diff options
Diffstat (limited to 'drivers/mtd/nand')
48 files changed, 4603 insertions, 1918 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index dbfa0f7fb464..cce7b70824c3 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -83,16 +83,9 @@ config MTD_NAND_DENALI_SCRATCH_REG_ADDR scratch register here to enable this feature. On Intel Moorestown boards, the scratch register is at 0xFF108018. -config MTD_NAND_EDB7312 - tristate "Support for Cirrus Logic EBD7312 evaluation board" - depends on ARCH_EDB7312 - help - This enables the driver for the Cirrus Logic EBD7312 evaluation - board to access the onboard NAND Flash. - config MTD_NAND_H1900 tristate "iPAQ H1900 flash" - depends on ARCH_PXA + depends on ARCH_PXA && BROKEN help This enables the driver for the iPAQ h1900 flash. @@ -116,10 +109,11 @@ config MTD_NAND_AMS_DELTA Support for NAND flash on Amstrad E3 (Delta). config MTD_NAND_OMAP2 - tristate "NAND Flash device on OMAP2 and OMAP3" - depends on ARM && (ARCH_OMAP2 || ARCH_OMAP3) + tristate "NAND Flash device on OMAP2, OMAP3 and OMAP4" + depends on ARM && (ARCH_OMAP2 || ARCH_OMAP3 || ARCH_OMAP4) help - Support for NAND flash on Texas Instruments OMAP2 and OMAP3 platforms. + Support for NAND flash on Texas Instruments OMAP2, OMAP3 and OMAP4 + platforms. config MTD_NAND_IDS tristate @@ -423,6 +417,19 @@ config MTD_NAND_NANDSIM The simulator may simulate various NAND flash chips for the MTD nand layer. +config MTD_NAND_GPMI_NAND + bool "GPMI NAND Flash Controller driver" + depends on MTD_NAND && (SOC_IMX23 || SOC_IMX28) + select MTD_PARTITIONS + select MTD_CMDLINE_PARTS + help + Enables NAND Flash support for IMX23 or IMX28. + The GPMI controller is very powerful, with the help of BCH + module, it can do the hardware ECC. The GPMI supports several + NAND flashs at the same time. The GPMI may conflicts with other + block, such as SD card. So pay attention to it when you enable + the GPMI. + config MTD_NAND_PLATFORM tristate "Support for generic platform NAND driver" help diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 5745d831168e..618f4ba23699 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -13,7 +13,6 @@ obj-$(CONFIG_MTD_NAND_SPIA) += spia.o obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o obj-$(CONFIG_MTD_NAND_DENALI) += denali.o -obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o obj-$(CONFIG_MTD_NAND_PPCHAMELEONEVB) += ppchameleonevb.o @@ -49,5 +48,6 @@ obj-$(CONFIG_MTD_NAND_BCM_UMI) += bcm_umi_nand.o nand_bcm_umi.o obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o obj-$(CONFIG_MTD_NAND_RICOH) += r852.o obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o +obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ nand-objs := nand_base.o nand_bbt.o diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c index 55da20ccc7a8..23e5d77c39fc 100644 --- a/drivers/mtd/nand/atmel_nand.c +++ b/drivers/mtd/nand/atmel_nand.c @@ -161,37 +161,6 @@ static int atmel_nand_device_ready(struct mtd_info *mtd) !!host->board->rdy_pin_active_low; } -/* - * Minimal-overhead PIO for data access. - */ -static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len) -{ - struct nand_chip *nand_chip = mtd->priv; - - __raw_readsb(nand_chip->IO_ADDR_R, buf, len); -} - -static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len) -{ - struct nand_chip *nand_chip = mtd->priv; - - __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2); -} - -static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len) -{ - struct nand_chip *nand_chip = mtd->priv; - - __raw_writesb(nand_chip->IO_ADDR_W, buf, len); -} - -static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len) -{ - struct nand_chip *nand_chip = mtd->priv; - - __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2); -} - static void dma_complete_func(void *completion) { complete(completion); @@ -266,33 +235,27 @@ err_buf: static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *chip = mtd->priv; - struct atmel_nand_host *host = chip->priv; if (use_dma && len > mtd->oobsize) /* only use DMA for bigger than oob size: better performances */ if (atmel_nand_dma_op(mtd, buf, len, 1) == 0) return; - if (host->board->bus_width_16) - atmel_read_buf16(mtd, buf, len); - else - atmel_read_buf8(mtd, buf, len); + /* if no DMA operation possible, use PIO */ + memcpy_fromio(buf, chip->IO_ADDR_R, len); } static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *chip = mtd->priv; - struct atmel_nand_host *host = chip->priv; if (use_dma && len > mtd->oobsize) /* only use DMA for bigger than oob size: better performances */ if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0) return; - if (host->board->bus_width_16) - atmel_write_buf16(mtd, buf, len); - else - atmel_write_buf8(mtd, buf, len); + /* if no DMA operation possible, use PIO */ + memcpy_toio(chip->IO_ADDR_W, buf, len); } /* @@ -481,10 +444,6 @@ static void atmel_nand_hwctl(struct mtd_info *mtd, int mode) } } -#ifdef CONFIG_MTD_CMDLINE_PARTS -static const char *part_probes[] = { "cmdlinepart", NULL }; -#endif - /* * Probe for the NAND device. */ @@ -496,8 +455,6 @@ static int __init atmel_nand_probe(struct platform_device *pdev) struct resource *regs; struct resource *mem; int res; - struct mtd_partition *partitions = NULL; - int num_partitions = 0; mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!mem) { @@ -583,7 +540,7 @@ static int __init atmel_nand_probe(struct platform_device *pdev) if (on_flash_bbt) { printk(KERN_INFO "atmel_nand: Use On Flash BBT\n"); - nand_chip->options |= NAND_USE_FLASH_BBT; + nand_chip->bbt_options |= NAND_BBT_USE_FLASH; } if (!cpu_has_dma()) @@ -594,7 +551,7 @@ static int __init atmel_nand_probe(struct platform_device *pdev) dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); - host->dma_chan = dma_request_channel(mask, 0, NULL); + host->dma_chan = dma_request_channel(mask, NULL, NULL); if (!host->dma_chan) { dev_err(host->dev, "Failed to request DMA channel\n"); use_dma = 0; @@ -655,27 +612,12 @@ static int __init atmel_nand_probe(struct platform_device *pdev) goto err_scan_tail; } -#ifdef CONFIG_MTD_CMDLINE_PARTS mtd->name = "atmel_nand"; - num_partitions = parse_mtd_partitions(mtd, part_probes, - &partitions, 0); -#endif - if (num_partitions <= 0 && host->board->partition_info) - partitions = host->board->partition_info(mtd->size, - &num_partitions); - - if ((!partitions) || (num_partitions == 0)) { - printk(KERN_ERR "atmel_nand: No partitions defined, or unsupported device.\n"); - res = -ENXIO; - goto err_no_partitions; - } - - res = mtd_device_register(mtd, partitions, num_partitions); + res = mtd_device_parse_register(mtd, NULL, 0, + host->board->parts, host->board->num_parts); if (!res) return res; -err_no_partitions: - nand_release(mtd); err_scan_tail: err_scan_ident: err_no_card: diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/au1550nd.c index fa5736b9286c..7dd3700f2303 100644 --- a/drivers/mtd/nand/au1550nd.c +++ b/drivers/mtd/nand/au1550nd.c @@ -52,7 +52,7 @@ static const struct mtd_partition partition_info[] = { * au_read_byte - read one byte from the chip * @mtd: MTD device structure * - * read function for 8bit buswith + * read function for 8bit buswidth */ static u_char au_read_byte(struct mtd_info *mtd) { @@ -67,7 +67,7 @@ static u_char au_read_byte(struct mtd_info *mtd) * @mtd: MTD device structure * @byte: pointer to data byte to write * - * write function for 8it buswith + * write function for 8it buswidth */ static void au_write_byte(struct mtd_info *mtd, u_char byte) { @@ -77,11 +77,10 @@ static void au_write_byte(struct mtd_info *mtd, u_char byte) } /** - * au_read_byte16 - read one byte endianess aware from the chip + * au_read_byte16 - read one byte endianness aware from the chip * @mtd: MTD device structure * - * read function for 16bit buswith with - * endianess conversion + * read function for 16bit buswidth with endianness conversion */ static u_char au_read_byte16(struct mtd_info *mtd) { @@ -92,12 +91,11 @@ static u_char au_read_byte16(struct mtd_info *mtd) } /** - * au_write_byte16 - write one byte endianess aware to the chip + * au_write_byte16 - write one byte endianness aware to the chip * @mtd: MTD device structure * @byte: pointer to data byte to write * - * write function for 16bit buswith with - * endianess conversion + * write function for 16bit buswidth with endianness conversion */ static void au_write_byte16(struct mtd_info *mtd, u_char byte) { @@ -110,8 +108,7 @@ static void au_write_byte16(struct mtd_info *mtd, u_char byte) * au_read_word - read one word from the chip * @mtd: MTD device structure * - * read function for 16bit buswith without - * endianess conversion + * read function for 16bit buswidth without endianness conversion */ static u16 au_read_word(struct mtd_info *mtd) { @@ -127,7 +124,7 @@ static u16 au_read_word(struct mtd_info *mtd) * @buf: data buffer * @len: number of bytes to write * - * write function for 8bit buswith + * write function for 8bit buswidth */ static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { @@ -146,7 +143,7 @@ static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len) * @buf: buffer to store date * @len: number of bytes to read * - * read function for 8bit buswith + * read function for 8bit buswidth */ static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len) { @@ -165,7 +162,7 @@ static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len) * @buf: buffer containing the data to compare * @len: number of bytes to compare * - * verify function for 8bit buswith + * verify function for 8bit buswidth */ static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) { @@ -187,7 +184,7 @@ static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) * @buf: data buffer * @len: number of bytes to write * - * write function for 16bit buswith + * write function for 16bit buswidth */ static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) { @@ -209,7 +206,7 @@ static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) * @buf: buffer to store date * @len: number of bytes to read * - * read function for 16bit buswith + * read function for 16bit buswidth */ static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) { @@ -230,7 +227,7 @@ static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) * @buf: buffer containing the data to compare * @len: number of bytes to compare * - * verify function for 16bit buswith + * verify function for 16bit buswidth */ static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) { diff --git a/drivers/mtd/nand/autcpu12.c b/drivers/mtd/nand/autcpu12.c index eddc9a224985..2e42ec2e8ff4 100644 --- a/drivers/mtd/nand/autcpu12.c +++ b/drivers/mtd/nand/autcpu12.c @@ -172,9 +172,9 @@ static int __init autcpu12_init(void) /* Enable the following for a flash based bad block table */ /* - this->options = NAND_USE_FLASH_BBT; + this->bbt_options = NAND_BBT_USE_FLASH; */ - this->options = NAND_USE_FLASH_BBT; + this->bbt_options = NAND_BBT_USE_FLASH; /* Scan to find existence of the device */ if (nand_scan(autcpu12_mtd, 1)) { diff --git a/drivers/mtd/nand/bcm_umi_nand.c b/drivers/mtd/nand/bcm_umi_nand.c index 8c569e454dc5..46b58d672847 100644 --- a/drivers/mtd/nand/bcm_umi_nand.c +++ b/drivers/mtd/nand/bcm_umi_nand.c @@ -52,8 +52,6 @@ static const __devinitconst char gBanner[] = KERN_INFO \ "BCM UMI MTD NAND Driver: 1.00\n"; -const char *part_probes[] = { "cmdlinepart", NULL }; - #if NAND_ECC_BCH static uint8_t scan_ff_pattern[] = { 0xff }; @@ -376,16 +374,18 @@ static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!r) - return -ENXIO; + if (!r) { + err = -ENXIO; + goto out_free; + } /* map physical address */ bcm_umi_io_base = ioremap(r->start, resource_size(r)); if (!bcm_umi_io_base) { printk(KERN_ERR "ioremap to access BCM UMI NAND chip failed\n"); - kfree(board_mtd); - return -EIO; + err = -EIO; + goto out_free; } /* Get pointer to private data */ @@ -401,9 +401,8 @@ static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) /* Initialize the NAND hardware. */ if (bcm_umi_nand_inithw() < 0) { printk(KERN_ERR "BCM UMI NAND chip could not be initialized\n"); - iounmap(bcm_umi_io_base); - kfree(board_mtd); - return -EIO; + err = -EIO; + goto out_unmap; } /* Set address of NAND IO lines */ @@ -436,7 +435,7 @@ static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) #if USE_DMA err = nand_dma_init(); if (err != 0) - return err; + goto out_unmap; #endif /* Figure out the size of the device that we have. @@ -447,9 +446,7 @@ static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) err = nand_scan_ident(board_mtd, 1, NULL); if (err) { printk(KERN_ERR "nand_scan failed: %d\n", err); - iounmap(bcm_umi_io_base); - kfree(board_mtd); - return err; + goto out_unmap; } /* Now that we know the nand size, we can setup the ECC layout */ @@ -468,13 +465,14 @@ static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) { printk(KERN_ERR "NAND - Unrecognized pagesize: %d\n", board_mtd->writesize); - return -EINVAL; + err = -EINVAL; + goto out_unmap; } } #if NAND_ECC_BCH if (board_mtd->writesize > 512) { - if (this->options & NAND_USE_FLASH_BBT) + if (this->bbt_options & NAND_BBT_USE_FLASH) largepage_bbt.options = NAND_BBT_SCAN2NDPAGE; this->badblock_pattern = &largepage_bbt; } @@ -485,33 +483,20 @@ static int __devinit bcm_umi_nand_probe(struct platform_device *pdev) err = nand_scan_tail(board_mtd); if (err) { printk(KERN_ERR "nand_scan failed: %d\n", err); - iounmap(bcm_umi_io_base); - kfree(board_mtd); - return err; + goto out_unmap; } /* Register the partitions */ - { - int nr_partitions; - struct mtd_partition *partition_info; - - board_mtd->name = "bcm_umi-nand"; - nr_partitions = - parse_mtd_partitions(board_mtd, part_probes, - &partition_info, 0); - - if (nr_partitions <= 0) { - printk(KERN_ERR "BCM UMI NAND: Too few partitions - %d\n", - nr_partitions); - iounmap(bcm_umi_io_base); - kfree(board_mtd); - return -EIO; - } - mtd_device_register(board_mtd, partition_info, nr_partitions); - } + board_mtd->name = "bcm_umi-nand"; + mtd_device_parse_register(board_mtd, NULL, 0, NULL, 0); /* Return happy */ return 0; +out_unmap: + iounmap(bcm_umi_io_base); +out_free: + kfree(board_mtd); + return err; } static int bcm_umi_nand_remove(struct platform_device *pdev) diff --git a/drivers/mtd/nand/cafe_nand.c b/drivers/mtd/nand/cafe_nand.c index 87ebb4e5b0c3..72d3f23490c5 100644 --- a/drivers/mtd/nand/cafe_nand.c +++ b/drivers/mtd/nand/cafe_nand.c @@ -21,6 +21,7 @@ #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/slab.h> +#include <linux/module.h> #include <asm/io.h> #define CAFE_NAND_CTRL1 0x00 @@ -57,7 +58,6 @@ struct cafe_priv { struct nand_chip nand; - struct mtd_partition *parts; struct pci_dev *pdev; void __iomem *mmio; struct rs_control *rs; @@ -371,7 +371,7 @@ static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, return 1; } /** - * cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read + * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data @@ -630,8 +630,6 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, struct cafe_priv *cafe; uint32_t ctrl; int err = 0; - struct mtd_partition *parts; - int nr_parts; /* Very old versions shared the same PCI ident for all three functions on the chip. Verify the class too... */ @@ -686,7 +684,8 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, cafe->nand.chip_delay = 0; /* Enable the following for a flash based bad block table */ - cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS; + cafe->nand.bbt_options = NAND_BBT_USE_FLASH; + cafe->nand.options = NAND_NO_AUTOINCR | NAND_OWN_BUFFERS; if (skipbbt) { cafe->nand.options |= NAND_SKIP_BBTSCAN; @@ -799,18 +798,9 @@ static int __devinit cafe_nand_probe(struct pci_dev *pdev, pci_set_drvdata(pdev, mtd); - /* We register the whole device first, separate from the partitions */ - mtd_device_register(mtd, NULL, 0); - -#ifdef CONFIG_MTD_CMDLINE_PARTS mtd->name = "cafe_nand"; -#endif - nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0); - if (nr_parts > 0) { - cafe->parts = parts; - dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts); - mtd_device_register(mtd, parts, nr_parts); - } + mtd_device_parse_register(mtd, part_probes, 0, NULL, 0); + goto out; out_irq: diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/cmx270_nand.c index 6fc043a30d1e..737ef9a04fdb 100644 --- a/drivers/mtd/nand/cmx270_nand.c +++ b/drivers/mtd/nand/cmx270_nand.c @@ -22,6 +22,7 @@ #include <linux/mtd/partitions.h> #include <linux/slab.h> #include <linux/gpio.h> +#include <linux/module.h> #include <asm/io.h> #include <asm/irq.h> @@ -50,8 +51,6 @@ static struct mtd_partition partition_info[] = { }; #define NUM_PARTITIONS (ARRAY_SIZE(partition_info)) -const char *part_probes[] = { "cmdlinepart", NULL }; - static u_char cmx270_read_byte(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; @@ -151,9 +150,6 @@ static int cmx270_device_ready(struct mtd_info *mtd) static int __init cmx270_init(void) { struct nand_chip *this; - const char *part_type; - struct mtd_partition *mtd_parts; - int mtd_parts_nb = 0; int ret; if (!(machine_is_armcore() && cpu_is_pxa27x())) @@ -222,23 +218,9 @@ static int __init cmx270_init(void) goto err_scan; } -#ifdef CONFIG_MTD_CMDLINE_PARTS - mtd_parts_nb = parse_mtd_partitions(cmx270_nand_mtd, part_probes, - &mtd_parts, 0); - if (mtd_parts_nb > 0) - part_type = "command line"; - else - mtd_parts_nb = 0; -#endif - if (!mtd_parts_nb) { - mtd_parts = partition_info; - mtd_parts_nb = NUM_PARTITIONS; - part_type = "static"; - } - /* Register the partitions */ - pr_notice("Using %s partition definition\n", part_type); - ret = mtd_device_register(cmx270_nand_mtd, mtd_parts, mtd_parts_nb); + ret = mtd_device_parse_register(cmx270_nand_mtd, NULL, 0, + partition_info, NUM_PARTITIONS); if (ret) goto err_scan; diff --git a/drivers/mtd/nand/cs553x_nand.c b/drivers/mtd/nand/cs553x_nand.c index f59ad1f2d5db..414afa793563 100644 --- a/drivers/mtd/nand/cs553x_nand.c +++ b/drivers/mtd/nand/cs553x_nand.c @@ -239,7 +239,8 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) this->ecc.correct = nand_correct_data; /* Enable the following for a flash based bad block table */ - this->options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR; + this->bbt_options = NAND_BBT_USE_FLASH; + this->options = NAND_NO_AUTOINCR; /* Scan to find existence of the device */ if (nand_scan(new_mtd, 1)) { @@ -277,15 +278,11 @@ static int is_geode(void) return 0; } -static const char *part_probes[] = { "cmdlinepart", NULL }; - static int __init cs553x_init(void) { int err = -ENXIO; int i; uint64_t val; - int mtd_parts_nb = 0; - struct mtd_partition *mtd_parts = NULL; /* If the CPU isn't a Geode GX or LX, abort */ if (!is_geode()) @@ -315,13 +312,9 @@ static int __init cs553x_init(void) do mtdconcat etc. if we want to. */ for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { if (cs553x_mtd[i]) { - /* If any devices registered, return success. Else the last error. */ - mtd_parts_nb = parse_mtd_partitions(cs553x_mtd[i], part_probes, &mtd_parts, 0); - if (mtd_parts_nb > 0) - printk(KERN_NOTICE "Using command line partition definition\n"); - mtd_device_register(cs553x_mtd[i], mtd_parts, - mtd_parts_nb); + mtd_device_parse_register(cs553x_mtd[i], NULL, 0, + NULL, 0); err = 0; } } diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c index 1f34951ae1a7..c153e1f77f90 100644 --- a/drivers/mtd/nand/davinci_nand.c +++ b/drivers/mtd/nand/davinci_nand.c @@ -57,7 +57,6 @@ struct davinci_nand_info { struct device *dev; struct clk *clk; - bool partitioned; bool is_readmode; @@ -530,8 +529,6 @@ static int __init nand_davinci_probe(struct platform_device *pdev) int ret; uint32_t val; nand_ecc_modes_t ecc_mode; - struct mtd_partition *mtd_parts = NULL; - int mtd_parts_nb = 0; /* insist on board-specific configuration */ if (!pdata) @@ -581,7 +578,9 @@ static int __init nand_davinci_probe(struct platform_device *pdev) info->chip.chip_delay = 0; info->chip.select_chip = nand_davinci_select_chip; - /* options such as NAND_USE_FLASH_BBT or 16-bit widths */ + /* options such as NAND_BBT_USE_FLASH */ + info->chip.bbt_options = pdata->bbt_options; + /* options such as 16-bit widths */ info->chip.options = pdata->options; info->chip.bbt_td = pdata->bbt_td; info->chip.bbt_md = pdata->bbt_md; @@ -751,33 +750,8 @@ syndrome_done: if (ret < 0) goto err_scan; - if (mtd_has_cmdlinepart()) { - static const char *probes[] __initconst = { - "cmdlinepart", NULL - }; - - mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes, - &mtd_parts, 0); - } - - if (mtd_parts_nb <= 0) { - mtd_parts = pdata->parts; - mtd_parts_nb = pdata->nr_parts; - } - - /* Register any partitions */ - if (mtd_parts_nb > 0) { - ret = mtd_device_register(&info->mtd, mtd_parts, - mtd_parts_nb); - if (ret == 0) - info->partitioned = true; - } - - /* If there's no partition info, just package the whole chip - * as a single MTD device. - */ - if (!info->partitioned) - ret = mtd_device_register(&info->mtd, NULL, 0) ? -ENODEV : 0; + ret = mtd_device_parse_register(&info->mtd, NULL, 0, + pdata->parts, pdata->nr_parts); if (ret < 0) goto err_scan; @@ -816,9 +790,6 @@ err_nomem: static int __exit nand_davinci_remove(struct platform_device *pdev) { struct davinci_nand_info *info = platform_get_drvdata(pdev); - int status; - - status = mtd_device_unregister(&info->mtd); spin_lock_irq(&davinci_nand_lock); if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c index d5276218945f..3984d488f9ab 100644 --- a/drivers/mtd/nand/denali.c +++ b/drivers/mtd/nand/denali.c @@ -1346,6 +1346,7 @@ static void denali_hw_init(struct denali_nand_info *denali) * */ denali->bbtskipbytes = ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES); + detect_max_banks(denali); denali_nand_reset(denali); iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED); iowrite32(CHIP_EN_DONT_CARE__FLAG, @@ -1356,7 +1357,6 @@ static void denali_hw_init(struct denali_nand_info *denali) /* Should set value for these registers when init */ iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); iowrite32(1, denali->flash_reg + ECC_ENABLE); - detect_max_banks(denali); denali_nand_timing_set(denali); denali_irq_init(denali); } @@ -1577,7 +1577,8 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) denali->nand.bbt_md = &bbt_mirror_descr; /* skip the scan for now until we have OOB read and write support */ - denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; + denali->nand.bbt_options |= NAND_BBT_USE_FLASH; + denali->nand.options |= NAND_SKIP_BBTSCAN; denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME; /* Denali Controller only support 15bit and 8bit ECC in MRST, @@ -1676,7 +1677,6 @@ static void denali_pci_remove(struct pci_dev *dev) struct denali_nand_info *denali = pci_get_drvdata(dev); nand_release(&denali->mtd); - mtd_device_unregister(&denali->mtd); denali_irq_cleanup(dev->irq, denali); diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c index 7837728d02ff..5780dbab6113 100644 --- a/drivers/mtd/nand/diskonchip.c +++ b/drivers/mtd/nand/diskonchip.c @@ -31,6 +31,7 @@ #include <linux/mtd/doc2000.h> #include <linux/mtd/partitions.h> #include <linux/mtd/inftl.h> +#include <linux/module.h> /* Where to look for the devices? */ #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS @@ -132,7 +133,7 @@ static struct rs_control *rs_decoder; /* * The HW decoder in the DoC ASIC's provides us a error syndrome, - * which we must convert to a standard syndrom usable by the generic + * which we must convert to a standard syndrome usable by the generic * Reed-Solomon library code. * * Fabrice Bellard figured this out in the old docecc code. I added @@ -153,7 +154,7 @@ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); parity = ecc[1]; - /* Initialize the syndrom buffer */ + /* Initialize the syndrome buffer */ for (i = 0; i < NROOTS; i++) s[i] = ds[0]; /* @@ -1031,7 +1032,7 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); else WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - if (no_ecc_failures && (ret == -EBADMSG)) { + if (no_ecc_failures && mtd_is_eccerr(ret)) { printk(KERN_ERR "suppressing ECC failure\n"); ret = 0; } @@ -1652,7 +1653,7 @@ static int __init doc_probe(unsigned long physadr) nand->ecc.mode = NAND_ECC_HW_SYNDROME; nand->ecc.size = 512; nand->ecc.bytes = 6; - nand->options = NAND_USE_FLASH_BBT; + nand->bbt_options = NAND_BBT_USE_FLASH; doc->physadr = physadr; doc->virtadr = virtadr; diff --git a/drivers/mtd/nand/edb7312.c b/drivers/mtd/nand/edb7312.c deleted file mode 100644 index 8400d0f6dada..000000000000 --- a/drivers/mtd/nand/edb7312.c +++ /dev/null @@ -1,203 +0,0 @@ -/* - * drivers/mtd/nand/edb7312.c - * - * Copyright (C) 2002 Marius Gröger (mag@sysgo.de) - * - * Derived from drivers/mtd/nand/autcpu12.c - * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * CLEP7312 board which utilizes the Toshiba TC58V64AFT part. This is - * a 64Mibit (8MiB x 8 bits) NAND flash device. - */ - -#include <linux/slab.h> -#include <linux/module.h> -#include <linux/init.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <mach/hardware.h> /* for CLPS7111_VIRT_BASE */ -#include <asm/sizes.h> -#include <asm/hardware/clps7111.h> - -/* - * MTD structure for EDB7312 board - */ -static struct mtd_info *ep7312_mtd = NULL; - -/* - * Values specific to the EDB7312 board (used with EP7312 processor) - */ -#define EP7312_FIO_PBASE 0x10000000 /* Phys address of flash */ -#define EP7312_PXDR 0x0001 /* - * IO offset to Port B data register - * where the CLE, ALE and NCE pins - * are wired to. - */ -#define EP7312_PXDDR 0x0041 /* - * IO offset to Port B data direction - * register so we can control the IO - * lines. - */ - -/* - * Module stuff - */ - -static unsigned long ep7312_fio_pbase = EP7312_FIO_PBASE; -static void __iomem *ep7312_pxdr = (void __iomem *)EP7312_PXDR; -static void __iomem *ep7312_pxddr = (void __iomem *)EP7312_PXDDR; - -/* - * Define static partitions for flash device - */ -static struct mtd_partition partition_info[] = { - {.name = "EP7312 Nand Flash", - .offset = 0, - .size = 8 * 1024 * 1024} -}; - -#define NUM_PARTITIONS 1 - -/* - * hardware specific access to control-lines - * - * NAND_NCE: bit 0 -> bit 6 (bit 7 = 1) - * NAND_CLE: bit 1 -> bit 4 - * NAND_ALE: bit 2 -> bit 5 - */ -static void ep7312_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { - unsigned char bits = 0x80; - - bits |= (ctrl & (NAND_CLE | NAND_ALE)) << 3; - bits |= (ctrl & NAND_NCE) ? 0x00 : 0x40; - - clps_writeb((clps_readb(ep7312_pxdr) & 0xF0) | bits, - ep7312_pxdr); - } - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -/* - * read device ready pin - */ -static int ep7312_device_ready(struct mtd_info *mtd) -{ - return 1; -} - -const char *part_probes[] = { "cmdlinepart", NULL }; - -/* - * Main initialization routine - */ -static int __init ep7312_init(void) -{ - struct nand_chip *this; - const char *part_type = 0; - int mtd_parts_nb = 0; - struct mtd_partition *mtd_parts = 0; - void __iomem *ep7312_fio_base; - - /* Allocate memory for MTD device structure and private data */ - ep7312_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!ep7312_mtd) { - printk("Unable to allocate EDB7312 NAND MTD device structure.\n"); - return -ENOMEM; - } - - /* map physical address */ - ep7312_fio_base = ioremap(ep7312_fio_pbase, SZ_1K); - if (!ep7312_fio_base) { - printk("ioremap EDB7312 NAND flash failed\n"); - kfree(ep7312_mtd); - return -EIO; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&ep7312_mtd[1]); - - /* Initialize structures */ - memset(ep7312_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - ep7312_mtd->priv = this; - ep7312_mtd->owner = THIS_MODULE; - - /* - * Set GPIO Port B control register so that the pins are configured - * to be outputs for controlling the NAND flash. - */ - clps_writeb(0xf0, ep7312_pxddr); - - /* insert callbacks */ - this->IO_ADDR_R = ep7312_fio_base; - this->IO_ADDR_W = ep7312_fio_base; - this->cmd_ctrl = ep7312_hwcontrol; - this->dev_ready = ep7312_device_ready; - /* 15 us command delay time */ - this->chip_delay = 15; - - /* Scan to find existence of the device */ - if (nand_scan(ep7312_mtd, 1)) { - iounmap((void *)ep7312_fio_base); - kfree(ep7312_mtd); - return -ENXIO; - } - ep7312_mtd->name = "edb7312-nand"; - mtd_parts_nb = parse_mtd_partitions(ep7312_mtd, part_probes, &mtd_parts, 0); - if (mtd_parts_nb > 0) - part_type = "command line"; - else - mtd_parts_nb = 0; - if (mtd_parts_nb == 0) { - mtd_parts = partition_info; - mtd_parts_nb = NUM_PARTITIONS; - part_type = "static"; - } - - /* Register the partitions */ - printk(KERN_NOTICE "Using %s partition definition\n", part_type); - mtd_device_register(ep7312_mtd, mtd_parts, mtd_parts_nb); - - /* Return happy */ - return 0; -} - -module_init(ep7312_init); - -/* - * Clean up routine - */ -static void __exit ep7312_cleanup(void) -{ - struct nand_chip *this = (struct nand_chip *)&ep7312_mtd[1]; - - /* Release resources, unregister device */ - nand_release(ap7312_mtd); - - /* Release io resource */ - iounmap(this->IO_ADDR_R); - - /* Free the MTD device structure */ - kfree(ep7312_mtd); -} - -module_exit(ep7312_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>"); -MODULE_DESCRIPTION("MTD map driver for Cogent EDB7312 board"); diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c index 33d8aad8bba5..eedd8ee2c9ac 100644 --- a/drivers/mtd/nand/fsl_elbc_nand.c +++ b/drivers/mtd/nand/fsl_elbc_nand.c @@ -75,7 +75,6 @@ struct fsl_elbc_fcm_ctrl { unsigned int use_mdr; /* Non zero if the MDR is to be set */ unsigned int oob; /* Non zero if operating on OOB data */ unsigned int counter; /* counter for the initializations */ - char *oob_poi; /* Place to write ECC after read back */ }; /* These map to the positions used by the FCM hardware ECC generator */ @@ -244,6 +243,25 @@ static int fsl_elbc_run_command(struct mtd_info *mtd) return -EIO; } + if (chip->ecc.mode != NAND_ECC_HW) + return 0; + + if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) { + uint32_t lteccr = in_be32(&lbc->lteccr); + /* + * if command was a full page read and the ELBC + * has the LTECCR register, then bits 12-15 (ppc order) of + * LTECCR indicates which 512 byte sub-pages had fixed errors. + * bits 28-31 are uncorrectable errors, marked elsewhere. + * for small page nand only 1 bit is used. + * if the ELBC doesn't have the lteccr register it reads 0 + */ + if (lteccr & 0x000F000F) + out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */ + if (lteccr & 0x000F0000) + mtd->ecc_stats.corrected++; + } + return 0; } @@ -435,7 +453,6 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ case NAND_CMD_PAGEPROG: { - int full_page; dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG " "writing %d bytes.\n", elbc_fcm_ctrl->index); @@ -445,34 +462,12 @@ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, * write so the HW generates the ECC. */ if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 || - elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) { + elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) out_be32(&lbc->fbcr, elbc_fcm_ctrl->index); - full_page = 0; - } else { + else out_be32(&lbc->fbcr, 0); - full_page = 1; - } fsl_elbc_run_command(mtd); - - /* Read back the page in order to fill in the ECC for the - * caller. Is this really needed? - */ - if (full_page && elbc_fcm_ctrl->oob_poi) { - out_be32(&lbc->fbcr, 3); - set_addr(mtd, 6, page_addr, 1); - - elbc_fcm_ctrl->read_bytes = mtd->writesize + 9; - - fsl_elbc_do_read(chip, 1); - fsl_elbc_run_command(mtd); - - memcpy_fromio(elbc_fcm_ctrl->oob_poi + 6, - &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], 3); - elbc_fcm_ctrl->index += 3; - } - - elbc_fcm_ctrl->oob_poi = NULL; return; } @@ -752,13 +747,8 @@ static void fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { - struct fsl_elbc_mtd *priv = chip->priv; - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; - fsl_elbc_write_buf(mtd, buf, mtd->writesize); fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); - - elbc_fcm_ctrl->oob_poi = chip->oob_poi; } static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) @@ -791,8 +781,8 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) chip->bbt_md = &bbt_mirror_descr; /* set up nand options */ - chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR | - NAND_USE_FLASH_BBT; + chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR; + chip->bbt_options = NAND_BBT_USE_FLASH; chip->controller = &elbc_fcm_ctrl->controller; chip->priv = priv; @@ -829,7 +819,6 @@ static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv) elbc_fcm_ctrl->chips[priv->bank] = NULL; kfree(priv); - kfree(elbc_fcm_ctrl); return 0; } @@ -842,13 +831,14 @@ static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev) struct resource res; struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl; static const char *part_probe_types[] - = { "cmdlinepart", "RedBoot", NULL }; - struct mtd_partition *parts; + = { "cmdlinepart", "RedBoot", "ofpart", NULL }; int ret; int bank; struct device *dev; struct device_node *node = pdev->dev.of_node; + struct mtd_part_parser_data ppdata; + ppdata.of_node = pdev->dev.of_node; if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs) return -ENODEV; lbc = fsl_lbc_ctrl_dev->regs; @@ -934,17 +924,8 @@ static int __devinit fsl_elbc_nand_probe(struct platform_device *pdev) /* First look for RedBoot table or partitions on the command * line, these take precedence over device tree information */ - ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0); - if (ret < 0) - goto err; - - if (ret == 0) { - ret = of_mtd_parse_partitions(priv->dev, node, &parts); - if (ret < 0) - goto err; - } - - mtd_device_register(&priv->mtd, parts, ret); + mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata, + NULL, 0); printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n", (unsigned long long)res.start, priv->bank); diff --git a/drivers/mtd/nand/fsl_upm.c b/drivers/mtd/nand/fsl_upm.c index 23752fd5bc59..b4f3cc9f32fb 100644 --- a/drivers/mtd/nand/fsl_upm.c +++ b/drivers/mtd/nand/fsl_upm.c @@ -158,7 +158,7 @@ static int __devinit fun_chip_init(struct fsl_upm_nand *fun, { int ret; struct device_node *flash_np; - static const char *part_types[] = { "cmdlinepart", NULL, }; + struct mtd_part_parser_data ppdata; fun->chip.IO_ADDR_R = fun->io_base; fun->chip.IO_ADDR_W = fun->io_base; @@ -192,18 +192,12 @@ static int __devinit fun_chip_init(struct fsl_upm_nand *fun, if (ret) goto err; - ret = parse_mtd_partitions(&fun->mtd, part_types, &fun->parts, 0); - -#ifdef CONFIG_MTD_OF_PARTS - if (ret == 0) { - ret = of_mtd_parse_partitions(fun->dev, flash_np, &fun->parts); - if (ret < 0) - goto err; - } -#endif - ret = mtd_device_register(&fun->mtd, fun->parts, ret); + ppdata.of_node = flash_np; + ret = mtd_device_parse_register(&fun->mtd, NULL, &ppdata, NULL, 0); err: of_node_put(flash_np); + if (ret) + kfree(fun->mtd.name); return ret; } diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c index e9b275ac381c..e53b76064133 100644 --- a/drivers/mtd/nand/fsmc_nand.c +++ b/drivers/mtd/nand/fsmc_nand.c @@ -146,7 +146,7 @@ static struct mtd_partition partition_info_16KB_blk[] = { { .name = "Root File System", .offset = 0x460000, - .size = 0, + .size = MTDPART_SIZ_FULL, }, }; @@ -173,13 +173,10 @@ static struct mtd_partition partition_info_128KB_blk[] = { { .name = "Root File System", .offset = 0x800000, - .size = 0, + .size = MTDPART_SIZ_FULL, }, }; -#ifdef CONFIG_MTD_CMDLINE_PARTS -const char *part_probes[] = { "cmdlinepart", NULL }; -#endif /** * struct fsmc_nand_data - structure for FSMC NAND device state @@ -187,8 +184,6 @@ const char *part_probes[] = { "cmdlinepart", NULL }; * @pid: Part ID on the AMBA PrimeCell format * @mtd: MTD info for a NAND flash. * @nand: Chip related info for a NAND flash. - * @partitions: Partition info for a NAND Flash. - * @nr_partitions: Total number of partition of a NAND flash. * * @ecc_place: ECC placing locations in oobfree type format. * @bank: Bank number for probed device. @@ -203,8 +198,6 @@ struct fsmc_nand_data { u32 pid; struct mtd_info mtd; struct nand_chip nand; - struct mtd_partition *partitions; - unsigned int nr_partitions; struct fsmc_eccplace *ecc_place; unsigned int bank; @@ -716,65 +709,17 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) * platform data, * default partition information present in driver. */ -#ifdef CONFIG_MTD_CMDLINE_PARTS /* - * Check if partition info passed via command line + * Check for partition info passed */ host->mtd.name = "nand"; - host->nr_partitions = parse_mtd_partitions(&host->mtd, part_probes, - &host->partitions, 0); - if (host->nr_partitions <= 0) { -#endif - /* - * Check if partition info passed via command line - */ - if (pdata->partitions) { - host->partitions = pdata->partitions; - host->nr_partitions = pdata->nr_partitions; - } else { - struct mtd_partition *partition; - int i; - - /* Select the default partitions info */ - switch (host->mtd.size) { - case 0x01000000: - case 0x02000000: - case 0x04000000: - host->partitions = partition_info_16KB_blk; - host->nr_partitions = - sizeof(partition_info_16KB_blk) / - sizeof(struct mtd_partition); - break; - case 0x08000000: - case 0x10000000: - case 0x20000000: - case 0x40000000: - host->partitions = partition_info_128KB_blk; - host->nr_partitions = - sizeof(partition_info_128KB_blk) / - sizeof(struct mtd_partition); - break; - default: - ret = -ENXIO; - pr_err("Unsupported NAND size\n"); - goto err_probe; - } - - partition = host->partitions; - for (i = 0; i < host->nr_partitions; i++, partition++) { - if (partition->size == 0) { - partition->size = host->mtd.size - - partition->offset; - break; - } - } - } -#ifdef CONFIG_MTD_CMDLINE_PARTS - } -#endif - - ret = mtd_device_register(&host->mtd, host->partitions, - host->nr_partitions); + ret = mtd_device_parse_register(&host->mtd, NULL, 0, + host->mtd.size <= 0x04000000 ? + partition_info_16KB_blk : + partition_info_128KB_blk, + host->mtd.size <= 0x04000000 ? + ARRAY_SIZE(partition_info_16KB_blk) : + ARRAY_SIZE(partition_info_128KB_blk)); if (ret) goto err_probe; @@ -822,7 +767,7 @@ static int fsmc_nand_remove(struct platform_device *pdev) platform_set_drvdata(pdev, NULL); if (host) { - mtd_device_unregister(&host->mtd); + nand_release(&host->mtd); clk_disable(host->clk); clk_put(host->clk); diff --git a/drivers/mtd/nand/gpmi-nand/Makefile b/drivers/mtd/nand/gpmi-nand/Makefile new file mode 100644 index 000000000000..3a462487c35e --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/Makefile @@ -0,0 +1,3 @@ +obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi_nand.o +gpmi_nand-objs += gpmi-nand.o +gpmi_nand-objs += gpmi-lib.o diff --git a/drivers/mtd/nand/gpmi-nand/bch-regs.h b/drivers/mtd/nand/gpmi-nand/bch-regs.h new file mode 100644 index 000000000000..4effb8c579db --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/bch-regs.h @@ -0,0 +1,84 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#ifndef __GPMI_NAND_BCH_REGS_H +#define __GPMI_NAND_BCH_REGS_H + +#define HW_BCH_CTRL 0x00000000 +#define HW_BCH_CTRL_SET 0x00000004 +#define HW_BCH_CTRL_CLR 0x00000008 +#define HW_BCH_CTRL_TOG 0x0000000c + +#define BM_BCH_CTRL_COMPLETE_IRQ_EN (1 << 8) +#define BM_BCH_CTRL_COMPLETE_IRQ (1 << 0) + +#define HW_BCH_STATUS0 0x00000010 +#define HW_BCH_MODE 0x00000020 +#define HW_BCH_ENCODEPTR 0x00000030 +#define HW_BCH_DATAPTR 0x00000040 +#define HW_BCH_METAPTR 0x00000050 +#define HW_BCH_LAYOUTSELECT 0x00000070 + +#define HW_BCH_FLASH0LAYOUT0 0x00000080 + +#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH0LAYOUT0_NBLOCKS (0xff << BP_BCH_FLASH0LAYOUT0_NBLOCKS) +#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_NBLOCKS) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) + +#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH0LAYOUT0_META_SIZE (0xff << BP_BCH_FLASH0LAYOUT0_META_SIZE) +#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_META_SIZE)\ + & BM_BCH_FLASH0LAYOUT0_META_SIZE) + +#define BP_BCH_FLASH0LAYOUT0_ECC0 12 +#define BM_BCH_FLASH0LAYOUT0_ECC0 (0xf << BP_BCH_FLASH0LAYOUT0_ECC0) +#define BF_BCH_FLASH0LAYOUT0_ECC0(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) & BM_BCH_FLASH0LAYOUT0_ECC0) + +#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) +#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE)\ + & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) + +#define HW_BCH_FLASH0LAYOUT1 0x00000090 + +#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE \ + (0xffff << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) +#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) \ + & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) + +#define BP_BCH_FLASH0LAYOUT1_ECCN 12 +#define BM_BCH_FLASH0LAYOUT1_ECCN (0xf << BP_BCH_FLASH0LAYOUT1_ECCN) +#define BF_BCH_FLASH0LAYOUT1_ECCN(v) \ + (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) & BM_BCH_FLASH0LAYOUT1_ECCN) + +#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ + & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c new file mode 100644 index 000000000000..de4db7604a3f --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c @@ -0,0 +1,1057 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#include <linux/mtd/gpmi-nand.h> +#include <linux/delay.h> +#include <linux/clk.h> +#include <mach/mxs.h> + +#include "gpmi-nand.h" +#include "gpmi-regs.h" +#include "bch-regs.h" + +struct timing_threshod timing_default_threshold = { + .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> + BP_GPMI_TIMING0_DATA_SETUP), + .internal_data_setup_in_ns = 0, + .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> + BP_GPMI_CTRL1_RDN_DELAY), + .max_dll_clock_period_in_ns = 32, + .max_dll_delay_in_ns = 16, +}; + +/* + * Clear the bit and poll it cleared. This is usually called with + * a reset address and mask being either SFTRST(bit 31) or CLKGATE + * (bit 30). + */ +static int clear_poll_bit(void __iomem *addr, u32 mask) +{ + int timeout = 0x400; + + /* clear the bit */ + __mxs_clrl(mask, addr); + + /* + * SFTRST needs 3 GPMI clocks to settle, the reference manual + * recommends to wait 1us. + */ + udelay(1); + + /* poll the bit becoming clear */ + while ((readl(addr) & mask) && --timeout) + /* nothing */; + + return !timeout; +} + +#define MODULE_CLKGATE (1 << 30) +#define MODULE_SFTRST (1 << 31) +/* + * The current mxs_reset_block() will do two things: + * [1] enable the module. + * [2] reset the module. + * + * In most of the cases, it's ok. But there is a hardware bug in the BCH block. + * If you try to soft reset the BCH block, it becomes unusable until + * the next hard reset. This case occurs in the NAND boot mode. When the board + * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. + * So If the driver tries to reset the BCH again, the BCH will not work anymore. + * You will see a DMA timeout in this case. + * + * To avoid this bug, just add a new parameter `just_enable` for + * the mxs_reset_block(), and rewrite it here. + */ +int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) +{ + int ret; + int timeout = 0x400; + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear CLKGATE */ + __mxs_clrl(MODULE_CLKGATE, reset_addr); + + if (!just_enable) { + /* set SFTRST to reset the block */ + __mxs_setl(MODULE_SFTRST, reset_addr); + udelay(1); + + /* poll CLKGATE becoming set */ + while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) + /* nothing */; + if (unlikely(!timeout)) + goto error; + } + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear and poll CLKGATE */ + ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); + if (unlikely(ret)) + goto error; + + return 0; + +error: + pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); + return -ETIMEDOUT; +} + +int gpmi_init(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + int ret; + + ret = clk_enable(r->clock); + if (ret) + goto err_out; + ret = gpmi_reset_block(r->gpmi_regs, false); + if (ret) + goto err_out; + + /* Choose NAND mode. */ + writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Set the IRQ polarity. */ + writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, + r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable Write-Protection. */ + writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Select BCH ECC. */ + writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + clk_disable(r->clock); + return 0; +err_out: + return ret; +} + +/* This function is very useful. It is called only when the bug occur. */ +void gpmi_dump_info(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *geo = &this->bch_geometry; + u32 reg; + int i; + + pr_err("Show GPMI registers :\n"); + for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { + reg = readl(r->gpmi_regs + i * 0x10); + pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + + /* start to print out the BCH info */ + pr_err("BCH Geometry :\n"); + pr_err("GF length : %u\n", geo->gf_len); + pr_err("ECC Strength : %u\n", geo->ecc_strength); + pr_err("Page Size in Bytes : %u\n", geo->page_size); + pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size); + pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size); + pr_err("ECC Chunk Count : %u\n", geo->ecc_chunk_count); + pr_err("Payload Size in Bytes : %u\n", geo->payload_size); + pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size); + pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset); + pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset); + pr_err("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset); +} + +/* Configures the geometry for BCH. */ +int bch_set_geometry(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *bch_geo = &this->bch_geometry; + unsigned int block_count; + unsigned int block_size; + unsigned int metadata_size; + unsigned int ecc_strength; + unsigned int page_size; + int ret; + + if (common_nfc_set_geometry(this)) + return !0; + + block_count = bch_geo->ecc_chunk_count - 1; + block_size = bch_geo->ecc_chunk_size; + metadata_size = bch_geo->metadata_size; + ecc_strength = bch_geo->ecc_strength >> 1; + page_size = bch_geo->page_size; + + ret = clk_enable(r->clock); + if (ret) + goto err_out; + + ret = gpmi_reset_block(r->bch_regs, true); + if (ret) + goto err_out; + + /* Configure layout 0. */ + writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) + | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) + | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength) + | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size), + r->bch_regs + HW_BCH_FLASH0LAYOUT0); + + writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) + | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength) + | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size), + r->bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* Set *all* chip selects to use layout 0. */ + writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); + + /* Enable interrupts. */ + writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + r->bch_regs + HW_BCH_CTRL_SET); + + clk_disable(r->clock); + return 0; +err_out: + return ret; +} + +/* Converts time in nanoseconds to cycles. */ +static unsigned int ns_to_cycles(unsigned int time, + unsigned int period, unsigned int min) +{ + unsigned int k; + + k = (time + period - 1) / period; + return max(k, min); +} + +/* Apply timing to current hardware conditions. */ +static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, + struct gpmi_nfc_hardware_timing *hw) +{ + struct gpmi_nand_platform_data *pdata = this->pdata; + struct timing_threshod *nfc = &timing_default_threshold; + struct nand_chip *nand = &this->nand; + struct nand_timing target = this->timing; + bool improved_timing_is_available; + unsigned long clock_frequency_in_hz; + unsigned int clock_period_in_ns; + bool dll_use_half_periods; + unsigned int dll_delay_shift; + unsigned int max_sample_delay_in_ns; + unsigned int address_setup_in_cycles; + unsigned int data_setup_in_ns; + unsigned int data_setup_in_cycles; + unsigned int data_hold_in_cycles; + int ideal_sample_delay_in_ns; + unsigned int sample_delay_factor; + int tEYE; + unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns; + unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns; + + /* + * If there are multiple chips, we need to relax the timings to allow + * for signal distortion due to higher capacitance. + */ + if (nand->numchips > 2) { + target.data_setup_in_ns += 10; + target.data_hold_in_ns += 10; + target.address_setup_in_ns += 10; + } else if (nand->numchips > 1) { + target.data_setup_in_ns += 5; + target.data_hold_in_ns += 5; + target.address_setup_in_ns += 5; + } + + /* Check if improved timing information is available. */ + improved_timing_is_available = + (target.tREA_in_ns >= 0) && + (target.tRLOH_in_ns >= 0) && + (target.tRHOH_in_ns >= 0) ; + + /* Inspect the clock. */ + clock_frequency_in_hz = nfc->clock_frequency_in_hz; + clock_period_in_ns = 1000000000 / clock_frequency_in_hz; + + /* + * The NFC quantizes setup and hold parameters in terms of clock cycles. + * Here, we quantize the setup and hold timing parameters to the + * next-highest clock period to make sure we apply at least the + * specified times. + * + * For data setup and data hold, the hardware interprets a value of zero + * as the largest possible delay. This is not what's intended by a zero + * in the input parameter, so we impose a minimum of one cycle. + */ + data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns, + clock_period_in_ns, 1); + data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns, + clock_period_in_ns, 1); + address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns, + clock_period_in_ns, 0); + + /* + * The clock's period affects the sample delay in a number of ways: + * + * (1) The NFC HAL tells us the maximum clock period the sample delay + * DLL can tolerate. If the clock period is greater than half that + * maximum, we must configure the DLL to be driven by half periods. + * + * (2) We need to convert from an ideal sample delay, in ns, to a + * "sample delay factor," which the NFC uses. This factor depends on + * whether we're driving the DLL with full or half periods. + * Paraphrasing the reference manual: + * + * AD = SDF x 0.125 x RP + * + * where: + * + * AD is the applied delay, in ns. + * SDF is the sample delay factor, which is dimensionless. + * RP is the reference period, in ns, which is a full clock period + * if the DLL is being driven by full periods, or half that if + * the DLL is being driven by half periods. + * + * Let's re-arrange this in a way that's more useful to us: + * + * 8 + * SDF = AD x ---- + * RP + * + * The reference period is either the clock period or half that, so this + * is: + * + * 8 AD x DDF + * SDF = AD x ----- = -------- + * f x P P + * + * where: + * + * f is 1 or 1/2, depending on how we're driving the DLL. + * P is the clock period. + * DDF is the DLL Delay Factor, a dimensionless value that + * incorporates all the constants in the conversion. + * + * DDF will be either 8 or 16, both of which are powers of two. We can + * reduce the cost of this conversion by using bit shifts instead of + * multiplication or division. Thus: + * + * AD << DDS + * SDF = --------- + * P + * + * or + * + * AD = (SDF >> DDS) x P + * + * where: + * + * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF. + */ + if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) { + dll_use_half_periods = true; + dll_delay_shift = 3 + 1; + } else { + dll_use_half_periods = false; + dll_delay_shift = 3; + } + + /* + * Compute the maximum sample delay the NFC allows, under current + * conditions. If the clock is running too slowly, no sample delay is + * possible. + */ + if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns) + max_sample_delay_in_ns = 0; + else { + /* + * Compute the delay implied by the largest sample delay factor + * the NFC allows. + */ + max_sample_delay_in_ns = + (nfc->max_sample_delay_factor * clock_period_in_ns) >> + dll_delay_shift; + + /* + * Check if the implied sample delay larger than the NFC + * actually allows. + */ + if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns) + max_sample_delay_in_ns = nfc->max_dll_delay_in_ns; + } + + /* + * Check if improved timing information is available. If not, we have to + * use a less-sophisticated algorithm. + */ + if (!improved_timing_is_available) { + /* + * Fold the read setup time required by the NFC into the ideal + * sample delay. + */ + ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns + + nfc->internal_data_setup_in_ns; + + /* + * The ideal sample delay may be greater than the maximum + * allowed by the NFC. If so, we can trade off sample delay time + * for more data setup time. + * + * In each iteration of the following loop, we add a cycle to + * the data setup time and subtract a corresponding amount from + * the sample delay until we've satisified the constraints or + * can't do any better. + */ + while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + data_setup_in_cycles++; + ideal_sample_delay_in_ns -= clock_period_in_ns; + + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + } + + /* + * Compute the sample delay factor that corresponds most closely + * to the ideal sample delay. If the result is too large for the + * NFC, use the maximum value. + * + * Notice that we use the ns_to_cycles function to compute the + * sample delay factor. We do this because the form of the + * computation is the same as that for calculating cycles. + */ + sample_delay_factor = + ns_to_cycles( + ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + /* Skip to the part where we return our results. */ + goto return_results; + } + + /* + * If control arrives here, we have more detailed timing information, + * so we can use a better algorithm. + */ + + /* + * Fold the read setup time required by the NFC into the maximum + * propagation delay. + */ + max_prop_delay_in_ns += nfc->internal_data_setup_in_ns; + + /* + * Earlier, we computed the number of clock cycles required to satisfy + * the data setup time. Now, we need to know the actual nanoseconds. + */ + data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles; + + /* + * Compute tEYE, the width of the data eye when reading from the NAND + * Flash. The eye width is fundamentally determined by the data setup + * time, perturbed by propagation delays and some characteristics of the + * NAND Flash device. + * + * start of the eye = max_prop_delay + tREA + * end of the eye = min_prop_delay + tRHOH + data_setup + */ + tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns + + (int)data_setup_in_ns; + + tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns; + + /* + * The eye must be open. If it's not, we can try to open it by + * increasing its main forcer, the data setup time. + * + * In each iteration of the following loop, we increase the data setup + * time by a single clock cycle. We do this until either the eye is + * open or we run into NFC limits. + */ + while ((tEYE <= 0) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + } + + /* + * When control arrives here, the eye is open. The ideal time to sample + * the data is in the center of the eye: + * + * end of the eye + start of the eye + * --------------------------------- - data_setup + * 2 + * + * After some algebra, this simplifies to the code immediately below. + */ + ideal_sample_delay_in_ns = + ((int)max_prop_delay_in_ns + + (int)target.tREA_in_ns + + (int)min_prop_delay_in_ns + + (int)target.tRHOH_in_ns - + (int)data_setup_in_ns) >> 1; + + /* + * The following figure illustrates some aspects of a NAND Flash read: + * + * + * __ _____________________________________ + * RDN \_________________/ + * + * <---- tEYE -----> + * /-----------------\ + * Read Data ----------------------------< >--------- + * \-----------------/ + * ^ ^ ^ ^ + * | | | | + * |<--Data Setup -->|<--Delay Time -->| | + * | | | | + * | | | + * | |<-- Quantized Delay Time -->| + * | | | + * + * + * We have some issues we must now address: + * + * (1) The *ideal* sample delay time must not be negative. If it is, we + * jam it to zero. + * + * (2) The *ideal* sample delay time must not be greater than that + * allowed by the NFC. If it is, we can increase the data setup + * time, which will reduce the delay between the end of the data + * setup and the center of the eye. It will also make the eye + * larger, which might help with the next issue... + * + * (3) The *quantized* sample delay time must not fall either before the + * eye opens or after it closes (the latter is the problem + * illustrated in the above figure). + */ + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + /* + * Extend the data setup as needed to reduce the ideal sample delay + * below the maximum permitted by the NFC. + */ + while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + + /* + * Decrease the ideal sample delay by one half cycle, to keep it + * in the middle of the eye. + */ + ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + } + + /* + * Compute the sample delay factor that corresponds to the ideal sample + * delay. If the result is too large, then use the maximum allowed + * value. + * + * Notice that we use the ns_to_cycles function to compute the sample + * delay factor. We do this because the form of the computation is the + * same as that for calculating cycles. + */ + sample_delay_factor = + ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + /* + * These macros conveniently encapsulate a computation we'll use to + * continuously evaluate whether or not the data sample delay is inside + * the eye. + */ + #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns) + + #define QUANTIZED_DELAY \ + ((int) ((sample_delay_factor * clock_period_in_ns) >> \ + dll_delay_shift)) + + #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY)) + + #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1)) + + /* + * While the quantized sample time falls outside the eye, reduce the + * sample delay or extend the data setup to move the sampling point back + * toward the eye. Do not allow the number of data setup cycles to + * exceed the maximum allowed by the NFC. + */ + while (SAMPLE_IS_NOT_WITHIN_THE_EYE && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + /* + * If control arrives here, the quantized sample delay falls + * outside the eye. Check if it's before the eye opens, or after + * the eye closes. + */ + if (QUANTIZED_DELAY > IDEAL_DELAY) { + /* + * If control arrives here, the quantized sample delay + * falls after the eye closes. Decrease the quantized + * delay time and then go back to re-evaluate. + */ + if (sample_delay_factor != 0) + sample_delay_factor--; + continue; + } + + /* + * If control arrives here, the quantized sample delay falls + * before the eye opens. Shift the sample point by increasing + * data setup time. This will also make the eye larger. + */ + + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + + /* + * Decrease the ideal sample delay by one half cycle, to keep it + * in the middle of the eye. + */ + ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); + + /* ...and one less period for the delay time. */ + ideal_sample_delay_in_ns -= clock_period_in_ns; + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + /* + * We have a new ideal sample delay, so re-compute the quantized + * delay. + */ + sample_delay_factor = + ns_to_cycles( + ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + } + + /* Control arrives here when we're ready to return our results. */ +return_results: + hw->data_setup_in_cycles = data_setup_in_cycles; + hw->data_hold_in_cycles = data_hold_in_cycles; + hw->address_setup_in_cycles = address_setup_in_cycles; + hw->use_half_periods = dll_use_half_periods; + hw->sample_delay_factor = sample_delay_factor; + + /* Return success. */ + return 0; +} + +/* Begin the I/O */ +void gpmi_begin(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct timing_threshod *nfc = &timing_default_threshold; + unsigned char *gpmi_regs = r->gpmi_regs; + unsigned int clock_period_in_ns; + uint32_t reg; + unsigned int dll_wait_time_in_us; + struct gpmi_nfc_hardware_timing hw; + int ret; + + /* Enable the clock. */ + ret = clk_enable(r->clock); + if (ret) { + pr_err("We failed in enable the clk\n"); + goto err_out; + } + + /* set ready/busy timeout */ + writel(0x500 << BP_GPMI_TIMING1_BUSY_TIMEOUT, + gpmi_regs + HW_GPMI_TIMING1); + + /* Get the timing information we need. */ + nfc->clock_frequency_in_hz = clk_get_rate(r->clock); + clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz; + + gpmi_nfc_compute_hardware_timing(this, &hw); + + /* Set up all the simple timing parameters. */ + reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | + BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | + BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ; + + writel(reg, gpmi_regs + HW_GPMI_TIMING0); + + /* + * DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. + */ + writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Clear out the DLL control fields. */ + writel(BM_GPMI_CTRL1_RDN_DELAY, gpmi_regs + HW_GPMI_CTRL1_CLR); + writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* If no sample delay is called for, return immediately. */ + if (!hw.sample_delay_factor) + return; + + /* Configure the HALF_PERIOD flag. */ + if (hw.use_half_periods) + writel(BM_GPMI_CTRL1_HALF_PERIOD, + gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Set the delay factor. */ + writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor), + gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Enable the DLL. */ + writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); + + /* + * After we enable the GPMI DLL, we have to wait 64 clock cycles before + * we can use the GPMI. + * + * Calculate the amount of time we need to wait, in microseconds. + */ + dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; + + if (!dll_wait_time_in_us) + dll_wait_time_in_us = 1; + + /* Wait for the DLL to settle. */ + udelay(dll_wait_time_in_us); + +err_out: + return; +} + +void gpmi_end(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + clk_disable(r->clock); +} + +/* Clears a BCH interrupt. */ +void gpmi_clear_bch(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); +} + +/* Returns the Ready/Busy status of the given chip. */ +int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) +{ + struct resources *r = &this->resources; + uint32_t mask = 0; + uint32_t reg = 0; + + if (GPMI_IS_MX23(this)) { + mask = MX23_BM_GPMI_DEBUG_READY0 << chip; + reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); + } else if (GPMI_IS_MX28(this)) { + mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); + reg = readl(r->gpmi_regs + HW_GPMI_STAT); + } else + pr_err("unknow arch.\n"); + return reg & mask; +} + +static inline void set_dma_type(struct gpmi_nand_data *this, + enum dma_ops_type type) +{ + this->last_dma_type = this->dma_type; + this->dma_type = type; +} + +int gpmi_send_command(struct gpmi_nand_data *this) +{ + struct dma_chan *channel = get_dma_chan(this); + struct dma_async_tx_descriptor *desc; + struct scatterlist *sgl; + int chip = this->current_chip; + u32 pio[3]; + + /* [1] send out the PIO words */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) + | BM_GPMI_CTRL0_ADDRESS_INCREMENT + | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); + pio[1] = pio[2] = 0; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_NONE, 0); + if (!desc) { + pr_err("step 1 error\n"); + return -1; + } + + /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ + sgl = &this->cmd_sgl; + + sg_init_one(sgl, this->cmd_buffer, this->command_length); + dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); + desc = channel->device->device_prep_slave_sg(channel, + sgl, 1, DMA_TO_DEVICE, 1); + if (!desc) { + pr_err("step 2 error\n"); + return -1; + } + + /* [3] submit the DMA */ + set_dma_type(this, DMA_FOR_COMMAND); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_send_data(struct gpmi_nand_data *this) +{ + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + uint32_t command_mode; + uint32_t address; + u32 pio[2]; + + /* [1] PIO */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); + pio[1] = 0; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_NONE, 0); + if (!desc) { + pr_err("step 1 error\n"); + return -1; + } + + /* [2] send DMA request */ + prepare_data_dma(this, DMA_TO_DEVICE); + desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl, + 1, DMA_TO_DEVICE, 1); + if (!desc) { + pr_err("step 2 error\n"); + return -1; + } + /* [3] submit the DMA */ + set_dma_type(this, DMA_FOR_WRITE_DATA); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_read_data(struct gpmi_nand_data *this) +{ + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[2]; + + /* [1] : send PIO */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); + pio[1] = 0; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_NONE, 0); + if (!desc) { + pr_err("step 1 error\n"); + return -1; + } + + /* [2] : send DMA request */ + prepare_data_dma(this, DMA_FROM_DEVICE); + desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl, + 1, DMA_FROM_DEVICE, 1); + if (!desc) { + pr_err("step 2 error\n"); + return -1; + } + + /* [3] : submit the DMA */ + set_dma_type(this, DMA_FOR_READ_DATA); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_send_page(struct gpmi_nand_data *this, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct bch_geometry *geo = &this->bch_geometry; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[6]; + + /* A DMA descriptor that does an ECC page read. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) + | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); + pio[3] = geo->page_size; + pio[4] = payload; + pio[5] = auxiliary; + + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_NONE, 0); + if (!desc) { + pr_err("step 2 error\n"); + return -1; + } + set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE); + return start_dma_with_bch_irq(this, desc); +} + +int gpmi_read_page(struct gpmi_nand_data *this, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct bch_geometry *geo = &this->bch_geometry; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[6]; + + /* [1] Wait for the chip to report ready. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, 2, DMA_NONE, 0); + if (!desc) { + pr_err("step 1 error\n"); + return -1; + } + + /* [2] Enable the BCH block and read. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE + | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); + + pio[1] = 0; + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) + | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); + pio[3] = geo->page_size; + pio[4] = payload; + pio[5] = auxiliary; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_NONE, 1); + if (!desc) { + pr_err("step 2 error\n"); + return -1; + } + + /* [3] Disable the BCH block */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); + pio[1] = 0; + desc = channel->device->device_prep_slave_sg(channel, + (struct scatterlist *)pio, 2, DMA_NONE, 1); + if (!desc) { + pr_err("step 3 error\n"); + return -1; + } + + /* [4] submit the DMA */ + set_dma_type(this, DMA_FOR_READ_ECC_PAGE); + return start_dma_with_bch_irq(this, desc); +} diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c new file mode 100644 index 000000000000..071b63420f0e --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c @@ -0,0 +1,1619 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#include <linux/clk.h> +#include <linux/slab.h> +#include <linux/interrupt.h> +#include <linux/mtd/gpmi-nand.h> +#include <linux/mtd/partitions.h> + +#include "gpmi-nand.h" + +/* add our owner bbt descriptor */ +static uint8_t scan_ff_pattern[] = { 0xff }; +static struct nand_bbt_descr gpmi_bbt_descr = { + .options = 0, + .offs = 0, + .len = 1, + .pattern = scan_ff_pattern +}; + +/* We will use all the (page + OOB). */ +static struct nand_ecclayout gpmi_hw_ecclayout = { + .eccbytes = 0, + .eccpos = { 0, }, + .oobfree = { {.offset = 0, .length = 0} } +}; + +static irqreturn_t bch_irq(int irq, void *cookie) +{ + struct gpmi_nand_data *this = cookie; + + gpmi_clear_bch(this); + complete(&this->bch_done); + return IRQ_HANDLED; +} + +/* + * Calculate the ECC strength by hand: + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * O : the oobsize of the NAND chip. + * M : the metasize of per page. + * + * The formula is : + * E * G * N + * ------------ <= (O - M) + * 8 + * + * So, we get E by: + * (O - M) * 8 + * E <= ------------- + * G * N + */ +static inline int get_ecc_strength(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = &this->mtd; + int ecc_strength; + + ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) + / (geo->gf_len * geo->ecc_chunk_count); + + /* We need the minor even number. */ + return round_down(ecc_strength, 2); +} + +int common_nfc_set_geometry(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = &this->mtd; + unsigned int metadata_size; + unsigned int status_size; + unsigned int block_mark_bit_offset; + + /* + * The size of the metadata can be changed, though we set it to 10 + * bytes now. But it can't be too large, because we have to save + * enough space for BCH. + */ + geo->metadata_size = 10; + + /* The default for the length of Galois Field. */ + geo->gf_len = 13; + + /* The default for chunk size. There is no oobsize greater then 512. */ + geo->ecc_chunk_size = 512; + while (geo->ecc_chunk_size < mtd->oobsize) + geo->ecc_chunk_size *= 2; /* keep C >= O */ + + geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; + + /* We use the same ECC strength for all chunks. */ + geo->ecc_strength = get_ecc_strength(this); + if (!geo->ecc_strength) { + pr_err("We get a wrong ECC strength.\n"); + return -EINVAL; + } + + geo->page_size = mtd->writesize + mtd->oobsize; + geo->payload_size = mtd->writesize; + + /* + * The auxiliary buffer contains the metadata and the ECC status. The + * metadata is padded to the nearest 32-bit boundary. The ECC status + * contains one byte for every ECC chunk, and is also padded to the + * nearest 32-bit boundary. + */ + metadata_size = ALIGN(geo->metadata_size, 4); + status_size = ALIGN(geo->ecc_chunk_count, 4); + + geo->auxiliary_size = metadata_size + status_size; + geo->auxiliary_status_offset = metadata_size; + + if (!this->swap_block_mark) + return 0; + + /* + * We need to compute the byte and bit offsets of + * the physical block mark within the ECC-based view of the page. + * + * NAND chip with 2K page shows below: + * (Block Mark) + * | | + * | D | + * |<---->| + * V V + * +---+----------+-+----------+-+----------+-+----------+-+ + * | M | data |E| data |E| data |E| data |E| + * +---+----------+-+----------+-+----------+-+----------+-+ + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * With the formula to compute the ECC strength, and the condition + * : C >= O (C is the ecc chunk size) + * + * It's easy to deduce to the following result: + * + * E * G (O - M) C - M C - M + * ----------- <= ------- <= -------- < --------- + * 8 N N (N - 1) + * + * So, we get: + * + * E * G * (N - 1) + * D = (---------------- + M) < C + * 8 + * + * The above inequality means the position of block mark + * within the ECC-based view of the page is still in the data chunk, + * and it's NOT in the ECC bits of the chunk. + * + * Use the following to compute the bit position of the + * physical block mark within the ECC-based view of the page: + * (page_size - D) * 8 + * + * --Huang Shijie + */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return 0; +} + +struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) +{ + int chipnr = this->current_chip; + + return this->dma_chans[chipnr]; +} + +/* Can we use the upper's buffer directly for DMA? */ +void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) +{ + struct scatterlist *sgl = &this->data_sgl; + int ret; + + this->direct_dma_map_ok = true; + + /* first try to map the upper buffer directly */ + sg_init_one(sgl, this->upper_buf, this->upper_len); + ret = dma_map_sg(this->dev, sgl, 1, dr); + if (ret == 0) { + /* We have to use our own DMA buffer. */ + sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE); + + if (dr == DMA_TO_DEVICE) + memcpy(this->data_buffer_dma, this->upper_buf, + this->upper_len); + + ret = dma_map_sg(this->dev, sgl, 1, dr); + if (ret == 0) + pr_err("map failed.\n"); + + this->direct_dma_map_ok = false; + } +} + +/* This will be called after the DMA operation is finished. */ +static void dma_irq_callback(void *param) +{ + struct gpmi_nand_data *this = param; + struct completion *dma_c = &this->dma_done; + + complete(dma_c); + + switch (this->dma_type) { + case DMA_FOR_COMMAND: + dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); + break; + + case DMA_FOR_READ_DATA: + dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); + if (this->direct_dma_map_ok == false) + memcpy(this->upper_buf, this->data_buffer_dma, + this->upper_len); + break; + + case DMA_FOR_WRITE_DATA: + dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); + break; + + case DMA_FOR_READ_ECC_PAGE: + case DMA_FOR_WRITE_ECC_PAGE: + /* We have to wait the BCH interrupt to finish. */ + break; + + default: + pr_err("in wrong DMA operation.\n"); + } +} + +int start_dma_without_bch_irq(struct gpmi_nand_data *this, + struct dma_async_tx_descriptor *desc) +{ + struct completion *dma_c = &this->dma_done; + int err; + + init_completion(dma_c); + + desc->callback = dma_irq_callback; + desc->callback_param = this; + dmaengine_submit(desc); + + /* Wait for the interrupt from the DMA block. */ + err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); + if (!err) { + pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type); + gpmi_dump_info(this); + return -ETIMEDOUT; + } + return 0; +} + +/* + * This function is used in BCH reading or BCH writing pages. + * It will wait for the BCH interrupt as long as ONE second. + * Actually, we must wait for two interrupts : + * [1] firstly the DMA interrupt and + * [2] secondly the BCH interrupt. + */ +int start_dma_with_bch_irq(struct gpmi_nand_data *this, + struct dma_async_tx_descriptor *desc) +{ + struct completion *bch_c = &this->bch_done; + int err; + + /* Prepare to receive an interrupt from the BCH block. */ + init_completion(bch_c); + + /* start the DMA */ + start_dma_without_bch_irq(this, desc); + + /* Wait for the interrupt from the BCH block. */ + err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); + if (!err) { + pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type); + gpmi_dump_info(this); + return -ETIMEDOUT; + } + return 0; +} + +static int __devinit +acquire_register_block(struct gpmi_nand_data *this, const char *res_name) +{ + struct platform_device *pdev = this->pdev; + struct resources *res = &this->resources; + struct resource *r; + void *p; + + r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); + if (!r) { + pr_err("Can't get resource for %s\n", res_name); + return -ENXIO; + } + + p = ioremap(r->start, resource_size(r)); + if (!p) { + pr_err("Can't remap %s\n", res_name); + return -ENOMEM; + } + + if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) + res->gpmi_regs = p; + else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) + res->bch_regs = p; + else + pr_err("unknown resource name : %s\n", res_name); + + return 0; +} + +static void release_register_block(struct gpmi_nand_data *this) +{ + struct resources *res = &this->resources; + if (res->gpmi_regs) + iounmap(res->gpmi_regs); + if (res->bch_regs) + iounmap(res->bch_regs); + res->gpmi_regs = NULL; + res->bch_regs = NULL; +} + +static int __devinit +acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) +{ + struct platform_device *pdev = this->pdev; + struct resources *res = &this->resources; + const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; + struct resource *r; + int err; + + r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); + if (!r) { + pr_err("Can't get resource for %s\n", res_name); + return -ENXIO; + } + + err = request_irq(r->start, irq_h, 0, res_name, this); + if (err) { + pr_err("Can't own %s\n", res_name); + return err; + } + + res->bch_low_interrupt = r->start; + res->bch_high_interrupt = r->end; + return 0; +} + +static void release_bch_irq(struct gpmi_nand_data *this) +{ + struct resources *res = &this->resources; + int i = res->bch_low_interrupt; + + for (; i <= res->bch_high_interrupt; i++) + free_irq(i, this); +} + +static bool gpmi_dma_filter(struct dma_chan *chan, void *param) +{ + struct gpmi_nand_data *this = param; + struct resource *r = this->private; + + if (!mxs_dma_is_apbh(chan)) + return false; + /* + * only catch the GPMI dma channels : + * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3 + * (These four channels share the same IRQ!) + * + * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7 + * (These eight channels share the same IRQ!) + */ + if (r->start <= chan->chan_id && chan->chan_id <= r->end) { + chan->private = &this->dma_data; + return true; + } + return false; +} + +static void release_dma_channels(struct gpmi_nand_data *this) +{ + unsigned int i; + for (i = 0; i < DMA_CHANS; i++) + if (this->dma_chans[i]) { + dma_release_channel(this->dma_chans[i]); + this->dma_chans[i] = NULL; + } +} + +static int __devinit acquire_dma_channels(struct gpmi_nand_data *this) +{ + struct platform_device *pdev = this->pdev; + struct gpmi_nand_platform_data *pdata = this->pdata; + struct resources *res = &this->resources; + struct resource *r, *r_dma; + unsigned int i; + + r = platform_get_resource_byname(pdev, IORESOURCE_DMA, + GPMI_NAND_DMA_CHANNELS_RES_NAME); + r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ, + GPMI_NAND_DMA_INTERRUPT_RES_NAME); + if (!r || !r_dma) { + pr_err("Can't get resource for DMA\n"); + return -ENXIO; + } + + /* used in gpmi_dma_filter() */ + this->private = r; + + for (i = r->start; i <= r->end; i++) { + struct dma_chan *dma_chan; + dma_cap_mask_t mask; + + if (i - r->start >= pdata->max_chip_count) + break; + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + + /* get the DMA interrupt */ + if (r_dma->start == r_dma->end) { + /* only register the first. */ + if (i == r->start) + this->dma_data.chan_irq = r_dma->start; + else + this->dma_data.chan_irq = NO_IRQ; + } else + this->dma_data.chan_irq = r_dma->start + (i - r->start); + + dma_chan = dma_request_channel(mask, gpmi_dma_filter, this); + if (!dma_chan) + goto acquire_err; + + /* fill the first empty item */ + this->dma_chans[i - r->start] = dma_chan; + } + + res->dma_low_channel = r->start; + res->dma_high_channel = i; + return 0; + +acquire_err: + pr_err("Can't acquire DMA channel %u\n", i); + release_dma_channels(this); + return -EINVAL; +} + +static int __devinit acquire_resources(struct gpmi_nand_data *this) +{ + struct resources *res = &this->resources; + int ret; + + ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_bch_irq(this, bch_irq); + if (ret) + goto exit_regs; + + ret = acquire_dma_channels(this); + if (ret) + goto exit_dma_channels; + + res->clock = clk_get(&this->pdev->dev, NULL); + if (IS_ERR(res->clock)) { + pr_err("can not get the clock\n"); + ret = -ENOENT; + goto exit_clock; + } + return 0; + +exit_clock: + release_dma_channels(this); +exit_dma_channels: + release_bch_irq(this); +exit_regs: + release_register_block(this); + return ret; +} + +static void release_resources(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + + clk_put(r->clock); + release_register_block(this); + release_bch_irq(this); + release_dma_channels(this); +} + +static int __devinit init_hardware(struct gpmi_nand_data *this) +{ + int ret; + + /* + * This structure contains the "safe" GPMI timing that should succeed + * with any NAND Flash device + * (although, with less-than-optimal performance). + */ + struct nand_timing safe_timing = { + .data_setup_in_ns = 80, + .data_hold_in_ns = 60, + .address_setup_in_ns = 25, + .gpmi_sample_delay_in_ns = 6, + .tREA_in_ns = -1, + .tRLOH_in_ns = -1, + .tRHOH_in_ns = -1, + }; + + /* Initialize the hardwares. */ + ret = gpmi_init(this); + if (ret) + return ret; + + this->timing = safe_timing; + return 0; +} + +static int read_page_prepare(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void **use_virt, dma_addr_t *use_phys) +{ + struct device *dev = this->dev; + + if (virt_addr_valid(destination)) { + dma_addr_t dest_phys; + + dest_phys = dma_map_single(dev, destination, + length, DMA_FROM_DEVICE); + if (dma_mapping_error(dev, dest_phys)) { + if (alt_size < length) { + pr_err("Alternate buffer is too small\n"); + return -ENOMEM; + } + goto map_failed; + } + *use_virt = destination; + *use_phys = dest_phys; + this->direct_dma_map_ok = true; + return 0; + } + +map_failed: + *use_virt = alt_virt; + *use_phys = alt_phys; + this->direct_dma_map_ok = false; + return 0; +} + +static inline void read_page_end(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void *used_virt, dma_addr_t used_phys) +{ + if (this->direct_dma_map_ok) + dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); +} + +static inline void read_page_swap_end(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void *used_virt, dma_addr_t used_phys) +{ + if (!this->direct_dma_map_ok) + memcpy(destination, alt_virt, length); +} + +static int send_page_prepare(struct gpmi_nand_data *this, + const void *source, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + const void **use_virt, dma_addr_t *use_phys) +{ + struct device *dev = this->dev; + + if (virt_addr_valid(source)) { + dma_addr_t source_phys; + + source_phys = dma_map_single(dev, (void *)source, length, + DMA_TO_DEVICE); + if (dma_mapping_error(dev, source_phys)) { + if (alt_size < length) { + pr_err("Alternate buffer is too small\n"); + return -ENOMEM; + } + goto map_failed; + } + *use_virt = source; + *use_phys = source_phys; + return 0; + } +map_failed: + /* + * Copy the content of the source buffer into the alternate + * buffer and set up the return values accordingly. + */ + memcpy(alt_virt, source, length); + + *use_virt = alt_virt; + *use_phys = alt_phys; + return 0; +} + +static void send_page_end(struct gpmi_nand_data *this, + const void *source, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + const void *used_virt, dma_addr_t used_phys) +{ + struct device *dev = this->dev; + if (used_virt == source) + dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); +} + +static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + + if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) + dma_free_coherent(dev, this->page_buffer_size, + this->page_buffer_virt, + this->page_buffer_phys); + kfree(this->cmd_buffer); + kfree(this->data_buffer_dma); + + this->cmd_buffer = NULL; + this->data_buffer_dma = NULL; + this->page_buffer_virt = NULL; + this->page_buffer_size = 0; +} + +/* Allocate the DMA buffers */ +static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct device *dev = this->dev; + + /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ + this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA); + if (this->cmd_buffer == NULL) + goto error_alloc; + + /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */ + this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA); + if (this->data_buffer_dma == NULL) + goto error_alloc; + + /* + * [3] Allocate the page buffer. + * + * Both the payload buffer and the auxiliary buffer must appear on + * 32-bit boundaries. We presume the size of the payload buffer is a + * power of two and is much larger than four, which guarantees the + * auxiliary buffer will appear on a 32-bit boundary. + */ + this->page_buffer_size = geo->payload_size + geo->auxiliary_size; + this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, + &this->page_buffer_phys, GFP_DMA); + if (!this->page_buffer_virt) + goto error_alloc; + + + /* Slice up the page buffer. */ + this->payload_virt = this->page_buffer_virt; + this->payload_phys = this->page_buffer_phys; + this->auxiliary_virt = this->payload_virt + geo->payload_size; + this->auxiliary_phys = this->payload_phys + geo->payload_size; + return 0; + +error_alloc: + gpmi_free_dma_buffer(this); + pr_err("allocate DMA buffer ret!!\n"); + return -ENOMEM; +} + +static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + int ret; + + /* + * Every operation begins with a command byte and a series of zero or + * more address bytes. These are distinguished by either the Address + * Latch Enable (ALE) or Command Latch Enable (CLE) signals being + * asserted. When MTD is ready to execute the command, it will deassert + * both latch enables. + * + * Rather than run a separate DMA operation for every single byte, we + * queue them up and run a single DMA operation for the entire series + * of command and data bytes. NAND_CMD_NONE means the END of the queue. + */ + if ((ctrl & (NAND_ALE | NAND_CLE))) { + if (data != NAND_CMD_NONE) + this->cmd_buffer[this->command_length++] = data; + return; + } + + if (!this->command_length) + return; + + ret = gpmi_send_command(this); + if (ret) + pr_err("Chip: %u, Error %d\n", this->current_chip, ret); + + this->command_length = 0; +} + +static int gpmi_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + return gpmi_is_ready(this, this->current_chip); +} + +static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + if ((this->current_chip < 0) && (chipnr >= 0)) + gpmi_begin(this); + else if ((this->current_chip >= 0) && (chipnr < 0)) + gpmi_end(this); + + this->current_chip = chipnr; +} + +static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + pr_debug("len is %d\n", len); + this->upper_buf = buf; + this->upper_len = len; + + gpmi_read_data(this); +} + +static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + + pr_debug("len is %d\n", len); + this->upper_buf = (uint8_t *)buf; + this->upper_len = len; + + gpmi_send_data(this); +} + +static uint8_t gpmi_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + uint8_t *buf = this->data_buffer_dma; + + gpmi_read_buf(mtd, buf, 1); + return buf[0]; +} + +/* + * Handles block mark swapping. + * It can be called in swapping the block mark, or swapping it back, + * because the the operations are the same. + */ +static void block_mark_swapping(struct gpmi_nand_data *this, + void *payload, void *auxiliary) +{ + struct bch_geometry *nfc_geo = &this->bch_geometry; + unsigned char *p; + unsigned char *a; + unsigned int bit; + unsigned char mask; + unsigned char from_data; + unsigned char from_oob; + + if (!this->swap_block_mark) + return; + + /* + * If control arrives here, we're swapping. Make some convenience + * variables. + */ + bit = nfc_geo->block_mark_bit_offset; + p = payload + nfc_geo->block_mark_byte_offset; + a = auxiliary; + + /* + * Get the byte from the data area that overlays the block mark. Since + * the ECC engine applies its own view to the bits in the page, the + * physical block mark won't (in general) appear on a byte boundary in + * the data. + */ + from_data = (p[0] >> bit) | (p[1] << (8 - bit)); + + /* Get the byte from the OOB. */ + from_oob = a[0]; + + /* Swap them. */ + a[0] = from_data; + + mask = (0x1 << bit) - 1; + p[0] = (p[0] & mask) | (from_oob << bit); + + mask = ~0 << bit; + p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); +} + +static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int page) +{ + struct gpmi_nand_data *this = chip->priv; + struct bch_geometry *nfc_geo = &this->bch_geometry; + void *payload_virt; + dma_addr_t payload_phys; + void *auxiliary_virt; + dma_addr_t auxiliary_phys; + unsigned int i; + unsigned char *status; + unsigned int failed; + unsigned int corrected; + int ret; + + pr_debug("page number is : %d\n", page); + ret = read_page_prepare(this, buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + &payload_virt, &payload_phys); + if (ret) { + pr_err("Inadequate DMA buffer\n"); + ret = -ENOMEM; + return ret; + } + auxiliary_virt = this->auxiliary_virt; + auxiliary_phys = this->auxiliary_phys; + + /* go! */ + ret = gpmi_read_page(this, payload_phys, auxiliary_phys); + read_page_end(this, buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); + if (ret) { + pr_err("Error in ECC-based read: %d\n", ret); + goto exit_nfc; + } + + /* handle the block mark swapping */ + block_mark_swapping(this, payload_virt, auxiliary_virt); + + /* Loop over status bytes, accumulating ECC status. */ + failed = 0; + corrected = 0; + status = auxiliary_virt + nfc_geo->auxiliary_status_offset; + + for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { + if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) + continue; + + if (*status == STATUS_UNCORRECTABLE) { + failed++; + continue; + } + corrected += *status; + } + + /* + * Propagate ECC status to the owning MTD only when failed or + * corrected times nearly reaches our ECC correction threshold. + */ + if (failed || corrected >= (nfc_geo->ecc_strength - 1)) { + mtd->ecc_stats.failed += failed; + mtd->ecc_stats.corrected += corrected; + } + + /* + * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() for + * details about our policy for delivering the OOB. + * + * We fill the caller's buffer with set bits, and then copy the block + * mark to th caller's buffer. Note that, if block mark swapping was + * necessary, it has already been done, so we can rely on the first + * byte of the auxiliary buffer to contain the block mark. + */ + memset(chip->oob_poi, ~0, mtd->oobsize); + chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; + + read_page_swap_end(this, buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); +exit_nfc: + return ret; +} + +static void gpmi_ecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf) +{ + struct gpmi_nand_data *this = chip->priv; + struct bch_geometry *nfc_geo = &this->bch_geometry; + const void *payload_virt; + dma_addr_t payload_phys; + const void *auxiliary_virt; + dma_addr_t auxiliary_phys; + int ret; + + pr_debug("ecc write page.\n"); + if (this->swap_block_mark) { + /* + * If control arrives here, we're doing block mark swapping. + * Since we can't modify the caller's buffers, we must copy them + * into our own. + */ + memcpy(this->payload_virt, buf, mtd->writesize); + payload_virt = this->payload_virt; + payload_phys = this->payload_phys; + + memcpy(this->auxiliary_virt, chip->oob_poi, + nfc_geo->auxiliary_size); + auxiliary_virt = this->auxiliary_virt; + auxiliary_phys = this->auxiliary_phys; + + /* Handle block mark swapping. */ + block_mark_swapping(this, + (void *) payload_virt, (void *) auxiliary_virt); + } else { + /* + * If control arrives here, we're not doing block mark swapping, + * so we can to try and use the caller's buffers. + */ + ret = send_page_prepare(this, + buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + &payload_virt, &payload_phys); + if (ret) { + pr_err("Inadequate payload DMA buffer\n"); + return; + } + + ret = send_page_prepare(this, + chip->oob_poi, mtd->oobsize, + this->auxiliary_virt, this->auxiliary_phys, + nfc_geo->auxiliary_size, + &auxiliary_virt, &auxiliary_phys); + if (ret) { + pr_err("Inadequate auxiliary DMA buffer\n"); + goto exit_auxiliary; + } + } + + /* Ask the NFC. */ + ret = gpmi_send_page(this, payload_phys, auxiliary_phys); + if (ret) + pr_err("Error in ECC-based write: %d\n", ret); + + if (!this->swap_block_mark) { + send_page_end(this, chip->oob_poi, mtd->oobsize, + this->auxiliary_virt, this->auxiliary_phys, + nfc_geo->auxiliary_size, + auxiliary_virt, auxiliary_phys); +exit_auxiliary: + send_page_end(this, buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); + } +} + +/* + * There are several places in this driver where we have to handle the OOB and + * block marks. This is the function where things are the most complicated, so + * this is where we try to explain it all. All the other places refer back to + * here. + * + * These are the rules, in order of decreasing importance: + * + * 1) Nothing the caller does can be allowed to imperil the block mark. + * + * 2) In read operations, the first byte of the OOB we return must reflect the + * true state of the block mark, no matter where that block mark appears in + * the physical page. + * + * 3) ECC-based read operations return an OOB full of set bits (since we never + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads + * return). + * + * 4) "Raw" read operations return a direct view of the physical bytes in the + * page, using the conventional definition of which bytes are data and which + * are OOB. This gives the caller a way to see the actual, physical bytes + * in the page, without the distortions applied by our ECC engine. + * + * + * What we do for this specific read operation depends on two questions: + * + * 1) Are we doing a "raw" read, or an ECC-based read? + * + * 2) Are we using block mark swapping or transcription? + * + * There are four cases, illustrated by the following Karnaugh map: + * + * | Raw | ECC-based | + * -------------+-------------------------+-------------------------+ + * | Read the conventional | | + * | OOB at the end of the | | + * Swapping | page and return it. It | | + * | contains exactly what | | + * | we want. | Read the block mark and | + * -------------+-------------------------+ return it in a buffer | + * | Read the conventional | full of set bits. | + * | OOB at the end of the | | + * | page and also the block | | + * Transcribing | mark in the metadata. | | + * | Copy the block mark | | + * | into the first byte of | | + * | the OOB. | | + * -------------+-------------------------+-------------------------+ + * + * Note that we break rule #4 in the Transcribing/Raw case because we're not + * giving an accurate view of the actual, physical bytes in the page (we're + * overwriting the block mark). That's OK because it's more important to follow + * rule #2. + * + * It turns out that knowing whether we want an "ECC-based" or "raw" read is not + * easy. When reading a page, for example, the NAND Flash MTD code calls our + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an + * ECC-based or raw view of the page is implicit in which function it calls + * (there is a similar pair of ECC-based/raw functions for writing). + * + * Since MTD assumes the OOB is not covered by ECC, there is no pair of + * ECC-based/raw functions for reading or or writing the OOB. The fact that the + * caller wants an ECC-based or raw view of the page is not propagated down to + * this driver. + */ +static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page, int sndcmd) +{ + struct gpmi_nand_data *this = chip->priv; + + pr_debug("page number is %d\n", page); + /* clear the OOB buffer */ + memset(chip->oob_poi, ~0, mtd->oobsize); + + /* Read out the conventional OOB. */ + chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* + * Now, we want to make sure the block mark is correct. In the + * Swapping/Raw case, we already have it. Otherwise, we need to + * explicitly read it. + */ + if (!this->swap_block_mark) { + /* Read the block mark into the first byte of the OOB buffer. */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); + chip->oob_poi[0] = chip->read_byte(mtd); + } + + /* + * Return true, indicating that the next call to this function must send + * a command. + */ + return true; +} + +static int +gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) +{ + /* + * The BCH will use all the (page + oob). + * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob. + * But it can not stop some ioctls such MEMWRITEOOB which uses + * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit + * these ioctls too. + */ + return -EPERM; +} + +static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + int block, ret = 0; + uint8_t *block_mark; + int column, page, status, chipnr; + + /* Get block number */ + block = (int)(ofs >> chip->bbt_erase_shift); + if (chip->bbt) + chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + + /* Do we have a flash based bad block table ? */ + if (chip->options & NAND_BBT_USE_FLASH) + ret = nand_update_bbt(mtd, ofs); + else { + chipnr = (int)(ofs >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + column = this->swap_block_mark ? mtd->writesize : 0; + + /* Write the block mark. */ + block_mark = this->data_buffer_dma; + block_mark[0] = 0; /* bad block marker */ + + /* Shift to get page */ + page = (int)(ofs >> chip->page_shift); + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page); + chip->write_buf(mtd, block_mark, 1); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + ret = -EIO; + + chip->select_chip(mtd, -1); + } + if (!ret) + mtd->ecc_stats.badblocks++; + + return ret; +} + +static int __devinit nand_boot_set_geometry(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *geometry = &this->rom_geometry; + + /* + * Set the boot block stride size. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->stride_size_in_pages = 64; + + /* + * Set the search area stride exponent. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->search_area_stride_exponent = 2; + return 0; +} + +static const char *fingerprint = "STMP"; +static int __devinit mx23_check_transcription_stamp(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct device *dev = this->dev; + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->nand; + unsigned int search_area_size_in_strides; + unsigned int stride; + unsigned int page; + loff_t byte; + uint8_t *buffer = chip->buffers->databuf; + int saved_chip_number; + int found_an_ncb_fingerprint = false; + + /* Compute the number of strides in a search area. */ + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + + saved_chip_number = this->current_chip; + chip->select_chip(mtd, 0); + + /* + * Loop through the first search area, looking for the NCB fingerprint. + */ + dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); + + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page and byte addresses. */ + page = stride * rom_geo->stride_size_in_pages; + byte = page * mtd->writesize; + + dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); + + /* + * Read the NCB fingerprint. The fingerprint is four bytes long + * and starts in the 12th byte of the page. + */ + chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page); + chip->read_buf(mtd, buffer, strlen(fingerprint)); + + /* Look for the fingerprint. */ + if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { + found_an_ncb_fingerprint = true; + break; + } + + } + + chip->select_chip(mtd, saved_chip_number); + + if (found_an_ncb_fingerprint) + dev_dbg(dev, "\tFound a fingerprint\n"); + else + dev_dbg(dev, "\tNo fingerprint found\n"); + return found_an_ncb_fingerprint; +} + +/* Writes a transcription stamp. */ +static int __devinit mx23_write_transcription_stamp(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->nand; + unsigned int block_size_in_pages; + unsigned int search_area_size_in_strides; + unsigned int search_area_size_in_pages; + unsigned int search_area_size_in_blocks; + unsigned int block; + unsigned int stride; + unsigned int page; + loff_t byte; + uint8_t *buffer = chip->buffers->databuf; + int saved_chip_number; + int status; + + /* Compute the search area geometry. */ + block_size_in_pages = mtd->erasesize / mtd->writesize; + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + search_area_size_in_pages = search_area_size_in_strides * + rom_geo->stride_size_in_pages; + search_area_size_in_blocks = + (search_area_size_in_pages + (block_size_in_pages - 1)) / + block_size_in_pages; + + dev_dbg(dev, "Search Area Geometry :\n"); + dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); + dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); + dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); + + /* Select chip 0. */ + saved_chip_number = this->current_chip; + chip->select_chip(mtd, 0); + + /* Loop over blocks in the first search area, erasing them. */ + dev_dbg(dev, "Erasing the search area...