now, use the auto-generated code to read the TDMR related fields and the aforesaid metadata field "TDX_FEATURES0". The tdx_global_metadata.{hc} can be generated by running below: #python tdx_global_metadata.py global_metadata.json \ tdx_global_metadata.h tdx_global_metadata.c .. where the 'global_metadata.json' can be fetched from [2] and the 'tdx_global_metadata.py' can be found from [3]. Co-developed-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/fc0e8ab7-86d4-4428-be31-82e1ece6dd21@intel.com/ [1] Link: https://cdrdv2.intel.com/v1/dl/getContent/795381 [2] Link: https://lore.kernel.org/762a50133300710771337398284567b299a86f67.camel@intel.com/ [3] Link: https://lore.kernel.org/all/cbe3f12b1e5479399b53f4873f2ff783d9fc669b.1734188033.git.kai.huang%40intel.com
2024-12-19x86/virt/tdx: Start to track all global metadata in one structureKai Huang2-14/+24
The TDX module provides a set of "Global Metadata Fields". They report things like TDX module version, supported features, and fields related to create/run TDX guests and so on. Today the kernel only reads "TD Memory Region" (TDMR) related fields for module initialization. KVM will need to read additional metadata fields to run TDX guests. Move towards having the TDX host core-kernel provide a centralized, canonical, and immutable structure for the global metadata that comes out from the TDX module for all kernel components to use. As the first step, introduce a new 'struct tdx_sys_info' to track all global metadata fields. TDX categorizes global metadata fields into different "Classes". E.g., the TDMR related fields are under class "TDMR Info". Instead of making 'struct tdx_sys_info' a plain structure to contain all metadata fields, organize them in smaller structures based on the "Class". This allows those metadata fields to be used in finer granularity thus makes the code clearer. E.g., construct_tdmrs() can just take the structure which contains "TDMR Info" metadata fields. Add get_tdx_sys_info() as the placeholder to read all metadata fields. Have it only call get_tdx_sys_info_tdmr() to read TDMR related fields for now. Place get_tdx_sys_info() as the first step of init_tdx_module() to enable early prerequisite checks on the metadata to support early module initialization abort. This results in moving get_tdx_sys_info_tdmr() to be before build_tdx_memlist(), but this is fine because there are no dependencies between these two functions. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/all/bfacb4e90527cf79d4be0d1753e6f318eea21118.1734188033.git.kai.huang%40intel.com
2024-12-19x86/virt/tdx: Rename 'struct tdx_tdmr_sysinfo' to reflect the spec betterKai Huang2-19/+19
The TDX module provides a set of "Global Metadata Fields". They report things like TDX module version, supported features, and fields related to create/run TDX guests and so on. TDX organizes those metadata fields by "Classes" based on the meaning of those fields. E.g., for now the kernel only reads "TD Memory Region" (TDMR) related fields for module initialization. Those fields are defined under class "TDMR Info". Today the kernel reads some of the global metadata to initialize the TDX module. KVM will need to read additional metadata fields to run TDX guests. Move towards having the TDX host core-kernel provide a centralized, canonical, and immutable structure for the global metadata that comes out from the TDX module for all kernel components to use. More specifically, prepare the code to end up with an organization like: struct tdx_sys_info { struct tdx_sys_info_classA a; struct tdx_sys_info_classB b; ... }; Currently the kernel organizes all fields under "TDMR Info" class in 'struct tdx_tdmr_sysinfo'. Prepare for the above by renaming the structure to 'struct tdx_sys_info_tdmr' to follow the class name better. No functional change intended. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Adrian Hunter <adrian.hunter@intel.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Link: https://lore.kernel.org/all/de165d09e0b571cfeb119a368f4be6e2888ebb93.1734188033.git.kai.huang%40intel.com
2024-05-28x86/virt/tdx: Switch to new Intel CPU model definesTony Luck1-4/+4
New CPU #defines encode vendor and family as well as model. Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20240520224620.9480-31-tony.luck%40intel.com
2024-03-22x86/virt/tdx: Remove duplicate includeJiapeng Chong1-1/+0
./arch/x86/virt/vmx/tdx/tdx.c: linux/acpi.h is included more than once. Reported-by: Abaci Robot <abaci@linux.alibaba.com> Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20240322061741.9869-1-jiapeng.chong@linux.alibaba.com Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=8609
2023-12-12x86/mce: Differentiate real hardware #MCs from TDX erratum onesKai Huang2-0/+114
The first few generations of TDX hardware have an erratum. Triggering it in Linux requires some kind of kernel bug involving relatively exotic memory writes to TDX private memory and will manifest via spurious-looking machine checks when reading the affected memory. Make an effort to detect these TDX-induced machine checks and spit out a new blurb to dmesg so folks do not think their hardware is failing. == Background == Virtually all kernel memory accesses operations happen in full cachelines. In practice, writing a "byte" of memory usually reads a 64 byte cacheline of memory, modifies it, then writes the whole line back. Those operations do not trigger this problem. This problem is triggered by "partial" writes where a write transaction of less than cacheline lands at the memory controller. The CPU does these via non-temporal write instructions (like MOVNTI), or through UC/WC memory mappings. The issue can also be triggered away from the CPU by devices doing partial writes via DMA. == Problem == A partial write to a TDX private memory cacheline will silently "poison" the line. Subsequent reads will consume the poison and generate a machine check. According to the TDX hardware spec, neither of these things should have happened. To add insult to injury, the Linux machine code will present these as a literal "Hardware error" when they were, in fact, a software-triggered issue. == Solution == In the end, this issue is hard to trigger. Rather than do something rash (and incomplete) like unmap TDX private memory from the direct map, improve the machine check handler. Currently, the #MC handler doesn't distinguish whether the memory is TDX private memory or not but just dump, for instance, below message: [...] mce: [Hardware Error]: CPU 147: Machine Check Exception: f Bank 1: bd80000000100134 [...] mce: [Hardware Error]: RIP 10:<ffffffffadb69870> {__tlb_remove_page_size+0x10/0xa0} ... [...] mce: [Hardware Error]: Run the above through 'mcelog --ascii' [...] mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel [...] Kernel panic - not syncing: Fatal local machine check Which says "Hardware Error" and "Data load in unrecoverable area of kernel". Ideally, it's better for the log to say "software bug around TDX private memory" instead of "Hardware Error". But in reality the real hardware memory error can happen, and sadly such software-triggered #MC cannot be distinguished from the real hardware error. Also, the error message is used by userspace tool 'mcelog' to parse, so changing the output may break userspace. So keep the "Hardware Error". The "Data load in unrecoverable area of kernel" is also helpful, so keep it too. Instead of modifying above error log, improve the error log by printing additional TDX related message to make the log like: ... [...] mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel [...] mce: [Hardware Error]: Machine Check: TDX private memory error. Possible kernel bug. Adding this additional message requires determination of whether the memory page is TDX private memory. There is no existing infrastructure to do that. Add an interface to query the TDX module to fill this gap. == Impact == This issue requires some kind of kernel bug to trigger. TDX private memory should never be mapped UC/WC. A partial write originating from these mappings would require *two* bugs, first mapping the wrong page, then writing the wrong memory. It would also be detectable using traditional memory corruption techniques like DEBUG_PAGEALLOC. MOVNTI (and friends) could cause this issue with something like a simple buffer overrun or use-after-free on the direct map. It should also be detectable with normal debug techniques. The one place where this might get nasty would be if the CPU read data then wrote back the same data. That would trigger this problem but would not, for instance, set off mechanisms like slab redzoning because it doesn't actually corrupt data. With an IOMMU at least, the DMA exposure is similar to the UC/WC issue. TDX private memory would first need to be incorrectly mapped into the I/O space and then a later DMA to that mapping would actually cause the poisoning event. [ dhansen: changelog tweaks ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-18-dave.hansen%40intel.com
2023-12-12x86/cpu: Detect TDX partial write machine check erratumKai Huang1-0/+19
TDX memory has integrity and confidentiality protections. Violations of this integrity protection are supposed to only affect TDX operations and are never supposed to affect the host kernel itself. In other words, the host kernel should never, itself, see machine checks induced by the TDX integrity hardware. Alas, the first few generations of TDX hardware have an erratum. A partial write to a TDX private memory cacheline will silently "poison" the line. Subsequent reads will consume the poison and generate a machine check. According to the TDX hardware spec, neither of these things should have happened. Virtually all kernel memory accesses operations happen in full cachelines. In practice, writing a "byte" of memory usually reads a 64 byte cacheline of memory, modifies it, then writes the whole line back. Those operations do not trigger this problem. This problem is triggered by "partial" writes where a write transaction of less than cacheline lands at the memory controller. The CPU does these via non-temporal write instructions (like MOVNTI), or through UC/WC memory mappings. The issue can also be triggered away from the CPU by devices doing partial writes via DMA. With this erratum, there are additional things need to be done. To prepare for those changes, add a CPU bug bit to indicate this erratum. Note this bug reflects the hardware thus it is detected regardless of whether the kernel is built with TDX support or not. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-17-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Handle TDX interaction with sleep and hibernationKai Huang1-0/+16
TDX is incompatible with hibernation and some ACPI sleep states. Users must disable hibernation to use TDX. Users must also disable TDX if they want to use ACPI S3 sleep. This feels a bit wonky and asymmetric, but it avoids adding any new command-line parameters for now. It can be improved if users hate it too much. Long version: TDX cannot survive from S3 and deeper states. The hardware resets and disables TDX completely when platform goes to S3 and deeper. Both TDX guests and the TDX module get destroyed permanently. The kernel uses S3 to support suspend-to-ram, and S4 or deeper states to support hibernation. The kernel also maintains TDX states to track whether it has been initialized and its metadata resource, etc. After resuming from S3 or hibernation, these TDX states won't be correct anymore. Theoretically, the kernel can do more complicated things like resetting TDX internal states and TDX module metadata before going to S3 or deeper, and re-initialize TDX module after resuming, etc, but there is no way to save/restore TDX guests for now. Until TDX supports full save and restore of TDX guests, there is no big value to handle TDX module in suspend and hibernation alone. To make things simple, just choose to make TDX mutually exclusive with S3 and hibernation. Note the TDX module is initialized at runtime. To avoid having to deal with the fuss of determining TDX state at runtime, just choose TDX vs S3 and hibernation at kernel early boot. It's a bad user experience if the choice of TDX and S3/hibernation is done at runtime anyway, i.e., the user can experience being able to do S3/hibernation but later becoming unable to due to TDX being enabled. Disable TDX in kernel early boot when hibernation support is available. Currently there's no mechanism exposed by the hibernation code to allow other kernel code to disable hibernation once for all. Users that want TDX must disable hibernation, like using hibername=no on the command line. Disable ACPI S3 when TDX is enabled by the BIOS. For now the user needs to disable TDX in the BIOS to use ACPI S3. A new kernel command line can be added in the future if there's a need to let user disable TDX host via kernel command line. Alternatively, the kernel could disable TDX when ACPI S3 is supported and request the user to disable S3 to use TDX. But there's no existing kernel command line to do that, and BIOS doesn't always have an option to disable S3. [ dhansen: subject / changelog tweaks ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-16-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Initialize all TDMRsKai Huang2-9/+53
After the global KeyID has been configured on all packages, initialize all TDMRs to make all TDX-usable memory regions that are passed to the TDX module become usable. This is the last step of initializing the TDX module. Initializing TDMRs can be time consuming on large memory systems as it involves initializing all metadata entries for all pages that can be used by TDX guests. Initializing different TDMRs can be parallelized. For now to keep it simple, just initialize all TDMRs one by one. It can be enhanced in the future. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-15-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Configure global KeyID on all packagesKai Huang2-2/+132
After the list of TDMRs and the global KeyID are configured to the TDX module, the kernel needs to configure the key of the global KeyID on all packages using TDH.SYS.KEY.CONFIG. This SEAMCALL cannot run parallel on different cpus. Loop all online cpus and use smp_call_on_cpu() to call this SEAMCALL on the first cpu of each package. To keep things simple, this implementation takes no affirmative steps to online cpus to make sure there's at least one cpu for each package. The callers (aka. KVM) can ensure success by ensuring sufficient CPUs are online for this to succeed. Intel hardware doesn't guarantee cache coherency across different KeyIDs. The PAMTs are transitioning from being used by the kernel mapping (KeyId 0) to the TDX module's "global KeyID" mapping. This means that the kernel must flush any dirty KeyID-0 PAMT cachelines before the TDX module uses the global KeyID to access the PAMTs. Otherwise, if those dirty cachelines were written back, they would corrupt the TDX module's metadata. Aside: This corruption would be detected by the memory integrity hardware on the next read of the memory with the global KeyID. The result would likely be fatal to the system but would not impact TDX security. Following the TDX module specification, flush cache before configuring the global KeyID on all packages. Given the PAMT size can be large (~1/256th of system RAM), just use WBINVD on all CPUs to flush. If TDH.SYS.KEY.CONFIG fails, the TDX module may already have "converted" some memory for TDX module use. Convert the memory back so that it can be safely used by the kernel again. Note that this is slower than it should be because of the "partial write machine check" erratum which affects TDX-capable hardware. Also refactor and introduce a new helper: tdmr_do_pamt_func(). This takes a TDMR and runs a function on its PAMT. It looks a _bit_ odd to pass a function pointer around like this, but its use is pretty narrow and it does eliminate what would otherwise be some copying and pasting. [ dhansen: * munge changelog as usual * remove weird (*pamd_func)() syntax ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-14-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Configure TDX module with the TDMRs and global KeyIDKai Huang2-1/+44
The TDX module uses a private KeyID as the "global KeyID" for mapping things like the PAMT and other TDX metadata. This KeyID has already been reserved when detecting TDX during the kernel early boot. Now that the "TD Memory Regions" (TDMRs) are fully built, pass them to the TDX module together with the global KeyID. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-13-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Designate reserved areas for all TDMRsKai Huang1-8/+209
As the last step of constructing TDMRs, populate reserved areas for all TDMRs. Cover all memory holes and PAMTs with a TMDR reserved area. [ dhansen: trim down chagnelog ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-12-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Allocate and set up PAMTs for TDMRsKai Huang2-6/+212
The TDX module uses additional metadata to record things like which guest "owns" a given page of memory. This metadata, referred as Physical Address Metadata Table (PAMT), essentially serves as the 'struct page' for the TDX module. PAMTs are not reserved by hardware up front. They must be allocated by the kernel and then given to the TDX module during module initialization. TDX supports 3 page sizes: 4K, 2M, and 1G. Each "TD Memory Region" (TDMR) has 3 PAMTs to track the 3 supported page sizes. Each PAMT must be a physically contiguous area from a Convertible Memory Region (CMR). However, the PAMTs which track pages in one TDMR do not need to reside within that TDMR but can be anywhere in CMRs. If one PAMT overlaps with any TDMR, the overlapping part must be reported as a reserved area in that particular TDMR. Use alloc_contig_pages() since PAMT must be a physically contiguous area and it may be potentially large (~1/256th of the size of the given TDMR). The downside is alloc_contig_pages() may fail at runtime. One (bad) mitigation is to launch a TDX guest early during system boot to get those PAMTs allocated at early time, but the only way to fix is to add a boot option to allocate or reserve PAMTs during kernel boot. It is imperfect but will be improved on later. TDX only supports a limited number of reserved areas per TDMR to cover both PAMTs and memory holes within the given TDMR. If many PAMTs are allocated within a single TDMR, the reserved areas may not be sufficient to cover all of them. Adopt the following policies when allocating PAMTs for a given TDMR: - Allocate three PAMTs of the TDMR in one contiguous chunk to minimize the total number of reserved areas consumed for PAMTs. - Try to first allocate PAMT from the local node of the TDMR for better NUMA locality. Also dump out how many pages are allocated for PAMTs when the TDX module is initialized successfully. This helps answer the eternal "where did all my memory go?" questions. [ dhansen: merge in error handling cleanup ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-11-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Fill out TDMRs to cover all TDX memory regionsKai Huang2-1/+105
Start to transit out the "multi-steps" to construct a list of "TD Memory Regions" (TDMRs) to cover all TDX-usable memory regions. The kernel configures TDX-usable memory regions by passing a list of TDMRs "TD Memory Regions" (TDMRs) to the TDX module. Each TDMR contains the information of the base/size of a memory region, the base/size of the associated Physical Address Metadata Table (PAMT) and a list of reserved areas in the region. Do the first step to fill out a number of TDMRs to cover all TDX memory regions. To keep it simple, always try to use one TDMR for each memory region. As the first step only set up the base/size for each TDMR. Each TDMR must be 1G aligned and the size must be in 1G granularity. This implies that one TDMR could cover multiple memory regions. If a memory region spans the 1GB boundary and the former part is already covered by the previous TDMR, just use a new TDMR for the remaining part. TDX only supports a limited number of TDMRs. Disable TDX if all TDMRs are consumed but there is more memory region to cover. There are fancier things that could be done like trying to merge adjacent TDMRs. This would allow more pathological memory layouts to be supported. But, current systems are not even close to exhausting the existing TDMR resources in practice. For now, keep it simple. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Reviewed-by: Yuan Yao <yuan.yao@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-10-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Add placeholder to construct TDMRs to cover all TDX memory regionsKai Huang2-3/+123
After the kernel selects all TDX-usable memory regions, the kernel needs to pass those regions to the TDX module via data structure "TD Memory Region" (TDMR). Add a placeholder to construct a list of TDMRs (in multiple steps) to cover all TDX-usable memory regions. === Long Version === TDX provides increased levels of memory confidentiality and integrity. This requires special hardware support for features like memory encryption and storage of memory integrity checksums. Not all memory satisfies these requirements. As a result, TDX introduced the concept of a "Convertible Memory Region" (CMR). During boot, the firmware builds a list of all of the memory ranges which can provide the TDX security guarantees. The list of these ranges is available to the kernel by querying the TDX module. The TDX architecture needs additional metadata to record things like which TD guest "owns" a given page of memory. This metadata essentially serves as the 'struct page' for the TDX module. The space for this metadata is not reserved by the hardware up front and must be allocated by the kernel and given to the TDX module. Since this metadata consumes space, the VMM can choose whether or not to allocate it for a given area of convertible memory. If it chooses not to, the memory cannot receive TDX protections and can not be used by TDX guests as private memory. For every memory region that the VMM wants to use as TDX memory, it sets up a "TD Memory Region" (TDMR). Each TDMR represents a physically contiguous convertible range and must also have its own physically contiguous metadata table, referred to as a Physical Address Metadata Table (PAMT), to track status for each page in the TDMR range. Unlike a CMR, each TDMR requires 1G granularity and alignment. To support physical RAM areas that don't meet those strict requirements, each TDMR permits a number of internal "reserved areas" which can be placed over memory holes. If PAMT metadata is placed within a TDMR it must be covered by one of these reserved areas. Let's summarize the concepts: CMR - Firmware-enumerated physical ranges that support TDX. CMRs are 4K aligned. TDMR - Physical address range which is chosen by the kernel to support TDX. 1G granularity and alignment required. Each TDMR has reserved areas where TDX memory holes and overlapping PAMTs can be represented. PAMT - Physically contiguous TDX metadata. One table for each page size per TDMR. Roughly 1/256th of TDMR in size. 256G TDMR = ~1G PAMT. As one step of initializing the TDX module, the kernel configures TDX-usable memory regions by passing a list of TDMRs to the TDX module. Constructing the list of TDMRs consists below steps: 1) Fill out TDMRs to cover all memory regions that the TDX module will use for TD memory. 2) Allocate and set up PAMT for each TDMR. 3) Designate reserved areas for each TDMR. Add a placeholder to construct TDMRs to do the above steps. To keep things simple, just allocate enough space to hold maximum number of TDMRs up front. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-9-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Get module global metadata for module initializationKai Huang2-1/+126
The TDX module global metadata provides system-wide information about the module. TL;DR: Use the TDH.SYS.RD SEAMCALL to tell if the module is good or not. Long Version: 1) Only initialize TDX module with version 1.5 and later TDX module 1.0 has some compatibility issues with the later versions of module, as documented in the "Intel TDX module ABI incompatibilities between TDX1.0 and TDX1.5" spec. Don't bother with module versions that do not have a stable ABI. 2) Get the essential global metadata for module initialization TDX reports a list of "Convertible Memory Region" (CMR) to tell the kernel which memory is TDX compatible. The kernel needs to build a list of memory regions (out of CMRs) as "TDX-usable" memory and pass them to the TDX module. The kernel does this by constructing a list of "TD Memory Regions" (TDMRs) to cover all these memory regions and passing them to the TDX module. Each TDMR is a TDX architectural data structure containing the memory region that the TDMR covers, plus the information to track (within this TDMR): a) the "Physical Address Metadata Table" (PAMT) to track each TDX memory page's status (such as which TDX guest "owns" a given page, and b) the "reserved areas" to tell memory holes that cannot be used as TDX memory. The kernel needs to get below metadata from the TDX module to build the list of TDMRs: a) the maximum number of supported TDMRs b) the maximum number of supported reserved areas per TDMR and, c) the PAMT entry size for each TDX-supported page size. == Implementation == The TDX module has two modes of fetching the metadata: a one field at a time, or all in one blob. Use the field at a time for now. It is slower, but there just are not enough fields now to justify the complexity of extra unpacking. The err_free_tdxmem=>out_put_tdxmem goto looks wonky by itself. But it is the first of a bunch of error handling that will get stuck at its site. [ dhansen: clean up changelog and add a struct to map between the TDX module fields and 'struct tdx_tdmr_sysinfo' ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-8-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Use all system memory when initializing TDX module as TDX memoryKai Huang2-2/+171
Start to transit out the "multi-steps" to initialize the TDX module. TDX provides increased levels of memory confidentiality and integrity. This requires special hardware support for features like memory encryption and storage of memory integrity checksums. Not all memory satisfies these requirements. As a result, TDX introduced the concept of a "Convertible Memory Region" (CMR). During boot, the firmware builds a list of all of the memory ranges which can provide the TDX security guarantees. The list of these ranges is available to the kernel by querying the TDX module. CMRs tell the kernel which memory is TDX compatible. The kernel needs to build a list of memory regions (out of CMRs) as "TDX-usable" memory and pass them to the TDX module. Once this is done, those "TDX-usable" memory regions are fixed during module's lifetime. To keep things simple, assume that all TDX-protected memory will come from the page allocator. Make sure all pages in the page allocator *are* TDX-usable memory. As TDX-usable memory is a fixed configuration, take a snapshot of the memory configuration from memblocks at the time of module initialization (memblocks are modified on memory hotplug). This snapshot is used to enable TDX support for *this* memory configuration only. Use a memory hotplug notifier to ensure that no other RAM can be added outside of this configuration. This approach requires all memblock memory regions at the time of module initialization to be TDX convertible memory to work, otherwise module initialization will fail in a later SEAMCALL when passing those regions to the module. This approach works when all boot-time "system RAM" is TDX convertible memory and no non-TDX-convertible memory is hot-added to the core-mm before module initialization. For instance, on the first generation of TDX machines, both CXL memory and NVDIMM are not TDX convertible memory. Using kmem driver to hot-add any CXL memory or NVDIMM to the core-mm before module initialization will result in failure to initialize the module. The SEAMCALL error code will be available in the dmesg to help user to understand the failure. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-7-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Add skeleton to enable TDX on demandKai Huang2-0/+197
There are essentially two steps to get the TDX module ready: 1) Get each CPU ready to run TDX 2) Set up the shared TDX module data structures Introduce and export (to KVM) the infrastructure to do both of these pieces at runtime. == Per-CPU TDX Initialization == Track the initialization status of each CPU with a per-cpu variable. This avoids failures in the case of KVM module reloads and handles cases where CPUs come online later. Generally, the per-cpu SEAMCALLs happen first. But there's actually one global call that has to happen before _any_ others (TDH_SYS_INIT). It's analogous to the boot CPU having to do a bit of extra work just because it happens to be the first one. Track if _any_ CPU has done this call and then only actually do it during the first per-cpu init. == Shared TDX Initialization == Create the global state function (tdx_enable()) as a simple placeholder. The TODO list will be pared down as functionality is added. Use a state machine protected by mutex to make sure the work in tdx_enable() will only be done once. This avoids failures if the KVM module is reloaded. A CPU must be made ready to run TDX before it can participate in initializing the shared parts of the module. Any caller of tdx_enable() need to ensure that it can never run on a CPU which is not ready to run TDX. It needs to be wary of CPU hotplug, preemption and the VMX enabling state of any CPU on which it might run. == Why runtime instead of boot time? == The TDX module can be initialized only once in its lifetime. Instead of always initializing it at boot time, this implementation chooses an "on demand" approach to initialize TDX until there is a real need (e.g when requested by KVM). This approach has below pros: 1) It avoids consuming the memory that must be allocated by kernel and given to the TDX module as metadata (~1/256th of the TDX-usable memory), and also saves the CPU cycles of initializing the TDX module (and the metadata) when TDX is not used at all. 2) The TDX module design allows it to be updated while the system is running. The update procedure shares quite a few steps with this "on demand" initialization mechanism. The hope is that much of "on demand" mechanism can be shared with a future "update" mechanism. A boot-time TDX module implementation would not be able to share much code with the update mechanism. 3) Making SEAMCALL requires VMX to be enabled. Currently, only the KVM code mucks with VMX enabling. If the TDX module were to be initialized separately from KVM (like at boot), the boot code would need to be taught how to muck with VMX enabling and KVM would need to be taught how to cope with that. Making KVM itself responsible for TDX initialization lets the rest of the kernel stay blissfully unaware of VMX. [ dhansen: completely reorder/rewrite changelog ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-6-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Add SEAMCALL error printing for module initializationKai Huang1-0/+44
The SEAMCALLs involved during the TDX module initialization are not expected to fail. In fact, they are not expected to return any non-zero code (except the "running out of entropy error", which can be handled internally already). Add yet another set of SEAMCALL wrappers, which treats all non-zero return code as error, to support printing SEAMCALL error upon failure for module initialization. Note the TDX module initialization doesn't use the _saved_ret() variant thus no wrapper is added for it. SEAMCALL assembly can also return kernel-defined error codes for three special cases: 1) TDX isn't enabled by the BIOS; 2) TDX module isn't loaded; 3) CPU isn't in VMX operation. Whether they can legally happen depends on the caller, so leave to the caller to print error message when desired. Also convert the SEAMCALL error codes to the kernel error codes in the new wrappers so that each SEAMCALL caller doesn't have to repeat the conversion. [ dhansen: Align the register dump with show_regs(). Zero-pad the contents, split on two lines and use consistent spacing. ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-5-dave.hansen%40intel.com
2023-12-08x86/virt/tdx: Detect TDX during kernel bootKai Huang2-1/+82
Intel Trust Domain Extensions (TDX) protects guest VMs from malicious host and certain physical attacks. A CPU-attested software module called 'the TDX module' runs inside a new isolated memory range as a trusted hypervisor to manage and run protected VMs. Pre-TDX Intel hardware has support for a memory encryption architecture called MKTME. The memory encryption hardware underpinning MKTME is also used for Intel TDX. TDX ends up "stealing" some of the physical address space from the MKTME architecture for crypto-protection to VMs. The BIOS is responsible for partitioning the "KeyID" space between legacy MKTME and TDX. The KeyIDs reserved for TDX are called 'TDX private KeyIDs' or 'TDX KeyIDs' for short. During machine boot, TDX microcode verifies that the BIOS programmed TDX private KeyIDs consistently and correctly programmed across all CPU packages. The MSRs are locked in this state after verification. This is