summaryrefslogtreecommitdiff
path: root/drivers/rtc/rtc-ac100.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/rtc/rtc-ac100.c')
-rw-r--r--drivers/rtc/rtc-ac100.c26
1 files changed, 24 insertions, 2 deletions
diff --git a/drivers/rtc/rtc-ac100.c b/drivers/rtc/rtc-ac100.c
index 8ff9dc3fe5bf..3fe576fdd45e 100644
--- a/drivers/rtc/rtc-ac100.c
+++ b/drivers/rtc/rtc-ac100.c
@@ -183,7 +183,29 @@ static int ac100_clkout_determine_rate(struct clk_hw *hw,
for (i = 0; i < num_parents; i++) {
struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i);
- unsigned long tmp, prate = clk_hw_get_rate(parent);
+ unsigned long tmp, prate;
+
+ /*
+ * The clock has two parents, one is a fixed clock which is
+ * internally registered by the ac100 driver. The other parent
+ * is a clock from the codec side of the chip, which we
+ * properly declare and reference in the devicetree and is
+ * not implemented in any driver right now.
+ * If the clock core looks for the parent of that second
+ * missing clock, it can't find one that is registered and
+ * returns NULL.
+ * So we end up in a situation where clk_hw_get_num_parents
+ * returns the amount of clocks we can be parented to, but
+ * clk_hw_get_parent_by_index will not return the orphan
+ * clocks.
+ * Thus we need to check if the parent exists before
+ * we get the parent rate, so we could use the RTC
+ * without waiting for the codec to be supported.
+ */
+ if (!parent)
+ continue;
+
+ prate = clk_hw_get_rate(parent);
tmp = ac100_clkout_round_rate(hw, req->rate, prate);
@@ -387,7 +409,7 @@ static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm)
rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) +
AC100_YEAR_OFF;
- return rtc_valid_tm(rtc_tm);
+ return 0;
}
static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm)