Age | Commit message (Collapse) | Author | Files | Lines |
|
When a system has multiple NUMA nodes and it becomes bandwidth hungry,
using the current MPOL_INTERLEAVE could be an wise option.
However, if those NUMA nodes consist of different types of memory such as
socket-attached DRAM and CXL/PCIe attached DRAM, the round-robin based
interleave policy does not optimally distribute data to make use of their
different bandwidth characteristics.
Instead, interleave is more effective when the allocation policy follows
each NUMA nodes' bandwidth weight rather than a simple 1:1 distribution.
This patch introduces a new memory policy, MPOL_WEIGHTED_INTERLEAVE,
enabling weighted interleave between NUMA nodes. Weighted interleave
allows for proportional distribution of memory across multiple numa nodes,
preferably apportioned to match the bandwidth of each node.
For example, if a system has 1 CPU node (0), and 2 memory nodes (0,1),
with bandwidth of (100GB/s, 50GB/s) respectively, the appropriate weight
distribution is (2:1).
Weights for each node can be assigned via the new sysfs extension:
/sys/kernel/mm/mempolicy/weighted_interleave/
For now, the default value of all nodes will be `1`, which matches the
behavior of standard 1:1 round-robin interleave. An extension will be
added in the future to allow default values to be registered at kernel and
device bringup time.
The policy allocates a number of pages equal to the set weights. For
example, if the weights are (2,1), then 2 pages will be allocated on node0
for every 1 page allocated on node1.
The new flag MPOL_WEIGHTED_INTERLEAVE can be used in set_mempolicy(2)
and mbind(2).
Some high level notes about the pieces of weighted interleave:
current->il_prev:
Tracks the node previously allocated from.
current->il_weight:
The active weight of the current node (current->il_prev)
When this reaches 0, current->il_prev is set to the next node
and current->il_weight is set to the next weight.
weighted_interleave_nodes:
Counts the number of allocations as they occur, and applies the
weight for the current node. When the weight reaches 0, switch
to the next node. Operates only on task->mempolicy.
weighted_interleave_nid:
Gets the total weight of the nodemask as well as each individual
node weight, then calculates the node based on the given index.
Operates on VMA policies.
bulk_array_weighted_interleave:
Gets the total weight of the nodemask as well as each individual
node weight, then calculates the number of "interleave rounds" as
well as any delta ("partial round"). Calculates the number of
pages for each node and allocates them.
If a node was scheduled for interleave via interleave_nodes, the
current weight will be allocated first.
Operates only on the task->mempolicy.
One piece of complexity is the interaction between a recent refactor which
split the logic to acquire the "ilx" (interleave index) of an allocation
and the actually application of the interleave. If a call to
alloc_pages_mpol() were made with a weighted-interleave policy and ilx set
to NO_INTERLEAVE_INDEX, weighted_interleave_nodes() would operate on a VMA
policy - violating the description above.
An inspection of all callers of alloc_pages_mpol() shows that all external
callers set ilx to `0`, an index value, or will call get_vma_policy() to
acquire the ilx.
For example, mm/shmem.c may call into alloc_pages_mpol. The call stacks
all set (pgoff_t ilx) or end up in `get_vma_policy()`. This enforces the
`weighted_interleave_nodes()` and `weighted_interleave_nid()` policy
requirements (task/vma respectively).
Link: https://lkml.kernel.org/r/20240202170238.90004-4-gregory.price@memverge.com
Suggested-by: Hasan Al Maruf <Hasan.Maruf@amd.com>
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Co-developed-by: Rakie Kim <rakie.kim@sk.com>
Signed-off-by: Rakie Kim <rakie.kim@sk.com>
Co-developed-by: Honggyu Kim <honggyu.kim@sk.com>
Signed-off-by: Honggyu Kim <honggyu.kim@sk.com>
Co-developed-by: Hyeongtak Ji <hyeongtak.ji@sk.com>
Signed-off-by: Hyeongtak Ji <hyeongtak.ji@sk.com>
Co-developed-by: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com>
Signed-off-by: Srinivasulu Thanneeru <sthanneeru.opensrc@micron.com>
Co-developed-by: Ravi Jonnalagadda <ravis.opensrc@micron.com>
Signed-off-by: Ravi Jonnalagadda <ravis.opensrc@micron.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Correct 2 uses of "it's" to the possessive "its" as needed.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: linux-xfs@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Jonathan Corbet <corbet@lwn.net>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20230703232024.8069-1-rdunlap@infradead.org
|
|
Correct spelling problems for Documentation/admin-guide/ as reported
by codespell.
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: cgroups@vger.kernel.org
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: dm-devel@redhat.com
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: linux-media@vger.kernel.org
Cc: linux-mm@kvack.org
Link: https://lore.kernel.org/r/20230129231053.20863-2-rdunlap@infradead.org
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
|
|
It is enough to use a file name to cross-reference another rst document.