why MSR_IA32_MKTME_KEYID_PARTITIONING gets used for TDX enumeration: it indicates not just that the hardware supports TDX, but that all the boot-time security checks passed. The TDX module is expected to be loaded by the BIOS when it enables TDX, but the kernel needs to properly initialize it before it can be used to create and run any TDX guests. The TDX module will be initialized by the KVM subsystem when KVM wants to use TDX. Detect platform TDX support by detecting TDX private KeyIDs. The TDX module itself requires one TDX KeyID as the 'TDX global KeyID' to protect its metadata. Each TDX guest also needs a TDX KeyID for its own protection. Just use the first TDX KeyID as the global KeyID and leave the rest for TDX guests. If no TDX KeyID is left for TDX guests, disable TDX as initializing the TDX module alone is useless. [ dhansen: add X86_FEATURE, replace helper function ] Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Link: https://lore.kernel.org/all/20231208170740.53979-1-dave.hansen%40intel.com
2023-09-13x86/virt/tdx: Make TDX_MODULE_CALL handle SEAMCALL #UD and #GPKai Huang1-0/+19
SEAMCALL instruction causes #UD if the CPU isn't in VMX operation. Currently the TDX_MODULE_CALL assembly doesn't handle #UD, thus making SEAMCALL when VMX is disabled would cause Oops. Unfortunately, there are legal cases that SEAMCALL can be made when VMX is disabled. For instance, VMX can be disabled due to emergency reboot while there are still TDX guests running. Extend the TDX_MODULE_CALL assembly to return an error code for #UD to handle this case gracefully, e.g., KVM can then quietly eat all SEAMCALL errors caused by emergency reboot. SEAMCALL instruction also causes #GP when TDX isn't enabled by the BIOS. Use _ASM_EXTABLE_FAULT() to catch both exceptions with the trap number recorded, and define two new error codes by XORing the trap number to the TDX_SW_ERROR. This opportunistically handles #GP too while using the same simple assembly code. A bonus is when kernel mistakenly calls SEAMCALL when CPU isn't in VMX operation, or when TDX isn't enabled by the BIOS, or when the BIOS is buggy, the kernel can get a nicer error code rather than a less understandable Oops. This is basically based on Peter's code. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/all/de975832a367f476aab2d0eb0d9de66019a16b54.1692096753.git.kai.huang%40intel.com
2023-09-13x86/virt/tdx: Wire up basic SEAMCALL functionsKai Huang3-0/+65
Intel Trust Domain Extensions (TDX) protects guest VMs from malicious host and certain physical attacks. A CPU-attested software module called 'the TDX module' runs inside a new isolated memory range as a trusted hypervisor to manage and run protected VMs. TDX introduces a new CPU mode: Secure Arbitration Mode (SEAM). This mode runs only the TDX module itself or other code to load the TDX module. The host kernel communicates with SEAM software via a new SEAMCALL instruction. This is conceptually similar to a guest->host hypercall, except it is made from the host to SEAM software instead. The TDX module establishes a new SEAMCALL ABI which allows the host to initialize the module and to manage VMs. The SEAMCALL ABI is very similar to the TDCALL ABI and leverages much TDCALL infrastructure. Wire up basic functions to make SEAMCALLs for the basic support of running TDX guests: __seamcall(), __seamcall_ret(), and __seamcall_saved_ret() for TDH.VP.ENTER. All SEAMCALLs involved in the basic TDX support don't use "callee-saved" registers as input and output, except the TDH.VP.ENTER. To start to support TDX, create a new arch/x86/virt/vmx/tdx/tdx.c for TDX host kernel support. Add a new Kconfig option CONFIG_INTEL_TDX_HOST to opt-in TDX host kernel support (to distinguish with TDX guest kernel support). So far only KVM uses TDX. Make the new config option depend on KVM_INTEL. Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Isaku Yamahata <isaku.yamahata@intel.com> Link: https://lore.kernel.org/all/4db7c3fc085e6af12acc2932294254ddb3d320b3.1692096753.git.kai.huang%40intel.com
2023-09-13x86/tdx: Reimplement __tdx_hypercall() using TDX_MODULE_CALL asmKai Huang1-4/+4
Now the TDX_HYPERCALL asm is basically identical to the TDX_MODULE_CALL with both '\saved' and '\ret' enabled, with two minor things though: 1) The way to restore the structure pointer is different The TDX_HYPERCALL uses RCX as spare to restore the structure pointer, but the TDX_MODULE_CALL assumes no spare register can be used. In other words, TDX_MODULE_CALL already covers what TDX_HYPERCALL does. 2) TDX_MODULE_CALL only clears shared registers for TDH.VP.ENTER For this just need to make that code available for the non-host case. Thus, remove the TDX_HYPERCALL and reimplement the __tdx_hypercall() using the TDX_MODULE_CALL. Extend the TDX_MODULE_CALL to cover "clear shared registers" for TDG.VP.VMCALL. Introduce a new __tdcall_saved_ret() to replace the temporary __tdcall_hypercall(). The __tdcall_saved_ret() can also be used for those new TDCALLs which require more input/output registers than the basic TDCALLs do. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/all/e68a2473fb6f5bcd78b078cae7510e9d0753b3df.1692096753.git.kai.huang%40intel.com
2023-09-12x86/tdx: Extend TDX_MODULE_CALL to support more TDCALL/SEAMCALL leafsKai Huang1-6/+117
The TDX guest live migration support (TDX 1.5) adds new TDCALL/SEAMCALL leaf functions. Those new TDCALLs/SEAMCALLs take additional registers for input (R10-R13) and output (R12-R13). TDG.SERVTD.RD is an example. Also, the current TDX_MODULE_CALL doesn't aim to handle TDH.VP.ENTER SEAMCALL, which monitors the TDG.VP.VMCALL in input/output registers when it returns in case of VMCALL from TDX guest. With those new TDCALLs/SEAMCALLs and the TDH.VP.ENTER covered, the TDX_MODULE_CALL macro basically needs to handle the same input/output registers as the TDX_HYPERCALL does. And as a result, they also share similar logic in the assembly, thus should be unified to use one common assembly. Extend the TDX_MODULE_CALL asm to support the new TDCALLs/SEAMCALLs and also the TDH.VP.ENTER SEAMCALL. Eventually it will be unified with the TDX_HYPERCALL. The new input/output registers fit with the "callee-saved" registers in the x86 calling convention. Add a new "saved" parameter to support those new TDCALLs/SEAMCALLs and TDH.VP.ENTER and keep the existing TDCALLs/SEAMCALLs minimally impacted. For TDH.VP.ENTER, after it returns the registers shared by the guest contain guest's values. Explicitly clear them to prevent speculative use of guest's values. Note most TDX live migration related SEAMCALLs may also clobber AVX* state ("AVX, AVX2 and AVX512 state: may be reset to the architectural INIT state" -- see TDH.EXPORT.MEM for example). And TDH.VP.ENTER also clobbers XMM0-XMM15 when the corresponding bit is set in RCX. Don't handle them in the TDX_MODULE_CALL macro but let the caller save and restore when needed. This is basically based on Peter's code. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/all/d4785de7c392f7c5684407f6c24a73b92148ec49.1692096753.git.kai.huang%40intel.com
2023-09-12x86/tdx: Pass TDCALL/SEAMCALL input/output registers via a structureKai Huang1-56/+39
Currently, the TDX_MODULE_CALL asm macro, which handles both TDCALL and SEAMCALL, takes one parameter for each input register and an optional 'struct tdx_module_output' (a collection of output registers) as output. This is different from the TDX_HYPERCALL macro which uses a single 'struct tdx_hypercall_args' to carry all input/output registers. The newer TDX versions introduce more TDCALLs/SEAMCALLs which use more input/output registers. Also, the TDH.VP.ENTER (which isn't covered by the current TDX_MODULE_CALL macro) basically can use all registers that the TDX_HYPERCALL does. The current TDX_MODULE_CALL macro isn't extendible to cover those cases. Similar to the TDX_HYPERCALL macro, simplify the TDX_MODULE_CALL macro to use a single structure 'struct tdx_module_args' to carry all the input/output registers. Currently, R10/R11 are only used as output register but not as input by any TDCALL/SEAMCALL. Change to also use R10/R11 as input register to make input/output registers symmetric. Currently, the TDX_MODULE_CALL macro depends on the caller to pass a non-NULL 'struct tdx_module_output' to get additional output registers. Similar to the TDX_HYPERCALL macro, change the TDX_MODULE_CALL macro to take a new 'ret' macro argument to indicate whether to save the output registers to the 'struct tdx_module_args'. Also introduce a new __tdcall_ret() for that purpose, similar to the __tdx_hypercall_ret(). Note the tdcall(), which is a wrapper of __tdcall(), is called by three callers: tdx_parse_tdinfo(), tdx_get_ve_info() and tdx_early_init(). The former two need the additional output but the last one doesn't. For simplicity, make tdcall() always call __tdcall_ret() to avoid another "_ret()" wrapper. The last caller tdx_early_init() isn't performance critical anyway. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/all/483616c1762d85eb3a3c3035a7de061cfacf2f14.1692096753.git.kai.huang%40intel.com
2023-09-12x86/tdx: Skip saving output regs when SEAMCALL fails with VMFailInvalidKai Huang1-9/+20
If SEAMCALL fails with VMFailInvalid, the SEAM software (e.g., the TDX module) won't have chance to set any output register. Skip saving the output registers to the structure in this case. Also, as '.Lno_output_struct' is the very last symbol before RET, rename it to '.Lout' to make it short. Opportunistically make the asm directives unindented. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/all/704088f5b4d72c7e24084f7f15bd1ac5005b7213.1692096753.git.kai.huang%40intel.com
2022-04-07x86/tdx: Provide common base for SEAMCALL and TDCALL C wrappersKirill A. Shutemov1-0/+96
Secure Arbitration Mode (SEAM) is an extension of VMX architecture. It defines a new VMX root operation (SEAM VMX root) and a new VMX non-root operation (SEAM VMX non-root) which are both isolated from the legacy VMX operation where the host kernel runs. A CPU-attested software module (called 'TDX module') runs in SEAM VMX root to manage and protect VMs running in SEAM VMX non-root. SEAM VMX root is also used to host another CPU-attested software module (called 'P-SEAMLDR') to load and update the TDX module. Host kernel transits to either P-SEAMLDR or TDX module via the new SEAMCALL instruction, which is essentially a VMExit from VMX root mode to SEAM VMX root mode. SEAMCALLs are leaf functions defined by P-SEAMLDR and TDX module around the new SEAMCALL instruction. A guest kernel can also communicate with TDX module via TDCALL instruction. TDCALLs and SEAMCALLs use an ABI different from the x86-64 system-v ABI. RAX is used to carry both the SEAMCALL leaf function number (input) and the completion status (output). Additional GPRs (RCX, RDX, R8-R11) may be further used as both input and output operands in individual leaf. TDCALL and SEAMCALL share the same ABI and require the largely same code to pass down arguments and retrieve results. Define an assembly macro that can be used to implement C wrapper for both TDCALL and SEAMCALL. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20220405232939.73860-3-kirill.shutemov@linux.intel.com