Jon says:
The right things will happen in the HTML output, readers of the
plain-text will know immediately where to go, and we don't have to add
the label clutter.
Drop reference markup and unnecessary labels and use plain file names.
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Link: https://lore.kernel.org/r/20230201094156.991542-4-rppt@kernel.org
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
|
|
This syscall can be used to set a home node for the MPOL_BIND and
MPOL_PREFERRED_MANY memory policy. Users should use this syscall after
setting up a memory policy for the specified range as shown below.
mbind(p, nr_pages * page_size, MPOL_BIND, new_nodes->maskp,
new_nodes->size + 1, 0);
sys_set_mempolicy_home_node((unsigned long)p, nr_pages * page_size,
home_node, 0);
The syscall allows specifying a home node/preferred node from which
kernel will fulfill memory allocation requests first.
For address range with MPOL_BIND memory policy, if nodemask specifies
more than one node, page allocations will come from the node in the
nodemask with sufficient free memory that is closest to the home
node/preferred node.
For MPOL_PREFERRED_MANY if the nodemask specifies more than one node,
page allocation will come from the node in the nodemask with sufficient
free memory that is closest to the home node/preferred node. If there
is not enough memory in all the nodes specified in the nodemask, the
allocation will be attempted from the closest numa node to the home node
in the system.
This helps applications to hint at a memory allocation preference node
and fallback to _only_ a set of nodes if the memory is not available on
the preferred node. Fallback allocation is attempted from the node
which is nearest to the preferred node.
This helps applications to have control on memory allocation numa nodes
and avoids default fallback to slow memory NUMA nodes. For example a
system with NUMA nodes 1,2 and 3 with DRAM memory and 10, 11 and 12 of
slow memory
new_nodes = numa_bitmask_alloc(nr_nodes);
numa_bitmask_setbit(new_nodes, 1);
numa_bitmask_setbit(new_nodes, 2);
numa_bitmask_setbit(new_nodes, 3);
p = mmap(NULL, nr_pages * page_size, protflag, mapflag, -1, 0);
mbind(p, nr_pages * page_size, MPOL_BIND, new_nodes->maskp, new_nodes->size + 1, 0);
sys_set_mempolicy_home_node(p, nr_pages * page_size, 2, 0);
This will allocate from nodes closer to node 2 and will make sure the
kernel will only allocate from nodes 1, 2, and 3. Memory will not be
allocated from slow memory nodes 10, 11, and 12. This differs from
default MPOL_BIND behavior in that with default MPOL_BIND the allocation
will be attempted from node closer to the local node. One of the
reasons to specify a home node is to allow allocations from cpu less
NUMA node and its nearby NUMA nodes.
With MPOL_PREFERRED_MANY on the other hand will first try to allocate
from the closest node to node 2 from the node list 1, 2 and 3. If those
nodes don't have enough memory, kernel will allocate from slow memory
node 10, 11 and 12 which ever is closer to node 2.
Link: https://lkml.kernel.org/r/20211202123810.267175-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Ben Widawsky <ben.widawsky@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Adds a new mode to the existing mempolicy modes, MPOL_PREFERRED_MANY.
MPOL_PREFERRED_MANY will be adequately documented in the internal
admin-guide with this patch. Eventually, the man pages for mbind(2),
get_mempolicy(2), set_mempolicy(2) and numactl(8) will also have text
about this mode. Those shall contain the canonical reference.
NUMA systems continue to become more prevalent. New technologies like
PMEM make finer grain control over memory access patterns increasingly
desirable. MPOL_PREFERRED_MANY allows userspace to specify a set of nodes
that will be tried first when performing allocations. If those
allocations fail, all remaining nodes will be tried. It's a straight
forward API which solves many of the presumptive needs of system
administrators wanting to optimize workloads on such machines. The mode
will work either per VMA, or per thread.
[Michal Hocko: refine kernel doc for MPOL_PREFERRED_MANY]
Link: https://lore.kernel.org/r/20200630212517.308045-13-ben.widawsky@intel.com
Link: https://lkml.kernel.org/r/1627970362-61305-5-git-send-email-feng.tang@intel.com
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Convert comments that reference mmap_sem to reference mmap_lock instead.
[akpm@linux-foundation.org: fix up linux-next leftovers]
[akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil]
[akpm@linux-foundation.org: more linux-next fixups, per Michel]
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Those files belong to the admin guide, so add them.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
|
|
Convert the cgroup-v1 files to ReST format, in order to
allow a later addition to the admin-guide.
The conversion is actually:
- add blank lines and identation in order to identify paragraphs;
- fix tables markups;
- add some lists markups;
- mark literal blocks;
- adjust title markups.
At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
The document describes userspace API and as such it belongs to
Documentation/admin-guide/mm
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
|