\n"); + + for (block = 0; block < search_area_size_in_blocks; block++) { + /* Compute the page address. */ + page = block * block_size_in_pages; + + /* Erase this block. */ + dev_dbg(dev, "\tErasing block 0x%x\n", block); + chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); + chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); + + /* Wait for the erase to finish. */ + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + dev_err(dev, "[%s] Erase failed.\n", __func__); + } + + /* Write the NCB fingerprint into the page buffer. */ + memset(buffer, ~0, mtd->writesize); + memset(chip->oob_poi, ~0, mtd->oobsize); + memcpy(buffer + 12, fingerprint, strlen(fingerprint)); + + /* Loop through the first search area, writing NCB fingerprints. */ + dev_dbg(dev, "Writing NCB fingerprints...\n"); + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page and byte addresses. */ + page = stride * rom_geo->stride_size_in_pages; + byte = page * mtd->writesize; + + /* Write the first page of the current stride. */ + dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); + chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); + chip->ecc.write_page_raw(mtd, chip, buffer); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + + /* Wait for the write to finish. */ + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + dev_err(dev, "[%s] Write failed.\n", __func__); + } + + /* Deselect chip 0. */ + chip->select_chip(mtd, saved_chip_number); + return 0; +} + +static int __devinit mx23_boot_init(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = &this->mtd; + unsigned int block_count; + unsigned int block; + int chipnr; + int page; + loff_t byte; + uint8_t block_mark; + int ret = 0; + + /* + * If control arrives here, we can't use block mark swapping, which + * means we're forced to use transcription. First, scan for the + * transcription stamp. If we find it, then we don't have to do + * anything -- the block marks are already transcribed. + */ + if (mx23_check_transcription_stamp(this)) + return 0; + + /* + * If control arrives here, we couldn't find a transcription stamp, so + * so we presume the block marks are in the conventional location. + */ + dev_dbg(dev, "Transcribing bad block marks...\n"); + + /* Compute the number of blocks in the entire medium. */ + block_count = chip->chipsize >> chip->phys_erase_shift; + + /* + * Loop over all the blocks in the medium, transcribing block marks as + * we go. + */ + for (block = 0; block < block_count; block++) { + /* + * Compute the chip, page and byte addresses for this block's + * conventional mark. + */ + chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); + page = block << (chip->phys_erase_shift - chip->page_shift); + byte = block << chip->phys_erase_shift; + + /* Send the command to read the conventional block mark. */ + chip->select_chip(mtd, chipnr); + chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); + block_mark = chip->read_byte(mtd); + chip->select_chip(mtd, -1); + + /* + * Check if the block is marked bad. If so, we need to mark it + * again, but this time the result will be a mark in the + * location where we transcribe block marks. + */ + if (block_mark != 0xff) { + dev_dbg(dev, "Transcribing mark in block %u\n", block); + ret = chip->block_markbad(mtd, byte); + if (ret) + dev_err(dev, "Failed to mark block bad with " + "ret %d\n", ret); + } + } + + /* Write the stamp that indicates we've transcribed the block marks. */ + mx23_write_transcription_stamp(this); + return 0; +} + +static int __devinit nand_boot_init(struct gpmi_nand_data *this) +{ + nand_boot_set_geometry(this); + + /* This is ROM arch-specific initilization before the BBT scanning. */ + if (GPMI_IS_MX23(this)) + return mx23_boot_init(this); + return 0; +} + +static int __devinit gpmi_set_geometry(struct gpmi_nand_data *this) +{ + int ret; + + /* Free the temporary DMA memory for reading ID. */ + gpmi_free_dma_buffer(this); + + /* Set up the NFC geometry which is used by BCH. */ + ret = bch_set_geometry(this); + if (ret) { + pr_err("set geometry ret : %d\n", ret); + return ret; + } + + /* Alloc the new DMA buffers according to the pagesize and oobsize */ + return gpmi_alloc_dma_buffer(this); +} + +static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this) +{ + int ret; + + /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ + if (GPMI_IS_MX23(this)) + this->swap_block_mark = false; + else + this->swap_block_mark = true; + + /* Set up the medium geometry */ + ret = gpmi_set_geometry(this); + if (ret) + return ret; + + /* NAND boot init, depends on the gpmi_set_geometry(). */ + return nand_boot_init(this); +} + +static int gpmi_scan_bbt(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct gpmi_nand_data *this = chip->priv; + int ret; + + /* Prepare for the BBT scan. */ + ret = gpmi_pre_bbt_scan(this); + if (ret) + return ret; + + /* use the default BBT implementation */ + return nand_default_bbt(mtd); +} + +void gpmi_nfc_exit(struct gpmi_nand_data *this) +{ + nand_release(&this->mtd); + gpmi_free_dma_buffer(this); +} + +static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this) +{ + struct gpmi_nand_platform_data *pdata = this->pdata; + struct mtd_info *mtd = &this->mtd; + struct nand_chip *chip = &this->nand; + int ret; + + /* init current chip */ + this->current_chip = -1; + + /* init the MTD data structures */ + mtd->priv = chip; + mtd->name = "gpmi-nand"; + mtd->owner = THIS_MODULE; + + /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ + chip->priv = this; + chip->select_chip = gpmi_select_chip; + chip->cmd_ctrl = gpmi_cmd_ctrl; + chip->dev_ready = gpmi_dev_ready; + chip->read_byte = gpmi_read_byte; + chip->read_buf = gpmi_read_buf; + chip->write_buf = gpmi_write_buf; + chip->ecc.read_page = gpmi_ecc_read_page; + chip->ecc.write_page = gpmi_ecc_write_page; + chip->ecc.read_oob = gpmi_ecc_read_oob; + chip->ecc.write_oob = gpmi_ecc_write_oob; + chip->scan_bbt = gpmi_scan_bbt; + chip->badblock_pattern = &gpmi_bbt_descr; + chip->block_markbad = gpmi_block_markbad; + chip->options |= NAND_NO_SUBPAGE_WRITE; + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.size = 1; + chip->ecc.layout = &gpmi_hw_ecclayout; + + /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */ + this->bch_geometry.payload_size = 1024; + this->bch_geometry.auxiliary_size = 128; + ret = gpmi_alloc_dma_buffer(this); + if (ret) + goto err_out; + + ret = nand_scan(mtd, pdata->max_chip_count); + if (ret) { + pr_err("Chip scan failed\n"); + goto err_out; + } + + ret = mtd_device_parse_register(mtd, NULL, NULL, + pdata->partitions, pdata->partition_count); + if (ret) + goto err_out; + return 0; + +err_out: + gpmi_nfc_exit(this); + return ret; +} + +static int __devinit gpmi_nand_probe(struct platform_device *pdev) +{ + struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data; + struct gpmi_nand_data *this; + int ret; + + this = kzalloc(sizeof(*this), GFP_KERNEL); + if (!this) { + pr_err("Failed to allocate per-device memory\n"); + return -ENOMEM; + } + + platform_set_drvdata(pdev, this); + this->pdev = pdev; + this->dev = &pdev->dev; + this->pdata = pdata; + + if (pdata->platform_init) { + ret = pdata->platform_init(); + if (ret) + goto platform_init_error; + } + + ret = acquire_resources(this); + if (ret) + goto exit_acquire_resources; + + ret = init_hardware(this); + if (ret) + goto exit_nfc_init; + + ret = gpmi_nfc_init(this); + if (ret) + goto exit_nfc_init; + + return 0; + +exit_nfc_init: + release_resources(this); +platform_init_error: +exit_acquire_resources: + platform_set_drvdata(pdev, NULL); + kfree(this); + return ret; +} + +static int __exit gpmi_nand_remove(struct platform_device *pdev) +{ + struct gpmi_nand_data *this = platform_get_drvdata(pdev); + + gpmi_nfc_exit(this); + release_resources(this); + platform_set_drvdata(pdev, NULL); + kfree(this); + return 0; +} + +static const struct platform_device_id gpmi_ids[] = { + { + .name = "imx23-gpmi-nand", + .driver_data = IS_MX23, + }, { + .name = "imx28-gpmi-nand", + .driver_data = IS_MX28, + }, {}, +}; + +static struct platform_driver gpmi_nand_driver = { + .driver = { + .name = "gpmi-nand", + }, + .probe = gpmi_nand_probe, + .remove = __exit_p(gpmi_nand_remove), + .id_table = gpmi_ids, +}; + +static int __init gpmi_nand_init(void) +{ + int err; + + err = platform_driver_register(&gpmi_nand_driver); + if (err == 0) + printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n"); + else + pr_err("i.MX GPMI NAND driver registration failed\n"); + return err; +} + +static void __exit gpmi_nand_exit(void) +{ + platform_driver_unregister(&gpmi_nand_driver); +} + +module_init(gpmi_nand_init); +module_exit(gpmi_nand_exit); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h new file mode 100644 index 000000000000..e023bccb7781 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h @@ -0,0 +1,273 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ +#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H +#define __DRIVERS_MTD_NAND_GPMI_NAND_H + +#include <linux/mtd/nand.h> +#include <linux/platform_device.h> +#include <linux/dma-mapping.h> +#include <mach/dma.h> + +struct resources { + void *gpmi_regs; + void *bch_regs; + unsigned int bch_low_interrupt; + unsigned int bch_high_interrupt; + unsigned int dma_low_channel; + unsigned int dma_high_channel; + struct clk *clock; +}; + +/** + * struct bch_geometry - BCH geometry description. + * @gf_len: The length of Galois Field. (e.g., 13 or 14) + * @ecc_strength: A number that describes the strength of the ECC + * algorithm. + * @page_size: The size, in bytes, of a physical page, including + * both data and OOB. + * @metadata_size: The size, in bytes, of the metadata. + * @ecc_chunk_size: The size, in bytes, of a single ECC chunk. Note + * the first chunk in the page includes both data and + * metadata, so it's a bit larger than this value. + * @ecc_chunk_count: The number of ECC chunks in the page, + * @payload_size: The size, in bytes, of the payload buffer. + * @auxiliary_size: The size, in bytes, of the auxiliary buffer. + * @auxiliary_status_offset: The offset into the auxiliary buffer at which + * the ECC status appears. + * @block_mark_byte_offset: The byte offset in the ECC-based page view at + * which the underlying physical block mark appears. + * @block_mark_bit_offset: The bit offset into the ECC-based page view at + * which the underlying physical block mark appears. + */ +struct bch_geometry { + unsigned int gf_len; + unsigned int ecc_strength; + unsigned int page_size; + unsigned int metadata_size; + unsigned int ecc_chunk_size; + unsigned int ecc_chunk_count; + unsigned int payload_size; + unsigned int auxiliary_size; + unsigned int auxiliary_status_offset; + unsigned int block_mark_byte_offset; + unsigned int block_mark_bit_offset; +}; + +/** + * struct boot_rom_geometry - Boot ROM geometry description. + * @stride_size_in_pages: The size of a boot block stride, in pages. + * @search_area_stride_exponent: The logarithm to base 2 of the size of a + * search area in boot block strides. + */ +struct boot_rom_geometry { + unsigned int stride_size_in_pages; + unsigned int search_area_stride_exponent; +}; + +/* DMA operations types */ +enum dma_ops_type { + DMA_FOR_COMMAND = 1, + DMA_FOR_READ_DATA, + DMA_FOR_WRITE_DATA, + DMA_FOR_READ_ECC_PAGE, + DMA_FOR_WRITE_ECC_PAGE +}; + +/** + * struct nand_timing - Fundamental timing attributes for NAND. + * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the + * maximum of tDS and tWP. A negative value + * indicates this characteristic isn't known. + * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the + * maximum of tDH, tWH and tREH. A negative value + * indicates this characteristic isn't known. + * @address_setup_in_ns: The address setup time, in nanoseconds. Usually + * the maximum of tCLS, tCS and tALS. A negative + * value indicates this characteristic isn't known. + * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value + * indicates this characteristic isn't known. + * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + */ +struct nand_timing { + int8_t data_setup_in_ns; + int8_t data_hold_in_ns; + int8_t address_setup_in_ns; + int8_t gpmi_sample_delay_in_ns; + int8_t tREA_in_ns; + int8_t tRLOH_in_ns; + int8_t tRHOH_in_ns; +}; + +struct gpmi_nand_data { + /* System Interface */ + struct device *dev; + struct platform_device *pdev; + struct gpmi_nand_platform_data *pdata; + + /* Resources */ + struct resources resources; + + /* Flash Hardware */ + struct nand_timing timing; + + /* BCH */ + struct bch_geometry bch_geometry; + struct completion bch_done; + + /* NAND Boot issue */ + bool swap_block_mark; + struct boot_rom_geometry rom_geometry; + + /* MTD / NAND */ + struct nand_chip nand; + struct mtd_info mtd; + + /* General-use Variables */ + int current_chip; + unsigned int command_length; + + /* passed from upper layer */ + uint8_t *upper_buf; + int upper_len; + + /* for DMA operations */ + bool direct_dma_map_ok; + + struct scatterlist cmd_sgl; + char *cmd_buffer; + + struct scatterlist data_sgl; + char *data_buffer_dma; + + void *page_buffer_virt; + dma_addr_t page_buffer_phys; + unsigned int page_buffer_size; + + void *payload_virt; + dma_addr_t payload_phys; + + void *auxiliary_virt; + dma_addr_t auxiliary_phys; + + /* DMA channels */ +#define DMA_CHANS 8 + struct dma_chan *dma_chans[DMA_CHANS]; + struct mxs_dma_data dma_data; + enum dma_ops_type last_dma_type; + enum dma_ops_type dma_type; + struct completion dma_done; + + /* private */ + void *private; +}; + +/** + * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters. + * @data_setup_in_cycles: The data setup time, in cycles. + * @data_hold_in_cycles: The data hold time, in cycles. + * @address_setup_in_cycles: The address setup time, in cycles. + * @use_half_periods: Indicates the clock is running slowly, so the + * NFC DLL should use half-periods. + * @sample_delay_factor: The sample delay factor. + */ +struct gpmi_nfc_hardware_timing { + uint8_t data_setup_in_cycles; + uint8_t data_hold_in_cycles; + uint8_t address_setup_in_cycles; + bool use_half_periods; + uint8_t sample_delay_factor; +}; + +/** + * struct timing_threshod - Timing threshold + * @max_data_setup_cycles: The maximum number of data setup cycles that + * can be expressed in the hardware. + * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires + * for data read internal setup. In the Reference + * Manual, see the chapter "High-Speed NAND + * Timing" for more details. + * @max_sample_delay_factor: The maximum sample delay factor that can be + * expressed in the hardware. + * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the + * sample delay DLL hardware can possibly work + * with (the DLL is unusable with longer periods). + * If the full-cycle period is greater than HALF + * this value, the DLL must be configured to use + * half-periods. + * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the + * DLL can implement. + * @clock_frequency_in_hz: The clock frequency, in Hz, during the current + * I/O transaction. If no I/O transaction is in + * progress, this is the clock frequency during + * the most recent I/O transaction. + */ +struct timing_threshod { + const unsigned int max_chip_count; + const unsigned int max_data_setup_cycles; + const unsigned int internal_data_setup_in_ns; + const unsigned int max_sample_delay_factor; + const unsigned int max_dll_clock_period_in_ns; + const unsigned int max_dll_delay_in_ns; + unsigned long clock_frequency_in_hz; + +}; + +/* Common Services */ +extern int common_nfc_set_geometry(struct gpmi_nand_data *); +extern struct dma_chan *get_dma_chan(struct gpmi_nand_data *); +extern void prepare_data_dma(struct gpmi_nand_data *, + enum dma_data_direction dr); +extern int start_dma_without_bch_irq(struct gpmi_nand_data *, + struct dma_async_tx_descriptor *); +extern int start_dma_with_bch_irq(struct gpmi_nand_data *, + struct dma_async_tx_descriptor *); + +/* GPMI-NAND helper function library */ +extern int gpmi_init(struct gpmi_nand_data *); +extern void gpmi_clear_bch(struct gpmi_nand_data *); +extern void gpmi_dump_info(struct gpmi_nand_data *); +extern int bch_set_geometry(struct gpmi_nand_data *); +extern int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip); +extern int gpmi_send_command(struct gpmi_nand_data *); +extern void gpmi_begin(struct gpmi_nand_data *); +extern void gpmi_end(struct gpmi_nand_data *); +extern int gpmi_read_data(struct gpmi_nand_data *); +extern int gpmi_send_data(struct gpmi_nand_data *); +extern int gpmi_send_page(struct gpmi_nand_data *, + dma_addr_t payload, dma_addr_t auxiliary); +extern int gpmi_read_page(struct gpmi_nand_data *, + dma_addr_t payload, dma_addr_t auxiliary); + +/* BCH : Status Block Completion Codes */ +#define STATUS_GOOD 0x00 +#define STATUS_ERASED 0xff +#define STATUS_UNCORRECTABLE 0xfe + +/* Use the platform_id to distinguish different Archs. */ +#define IS_MX23 0x1 +#define IS_MX28 0x2 +#define GPMI_IS_MX23(x) ((x)->pdev->id_entry->driver_data == IS_MX23) +#define GPMI_IS_MX28(x) ((x)->pdev->id_entry->driver_data == IS_MX28) +#endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h new file mode 100644 index 000000000000..83431240e2f2 --- /dev/null +++ b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h @@ -0,0 +1,172 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#ifndef __GPMI_NAND_GPMI_REGS_H +#define __GPMI_NAND_GPMI_REGS_H + +#define HW_GPMI_CTRL0 0x00000000 +#define HW_GPMI_CTRL0_SET 0x00000004 +#define HW_GPMI_CTRL0_CLR 0x00000008 +#define HW_GPMI_CTRL0_TOG 0x0000000c + +#define BP_GPMI_CTRL0_COMMAND_MODE 24 +#define BM_GPMI_CTRL0_COMMAND_MODE (3 << BP_GPMI_CTRL0_COMMAND_MODE) +#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ + (((v) << BP_GPMI_CTRL0_COMMAND_MODE) & BM_GPMI_CTRL0_COMMAND_MODE) +#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 +#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 + +#define BM_GPMI_CTRL0_WORD_LENGTH (1 << 23) +#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 +#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 + +/* + * Difference in LOCK_CS between imx23 and imx28 : + * This bit may impact the _POWER_ consumption. So some chips + * do not set it. + */ +#define MX23_BP_GPMI_CTRL0_LOCK_CS 22 +#define MX28_BP_GPMI_CTRL0_LOCK_CS 27 +#define LOCK_CS_ENABLE 0x1 +#define BF_GPMI_CTRL0_LOCK_CS(v, x) 0x0 + +/* Difference in CS between imx23 and imx28 */ +#define BP_GPMI_CTRL0_CS 20 +#define MX23_BM_GPMI_CTRL0_CS (3 << BP_GPMI_CTRL0_CS) +#define MX28_BM_GPMI_CTRL0_CS (7 << BP_GPMI_CTRL0_CS) +#define BF_GPMI_CTRL0_CS(v, x) (((v) << BP_GPMI_CTRL0_CS) & \ + (GPMI_IS_MX23((x)) \ + ? MX23_BM_GPMI_CTRL0_CS \ + : MX28_BM_GPMI_CTRL0_CS)) + +#define BP_GPMI_CTRL0_ADDRESS 17 +#define BM_GPMI_CTRL0_ADDRESS (3 << BP_GPMI_CTRL0_ADDRESS) +#define BF_GPMI_CTRL0_ADDRESS(v) \ + (((v) << BP_GPMI_CTRL0_ADDRESS) & BM_GPMI_CTRL0_ADDRESS) +#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 +#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 +#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 + +#define BM_GPMI_CTRL0_ADDRESS_INCREMENT (1 << 16) +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 + +#define BP_GPMI_CTRL0_XFER_COUNT 0 +#define BM_GPMI_CTRL0_XFER_COUNT (0xffff << BP_GPMI_CTRL0_XFER_COUNT) +#define BF_GPMI_CTRL0_XFER_COUNT(v) \ + (((v) << BP_GPMI_CTRL0_XFER_COUNT) & BM_GPMI_CTRL0_XFER_COUNT) + +#define HW_GPMI_COMPARE 0x00000010 + +#define HW_GPMI_ECCCTRL 0x00000020 +#define HW_GPMI_ECCCTRL_SET 0x00000024 +#define HW_GPMI_ECCCTRL_CLR 0x00000028 +#define HW_GPMI_ECCCTRL_TOG 0x0000002c + +#define BP_GPMI_ECCCTRL_ECC_CMD 13 +#define BM_GPMI_ECCCTRL_ECC_CMD (3 << BP_GPMI_ECCCTRL_ECC_CMD) +#define BF_GPMI_ECCCTRL_ECC_CMD(v) \ + (((v) << BP_GPMI_ECCCTRL_ECC_CMD) & BM_GPMI_ECCCTRL_ECC_CMD) +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE 0x0 +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE 0x1 + +#define BM_GPMI_ECCCTRL_ENABLE_ECC (1 << 12) +#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 + +#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 +#define BM_GPMI_ECCCTRL_BUFFER_MASK (0x1ff << BP_GPMI_ECCCTRL_BUFFER_MASK) +#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ + (((v) << BP_GPMI_ECCCTRL_BUFFER_MASK) & BM_GPMI_ECCCTRL_BUFFER_MASK) +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF + +#define HW_GPMI_ECCCOUNT 0x00000030 +#define HW_GPMI_PAYLOAD 0x00000040 +#define HW_GPMI_AUXILIARY 0x00000050 +#define HW_GPMI_CTRL1 0x00000060 +#define HW_GPMI_CTRL1_SET 0x00000064 +#define HW_GPMI_CTRL1_CLR 0x00000068 +#define HW_GPMI_CTRL1_TOG 0x0000006c + +#define BM_GPMI_CTRL1_BCH_MODE (1 << 18) + +#define BP_GPMI_CTRL1_DLL_ENABLE 17 +#define BM_GPMI_CTRL1_DLL_ENABLE (1 << BP_GPMI_CTRL1_DLL_ENABLE) + +#define BP_GPMI_CTRL1_HALF_PERIOD 16 +#define BM_GPMI_CTRL1_HALF_PERIOD (1 << BP_GPMI_CTRL1_HALF_PERIOD) + +#define BP_GPMI_CTRL1_RDN_DELAY 12 +#define BM_GPMI_CTRL1_RDN_DELAY (0xf << BP_GPMI_CTRL1_RDN_DELAY) +#define BF_GPMI_CTRL1_RDN_DELAY(v) \ + (((v) << BP_GPMI_CTRL1_RDN_DELAY) & BM_GPMI_CTRL1_RDN_DELAY) + +#define BM_GPMI_CTRL1_DEV_RESET (1 << 3) +#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 +#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 + +#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY (1 << 2) +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 + +#define BM_GPMI_CTRL1_CAMERA_MODE (1 << 1) +#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 +#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 + +#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0) + +#define HW_GPMI_TIMING0 0x00000070 + +#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 +#define BM_GPMI_TIMING0_ADDRESS_SETUP (0xff << BP_GPMI_TIMING0_ADDRESS_SETUP) +#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_ADDRESS_SETUP) & BM_GPMI_TIMING0_ADDRESS_SETUP) + +#define BP_GPMI_TIMING0_DATA_HOLD 8 +#define BM_GPMI_TIMING0_DATA_HOLD (0xff << BP_GPMI_TIMING0_DATA_HOLD) +#define BF_GPMI_TIMING0_DATA_HOLD(v) \ + (((v) << BP_GPMI_TIMING0_DATA_HOLD) & BM_GPMI_TIMING0_DATA_HOLD) + +#define BP_GPMI_TIMING0_DATA_SETUP 0 +#define BM_GPMI_TIMING0_DATA_SETUP (0xff << BP_GPMI_TIMING0_DATA_SETUP) +#define BF_GPMI_TIMING0_DATA_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_DATA_SETUP) & BM_GPMI_TIMING0_DATA_SETUP) + +#define HW_GPMI_TIMING1 0x00000080 +#define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 + +#define HW_GPMI_TIMING2 0x00000090 +#define HW_GPMI_DATA 0x000000a0 + +/* MX28 uses this to detect READY. */ +#define HW_GPMI_STAT 0x000000b0 +#define MX28_BP_GPMI_STAT_READY_BUSY 24 +#define MX28_BM_GPMI_STAT_READY_BUSY (0xff << MX28_BP_GPMI_STAT_READY_BUSY) +#define MX28_BF_GPMI_STAT_READY_BUSY(v) \ + (((v) << MX28_BP_GPMI_STAT_READY_BUSY) & MX28_BM_GPMI_STAT_READY_BUSY) + +/* MX23 uses this to detect READY. */ +#define HW_GPMI_DEBUG 0x000000c0 +#define MX23_BP_GPMI_DEBUG_READY0 28 +#define MX23_BM_GPMI_DEBUG_READY0 (1 << MX23_BP_GPMI_DEBUG_READY0) +#endif diff --git a/drivers/mtd/nand/h1910.c b/drivers/mtd/nand/h1910.c index 02a03e67109c..5dc6f0d92f1a 100644 --- a/drivers/mtd/nand/h1910.c +++ b/drivers/mtd/nand/h1910.c @@ -81,9 +81,6 @@ static int h1910_device_ready(struct mtd_info *mtd) static int __init h1910_init(void) { struct nand_chip *this; - const char *part_type = 0; - int mtd_parts_nb = 0; - struct mtd_partition *mtd_parts = 0; void __iomem *nandaddr; if (!machine_is_h1900()) @@ -136,22 +133,10 @@ static int __init h1910_init(void) iounmap((void *)nandaddr); return -ENXIO; } -#ifdef CONFIG_MTD_CMDLINE_PARTS - mtd_parts_nb = parse_cmdline_partitions(h1910_nand_mtd, &mtd_parts, "h1910-nand"); - if (mtd_parts_nb > 0) - part_type = "command line"; - else - mtd_parts_nb = 0; -#endif - if (mtd_parts_nb == 0) { - mtd_parts = partition_info; - mtd_parts_nb = NUM_PARTITIONS; - part_type = "static"; - } /* Register the partitions */ - printk(KERN_NOTICE "Using %s partition definition\n", part_type); - mtd_device_register(h1910_nand_mtd, mtd_parts, mtd_parts_nb); + mtd_device_parse_register(h1910_nand_mtd, NULL, 0, + partition_info, NUM_PARTITIONS); /* Return happy */ return 0; diff --git a/drivers/mtd/nand/jz4740_nand.c b/drivers/mtd/nand/jz4740_nand.c index 6e813daed068..e2664073a89b 100644 --- a/drivers/mtd/nand/jz4740_nand.c +++ b/drivers/mtd/nand/jz4740_nand.c @@ -251,10 +251,6 @@ static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat, return 0; } -#ifdef CONFIG_MTD_CMDLINE_PARTS -static const char *part_probes[] = {"cmdline", NULL}; -#endif - static int jz_nand_ioremap_resource(struct platform_device *pdev, const char *name, struct resource **res, void __iomem **base) { @@ -299,8 +295,6 @@ static int __devinit jz_nand_probe(struct platform_device *pdev) struct nand_chip *chip; struct mtd_info *mtd; struct jz_nand_platform_data *pdata = pdev->dev.platform_data; - struct mtd_partition *partition_info; - int num_partitions = 0; nand = kzalloc(sizeof(*nand), GFP_KERNEL); if (!nand) { @@ -373,15 +367,9 @@ static int __devinit jz_nand_probe(struct platform_device *pdev) goto err_gpio_free; } -#ifdef CONFIG_MTD_CMDLINE_PARTS - num_partitions = parse_mtd_partitions(mtd, part_probes, - &partition_info, 0); -#endif - if (num_partitions <= 0 && pdata) { - num_partitions = pdata->num_partitions; - partition_info = pdata->partitions; - } - ret = mtd_device_register(mtd, partition_info, num_partitions); + ret = mtd_device_parse_register(mtd, NULL, 0, + pdata ? pdata->partitions : NULL, + pdata ? pdata->num_partitions : 0); if (ret) { dev_err(&pdev->dev, "Failed to add mtd device\n"); diff --git a/drivers/mtd/nand/mpc5121_nfc.c b/drivers/mtd/nand/mpc5121_nfc.c index eb1fbac63eb6..5ede64706346 100644 --- a/drivers/mtd/nand/mpc5121_nfc.c +++ b/drivers/mtd/nand/mpc5121_nfc.c @@ -131,8 +131,6 @@ struct mpc5121_nfc_prv { static void mpc5121_nfc_done(struct mtd_info *mtd); -static const char *mpc5121_nfc_pprobes[] = { "cmdlinepart", NULL }; - /* Read NFC register */ static inline u16 nfc_read(struct mtd_info *mtd, uint reg) { @@ -656,13 +654,13 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) struct mpc5121_nfc_prv *prv; struct resource res; struct mtd_info *mtd; - struct mtd_partition *parts; struct nand_chip *chip; unsigned long regs_paddr, regs_size; const __be32 *chips_no; int resettime = 0; int retval = 0; int rev, len; + struct mtd_part_parser_data ppdata; /* * Check SoC revision. This driver supports only NFC @@ -727,6 +725,7 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) } mtd->name = "MPC5121 NAND"; + ppdata.of_node = dn; chip->dev_ready = mpc5121_nfc_dev_ready; chip->cmdfunc = mpc5121_nfc_command; chip->read_byte = mpc5121_nfc_read_byte; @@ -735,7 +734,8 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) chip->write_buf = mpc5121_nfc_write_buf; chip->verify_buf = mpc5121_nfc_verify_buf; chip->select_chip = mpc5121_nfc_select_chip; - chip->options = NAND_NO_AUTOINCR | NAND_USE_FLASH_BBT; + chip->options = NAND_NO_AUTOINCR; + chip->bbt_options = NAND_BBT_USE_FLASH; chip->ecc.mode = NAND_ECC_SOFT; /* Support external chip-select logic on ADS5121 board */ @@ -837,19 +837,7 @@ static int __devinit mpc5121_nfc_probe(struct platform_device *op) dev_set_drvdata(dev, mtd); /* Register device in MTD */ - retval = parse_mtd_partitions(mtd, mpc5121_nfc_pprobes, &parts, 0); -#ifdef CONFIG_MTD_OF_PARTS - if (retval == 0) - retval = of_mtd_parse_partitions(dev, dn, &parts); -#endif - if (retval < 0) { - dev_err(dev, "Error parsing MTD partitions!\n"); - devm_free_irq(dev, prv->irq, mtd); - retval = -EINVAL; - goto error; - } - - retval = mtd_device_register(mtd, parts, retval); + retval = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); if (retval) { dev_err(dev, "Error adding MTD device!\n"); devm_free_irq(dev, prv->irq, mtd); diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index 90df34c4d26c..74a43b818d0e 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -41,7 +41,7 @@ #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35()) #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21()) -#define nfc_is_v3_2() cpu_is_mx51() +#define nfc_is_v3_2() (cpu_is_mx51() || cpu_is_mx53()) #define nfc_is_v3() nfc_is_v3_2() /* Addresses for NFC registers */ @@ -143,7 +143,6 @@ struct mxc_nand_host { struct mtd_info mtd; struct nand_chip nand; - struct mtd_partition *parts; struct device *dev; void *spare0; @@ -350,8 +349,7 @@ static void wait_op_done(struct mxc_nand_host *host, int useirq) udelay(1); } if (max_retries < 0) - DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n", - __func__); + pr_debug("%s: INT not set\n", __func__); } } @@ -371,7 +369,7 @@ static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) * waits for completion. */ static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) { - DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); + pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq); writew(cmd, NFC_V1_V2_FLASH_CMD); writew(NFC_CMD, NFC_V1_V2_CONFIG2); @@ -387,8 +385,7 @@ static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) udelay(1); } if (max_retries < 0) - DEBUG(MTD_DEBUG_LEVEL0, "%s: RESET failed\n", - __func__); + pr_debug("%s: RESET failed\n", __func__); } else { /* Wait for operation to complete */ wait_op_done(host, useirq); @@ -411,7 +408,7 @@ static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) * a NAND command. */ static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) { - DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast); + pr_debug("send_addr(host, 0x%x %d)\n", addr, islast); writew(addr, NFC_V1_V2_FLASH_ADDR); writew(NFC_ADDR, NFC_V1_V2_CONFIG2); @@ -561,8 +558,7 @@ static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat, uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT); if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { - DEBUG(MTD_DEBUG_LEVEL0, - "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); + pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); return -1; } @@ -849,7 +845,7 @@ static void preset_v1_v2(struct mtd_info *mtd) writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3); } else if (nfc_is_v1()) { writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); - writew(0x4000, NFC_V1_UNLOCKEND_BLKADDR); + writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR); } else BUG(); @@ -932,8 +928,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, struct nand_chip *nand_chip = mtd->priv; struct mxc_nand_host *host = nand_chip->priv; - DEBUG(MTD_DEBUG_LEVEL3, - "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", + pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", command, column, page_addr); /* Reset command state information */ @@ -1044,7 +1039,7 @@ static int __init mxcnd_probe(struct platform_device *pdev) struct mxc_nand_platform_data *pdata = pdev->dev.platform_data; struct mxc_nand_host *host; struct resource *res; - int err = 0, __maybe_unused nr_parts = 0; + int err = 0; struct nand_ecclayout *oob_smallpage, *oob_largepage; /* Allocate memory for MTD device structure and private data */ @@ -1179,7 +1174,7 @@ static int __init mxcnd_probe(struct platform_device *pdev) this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; /* update flash based bbt */ - this->options |= NAND_USE_FLASH_BBT; + this->bbt_options |= NAND_BBT_USE_FLASH; } init_completion(&host->op_completion); @@ -1231,16 +1226,8 @@ static int __init mxcnd_probe(struct platform_device *pdev) } /* Register the partitions */ - nr_parts = - parse_mtd_partitions(mtd, part_probes, &host->parts, 0); - if (nr_parts > 0) - mtd_device_register(mtd, host->parts, nr_parts); - else if (pdata->parts) - mtd_device_register(mtd, pdata->parts, pdata->nr_parts); - else { - pr_info("Registering %s as whole device\n", mtd->name); - mtd_device_register(mtd, NULL, 0); - } + mtd_device_parse_register(mtd, part_probes, 0, + pdata->parts, pdata->nr_parts); platform_set_drvdata(pdev, host); diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index a46e9bb847bd..3ed9c5e4d34e 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c @@ -21,7 +21,7 @@ * TODO: * Enable cached programming for 2k page size chips * Check, if mtd->ecctype should be set to MTD_ECC_HW - * if we have HW ecc support. + * if we have HW ECC support. * The AG-AND chips have nice features for speed improvement, * which are not supported yet. Read / program 4 pages in one go. * BBT table is not serialized, has to be fixed @@ -113,21 +113,19 @@ static int check_offs_len(struct mtd_info *mtd, /* Start address must align on block boundary */ if (ofs & ((1 << chip->phys_erase_shift) - 1)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__); + pr_debug("%s: unaligned address\n", __func__); ret = -EINVAL; } /* Length must align on block boundary */ if (len & ((1 << chip->phys_erase_shift) - 1)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n", - __func__); + pr_debug("%s: length not block aligned\n", __func__); ret = -EINVAL; } /* Do not allow past end of device */ if (ofs + len > mtd->size) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n", - __func__); + pr_debug("%s: past end of device\n", __func__); ret = -EINVAL; } @@ -136,9 +134,9 @@ static int check_offs_len(struct mtd_info *mtd, /** * nand_release_device - [GENERIC] release chip - * @mtd: MTD device structure + * @mtd: MTD device structure * - * Deselect, release chip lock and wake up anyone waiting on the device + * Deselect, release chip lock and wake up anyone waiting on the device. */ static void nand_release_device(struct mtd_info *mtd) { @@ -157,9 +155,9 @@ static void nand_release_device(struct mtd_info *mtd) /** * nand_read_byte - [DEFAULT] read one byte from the chip - * @mtd: MTD device structure + * @mtd: MTD device structure * - * Default read function for 8bit buswith + * Default read function for 8bit buswidth */ static uint8_t nand_read_byte(struct mtd_info *mtd) { @@ -169,10 +167,11 @@ static uint8_t nand_read_byte(struct mtd_info *mtd) /** * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip - * @mtd: MTD device structure + * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip + * @mtd: MTD device structure + * + * Default read function for 16bit buswidth with endianness conversion. * - * Default read function for 16bit buswith with - * endianess conversion */ static uint8_t nand_read_byte16(struct mtd_info *mtd) { @@ -182,10 +181,9 @@ static uint8_t nand_read_byte16(struct mtd_info *mtd) /** * nand_read_word - [DEFAULT] read one word from the chip - * @mtd: MTD device structure + * @mtd: MTD device structure * - * Default read function for 16bit buswith without - * endianess conversion + * Default read function for 16bit buswidth without endianness conversion. */ static u16 nand_read_word(struct mtd_info *mtd) { @@ -195,8 +193,8 @@ static u16 nand_read_word(struct mtd_info *mtd) /** * nand_select_chip - [DEFAULT] control CE line - * @mtd: MTD device structure - * @chipnr: chipnumber to select, -1 for deselect + * @mtd: MTD device structure + * @chipnr: chipnumber to select, -1 for deselect * * Default select function for 1 chip devices. */ @@ -218,11 +216,11 @@ static void nand_select_chip(struct mtd_info *mtd, int chipnr) /** * nand_write_buf - [DEFAULT] write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write * - * Default write function for 8bit buswith + * Default write function for 8bit buswidth. */ static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { @@ -235,11 +233,11 @@ static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) /** * nand_read_buf - [DEFAULT] read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read * - * Default read function for 8bit buswith + * Default read function for 8bit buswidth. */ static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { @@ -252,11 +250,11 @@ static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) /** * nand_verify_buf - [DEFAULT] Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare + * @mtd: MTD device structure + * @buf: buffer containing the data to compare + * @len: number of bytes to compare * - * Default verify function for 8bit buswith + * Default verify function for 8bit buswidth. */ static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { @@ -271,11 +269,11 @@ static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) /** * nand_write_buf16 - [DEFAULT] write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write * - * Default write function for 16bit buswith + * Default write function for 16bit buswidth. */ static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) { @@ -291,11 +289,11 @@ static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) /** * nand_read_buf16 - [DEFAULT] read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read * - * Default read function for 16bit buswith + * Default read function for 16bit buswidth. */ static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) { @@ -310,11 +308,11 @@ static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) /** * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer - * @mtd: MTD device structure - * @buf: buffer containing the data to compare - * @len: number of bytes to compare + * @mtd: MTD device structure + * @buf: buffer containing the data to compare + * @len: number of bytes to compare * - * Default verify function for 16bit buswith + * Default verify function for 16bit buswidth. */ static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) { @@ -332,9 +330,9 @@ static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) /** * nand_block_bad - [DEFAULT] Read bad block marker from the chip - * @mtd: MTD device structure - * @ofs: offset from device start - * @getchip: 0, if the chip is already selected + * @mtd: MTD device structure + * @ofs: offset from device start + * @getchip: 0, if the chip is already selected * * Check, if the block is bad. */ @@ -344,7 +342,7 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) struct nand_chip *chip = mtd->priv; u16 bad; - if (chip->options & NAND_BBT_SCANLASTPAGE) + if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) ofs += mtd->erasesize - mtd->writesize; page = (int)(ofs >> chip->page_shift) & chip->pagemask; @@ -384,11 +382,11 @@ static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) /** * nand_default_block_markbad - [DEFAULT] mark a block bad - * @mtd: MTD device structure - * @ofs: offset from device start + * @mtd: MTD device structure + * @ofs: offset from device start * - * This is the default implementation, which can be overridden by - * a hardware specific driver. + * This is the default implementation, which can be overridden by a hardware + * specific driver. */ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) { @@ -396,7 +394,7 @@ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) uint8_t buf[2] = { 0, 0 }; int block, ret, i = 0; - if (chip->options & NAND_BBT_SCANLASTPAGE) + if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) ofs += mtd->erasesize - mtd->writesize; /* Get block number */ @@ -404,33 +402,31 @@ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) if (chip->bbt) chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); - /* Do we have a flash based bad block table ? */ - if (chip->options & NAND_USE_FLASH_BBT) + /* Do we have a flash based bad block table? */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) ret = nand_update_bbt(mtd, ofs); else { + struct mtd_oob_ops ops; + nand_get_device(chip, mtd, FL_WRITING); - /* Write to first two pages and to byte 1 and 6 if necessary. - * If we write to more than one location, the first error - * encountered quits the procedure. We write two bytes per - * location, so we dont have to mess with 16 bit access. + /* + * Write to first two pages if necessary. If we write to more + * than one location, the first error encountered quits the + * procedure. We write two bytes per location, so we dont have + * to mess with 16 bit access. */ + ops.len = ops.ooblen = 2; + ops.datbuf = NULL; + ops.oobbuf = buf; + ops.ooboffs = chip->badblockpos & ~0x01; + ops.mode = MTD_OPS_PLACE_OOB; do { - chip->ops.len = chip->ops.ooblen = 2; - chip->ops.datbuf = NULL; - chip->ops.oobbuf = buf; - chip->ops.ooboffs = chip->badblockpos & ~0x01; - - ret = nand_do_write_oob(mtd, ofs, &chip->ops); + ret = nand_do_write_oob(mtd, ofs, &ops); - if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) { - chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS - & ~0x01; - ret = nand_do_write_oob(mtd, ofs, &chip->ops); - } i++; ofs += mtd->writesize; - } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) && + } while (!ret && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); nand_release_device(mtd); @@ -443,16 +439,16 @@ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) /** * nand_check_wp - [GENERIC] check if the chip is write protected - * @mtd: MTD device structure - * Check, if the device is write protected + * @mtd: MTD device structure * - * The function expects, that the device is already selected + * Check, if the device is write protected. The function expects, that the + * device is already selected. */ static int nand_check_wp(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; - /* broken xD cards report WP despite being writable */ + /* Broken xD cards report WP despite being writable */ if (chip->options & NAND_BROKEN_XD) return 0; @@ -463,10 +459,10 @@ static int nand_check_wp(struct mtd_info *mtd) /** * nand_block_checkbad - [GENERIC] Check if a block is marked bad - * @mtd: MTD device structure - * @ofs: offset from device start - * @getchip: 0, if the chip is already selected - * @allowbbt: 1, if its allowed to access the bbt area + * @mtd: MTD device structure + * @ofs: offset from device start + * @getchip: 0, if the chip is already selected + * @allowbbt: 1, if its allowed to access the bbt area * * Check, if the block is bad. Either by reading the bad block table or * calling of the scan function. @@ -485,8 +481,8 @@ static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, /** * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. - * @mtd: MTD device structure - * @timeo: Timeout + * @mtd: MTD device structure + * @timeo: Timeout * * Helper function for nand_wait_ready used when needing to wait in interrupt * context. @@ -505,10 +501,7 @@ static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) } } -/* - * Wait for the ready pin, after a command - * The timeout is catched later. - */ +/* Wait for the ready pin, after a command. The timeout is caught later. */ void nand_wait_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; @@ -519,7 +512,7 @@ void nand_wait_ready(struct mtd_info *mtd) return panic_nand_wait_ready(mtd, 400); led_trigger_event(nand_led_trigger, LED_FULL); - /* wait until command is processed or timeout occures */ + /* Wait until command is processed or timeout occurs */ do { if (chip->dev_ready(mtd)) break; @@ -531,13 +524,13 @@ EXPORT_SYMBOL_GPL(nand_wait_ready); /** * nand_command - [DEFAULT] Send command to NAND device - * @mtd: MTD device structure - * @command: the command to be sent - * @column: the column address for this command, -1 if none - * @page_addr: the page address for this command, -1 if none + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none * - * Send command to NAND device. This function is used for small page - * devices (256/512 Bytes per page) + * Send command to NAND device. This function is used for small page devices + * (256/512 Bytes per page). */ static void nand_command(struct mtd_info *mtd, unsigned int command, int column, int page_addr) @@ -545,9 +538,7 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, register struct nand_chip *chip = mtd->priv; int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; - /* - * Write out the command to the device. - */ + /* Write out the command to the device */ if (command == NAND_CMD_SEQIN) { int readcmd; @@ -567,9 +558,7 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, } chip->cmd_ctrl(mtd, command, ctrl); - /* - * Address cycle, when necessary - */ + /* Address cycle, when necessary */ ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; /* Serially input address */ if (column != -1) { @@ -590,8 +579,8 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* - * program and erase have their own busy handlers - * status and sequential in needs no delay + * Program and erase have their own busy handlers status and sequential + * in needs no delay */ switch (command) { @@ -625,8 +614,10 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, return; } } - /* Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. */ + /* + * Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. + */ ndelay(100); nand_wait_ready(mtd); @@ -634,14 +625,14 @@ static void nand_command(struct mtd_info *mtd, unsigned int command, /** * nand_command_lp - [DEFAULT] Send command to NAND large page device - * @mtd: MTD device structure - * @command: the command to be sent - * @column: the column address for this command, -1 if none - * @page_addr: the page address for this command, -1 if none + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This is the version for the new large page - * devices We dont have the separate regions as we have in the small page - * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. + * devices. We don't have the separate regions as we have in the small page + * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. */ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, int column, int page_addr) @@ -683,8 +674,8 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); /* - * program and erase have their own busy handlers - * status, sequential in, and deplete1 need no delay + * Program and erase have their own busy handlers status, sequential + * in, and deplete1 need no delay. */ switch (command) { @@ -698,14 +689,12 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, case NAND_CMD_DEPLETE1: return; - /* - * read error status commands require only a short delay - */ case NAND_CMD_STATUS_ERROR: case NAND_CMD_STATUS_ERROR0: case NAND_CMD_STATUS_ERROR1: case NAND_CMD_STATUS_ERROR2: case NAND_CMD_STATUS_ERROR3: + /* Read error status commands require only a short delay */ udelay(chip->chip_delay); return; @@ -739,7 +728,7 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, default: /* * If we don't have access to the busy pin, we apply the given - * command delay + * command delay. */ if (!chip->dev_ready) { udelay(chip->chip_delay); @@ -747,8 +736,10 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, } } - /* Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. */ + /* + * Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. + */ ndelay(100); nand_wait_ready(mtd); @@ -756,25 +747,25 @@ static void nand_command_lp(struct mtd_info *mtd, unsigned int command, /** * panic_nand_get_device - [GENERIC] Get chip for selected access - * @chip: the nand chip descriptor - * @mtd: MTD device structure - * @new_state: the state which is requested + * @chip: the nand chip descriptor + * @mtd: MTD device structure + * @new_state: the state which is requested * * Used when in panic, no locks are taken. */ static void panic_nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state) { - /* Hardware controller shared among independend devices */ + /* Hardware controller shared among independent devices */ chip->controller->active = chip; chip->state = new_state; } /** * nand_get_device - [GENERIC] Get chip for selected access - * @chip: the nand chip descriptor - * @mtd: MTD device structure - * @new_state: the state which is requested + * @chip: the nand chip descriptor + * @mtd: MTD device structure + * @new_state: the state which is requested * * Get the device and lock it for exclusive access */ @@ -812,10 +803,10 @@ retry: } /** - * panic_nand_wait - [GENERIC] wait until the command is done - * @mtd: MTD device structure - * @chip: NAND chip structure - * @timeo: Timeout + * panic_nand_wait - [GENERIC] wait until the command is done + * @mtd: MTD device structure + * @chip: NAND chip structure + * @timeo: timeout * * Wait for command done. This is a helper function for nand_wait used when * we are in interrupt context. May happen when in panic and trying to write @@ -838,13 +829,13 @@ static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_wait - [DEFAULT] wait until the command is done - * @mtd: MTD device structure - * @chip: NAND chip structure + * nand_wait - [DEFAULT] wait until the command is done + * @mtd: MTD device structure + * @chip: NAND chip structure * - * Wait for command done. This applies to erase and program only - * Erase can take up to 400ms and program up to 20ms according to - * general NAND and SmartMedia specs + * Wait for command done. This applies to erase and program only. Erase can + * take up to 400ms and program up to 20ms according to general NAND and + * SmartMedia specs. */ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) { @@ -859,8 +850,10 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) led_trigger_event(nand_led_trigger, LED_FULL); - /* Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. */ + /* + * Apply this short delay always to ensure that we do wait tWB in any + * case on any machine. + */ ndelay(100); if ((state == FL_ERASING) && (chip->options & NAND_IS_AND)) @@ -890,16 +883,15 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) /** * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks - * * @mtd: mtd info * @ofs: offset to start unlock from * @len: length to unlock - * @invert: when = 0, unlock the range of blocks within the lower and - * upper boundary address - * when = 1, unlock the range of blocks outside the boundaries - * of the lower and upper boundary address + * @invert: when = 0, unlock the range of blocks within the lower and + * upper boundary address + * when = 1, unlock the range of blocks outside the boundaries + * of the lower and upper boundary address * - * return - unlock status + * Returs unlock status. */ static int __nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len, int invert) @@ -919,10 +911,9 @@ static int __nand_unlock(struct mtd_info *mtd, loff_t ofs, /* Call wait ready function */ status = chip->waitfunc(mtd, chip); - udelay(1000); /* See if device thinks it succeeded */ if (status & 0x01) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n", + pr_debug("%s: error status = 0x%08x\n", __func__, status); ret = -EIO; } @@ -932,12 +923,11 @@ static int __nand_unlock(struct mtd_info *mtd, loff_t ofs, /** * nand_unlock - [REPLACEABLE] unlocks specified locked blocks - * * @mtd: mtd info * @ofs: offset to start unlock from * @len: length to unlock * - * return - unlock status + * Returns unlock status. */ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { @@ -945,7 +935,7 @@ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) int chipnr; struct nand_chip *chip = mtd->priv; - DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n", + pr_debug("%s: start = 0x%012llx, len = %llu\n", __func__, (unsigned long long)ofs, len); if (check_offs_len(mtd, ofs, len)) @@ -964,7 +954,7 @@ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) /* Check, if it is write protected */ if (nand_check_wp(mtd)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n", + pr_debug("%s: device is write protected!\n", __func__); ret = -EIO; goto out; @@ -981,18 +971,16 @@ EXPORT_SYMBOL(nand_unlock); /** * nand_lock - [REPLACEABLE] locks all blocks present in the device - * * @mtd: mtd info * @ofs: offset to start unlock from * @len: length to unlock * - * return - lock status + * This feature is not supported in many NAND parts. 'Micron' NAND parts do + * have this feature, but it allows only to lock all blocks, not for specified + * range for block. Implementing 'lock' feature by making use of 'unlock', for + * now. * - * This feature is not supported in many NAND parts. 'Micron' NAND parts - * do have this feature, but it allows only to lock all blocks, not for - * specified range for block. - * - * Implementing 'lock' feature by making use of 'unlock', for now. + * Returns lock status. */ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { @@ -1000,7 +988,7 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) int chipnr, status, page; struct nand_chip *chip = mtd->priv; - DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n", + pr_debug("%s: start = 0x%012llx, len = %llu\n", __func__, (unsigned long long)ofs, len); if (check_offs_len(mtd, ofs, len)) @@ -1015,7 +1003,7 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) /* Check, if it is write protected */ if (nand_check_wp(mtd)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n", + pr_debug("%s: device is write protected!\n", __func__); status = MTD_ERASE_FAILED; ret = -EIO; @@ -1028,10 +1016,9 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) /* Call wait ready function */ status = chip->waitfunc(mtd, chip); - udelay(1000); /* See if device thinks it succeeded */ if (status & 0x01) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n", + pr_debug("%s: error status = 0x%08x\n", __func__, status); ret = -EIO; goto out; @@ -1047,13 +1034,13 @@ out: EXPORT_SYMBOL(nand_lock); /** - * nand_read_page_raw - [Intern] read raw page data without ecc - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_raw - [INTERN] read raw page data without ecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @page: page number to read * - * Not for syndrome calculating ecc controllers, which use a special oob layout + * Not for syndrome calculating ECC controllers, which use a special oob layout. */ static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) @@ -1064,11 +1051,11 @@ static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @page: page number to read * * We need a special oob layout and handling even when OOB isn't used. */ @@ -1107,11 +1094,11 @@ static int nand_read_page_raw_syndrome(struct mtd_info *mtd, } /** - * nand_read_page_swecc - [REPLACABLE] software ecc based page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @page: page number to read */ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) @@ -1148,12 +1135,12 @@ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @data_offs: offset of requested data within the page - * @readlen: data length - * @bufpoi: buffer to store read data + * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @data_offs: offset of requested data within the page + * @readlen: data length + * @bufpoi: buffer to store read data */ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi) @@ -1166,12 +1153,12 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; int index = 0; - /* Column address wihin the page aligned to ECC size (256bytes). */ + /* Column address within the page aligned to ECC size (256bytes) */ start_step = data_offs / chip->ecc.size; end_step = (data_offs + readlen - 1) / chip->ecc.size; num_steps = end_step - start_step + 1; - /* Data size aligned to ECC ecc.size*/ + /* Data size aligned to ECC ecc.size */ datafrag_len = num_steps * chip->ecc.size; eccfrag_len = num_steps * chip->ecc.bytes; @@ -1183,13 +1170,14 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, p = bufpoi + data_col_addr; chip->read_buf(mtd, p, datafrag_len); - /* Calculate ECC */ + /* Calculate ECC */ for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]); - /* The performance is faster if to position offsets - according to ecc.pos. Let make sure here that - there are no gaps in ecc positions */ + /* + * The performance is faster if we position offsets according to + * ecc.pos. Let's make sure that there are no gaps in ECC positions. + */ for (i = 0; i < eccfrag_len - 1; i++) { if (eccpos[i + start_step * chip->ecc.bytes] + 1 != eccpos[i + start_step * chip->ecc.bytes + 1]) { @@ -1201,8 +1189,10 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); } else { - /* send the command to read the particular ecc bytes */ - /* take care about buswidth alignment in read_buf */ + /* + * Send the command to read the particular ECC bytes take care + * about buswidth alignment in read_buf. + */ index = start_step * chip->ecc.bytes; aligned_pos = eccpos[index] & ~(busw - 1); @@ -1235,13 +1225,13 @@ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @page: page number to read * - * Not for syndrome calculating ecc controllers which need a special oob layout + * Not for syndrome calculating ECC controllers which need a special oob layout. */ static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) @@ -1280,18 +1270,17 @@ static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @page: page number to read * - * Hardware ECC for large page chips, require OOB to be read first. - * For this ECC mode, the write_page method is re-used from ECC_HW. - * These methods read/write ECC from the OOB area, unlike the - * ECC_HW_SYNDROME support with multiple ECC steps, follows the - * "infix ECC" scheme and reads/writes ECC from the data area, by - * overwriting the NAND manufacturer bad block markings. + * Hardware ECC for large page chips, require OOB to be read first. For this + * ECC mode, the write_page method is re-used from ECC_HW. These methods + * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with + * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from + * the data area, by overwriting the NAND manufacturer bad block markings. */ static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) @@ -1329,14 +1318,14 @@ static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, } /** - * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @page: page number to read + * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @page: page number to read * - * The hw generator calculates the error syndrome automatically. Therefor - * we need a special oob layout and handling. + * The hw generator calculates the error syndrome automatically. Therefore we + * need a special oob layout and handling. */ static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) @@ -1384,29 +1373,29 @@ static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_transfer_oob - [Internal] Transfer oob to client buffer - * @chip: nand chip structure - * @oob: oob destination address - * @ops: oob ops structure - * @len: size of oob to transfer + * nand_transfer_oob - [INTERN] Transfer oob to client buffer + * @chip: nand chip structure + * @oob: oob destination address + * @ops: oob ops structure + * @len: size of oob to transfer */ static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, struct mtd_oob_ops *ops, size_t len) { switch (ops->mode) { - case MTD_OOB_PLACE: - case MTD_OOB_RAW: + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: memcpy(oob, chip->oob_poi + ops->ooboffs, len); return oob + len; - case MTD_OOB_AUTO: { + case MTD_OPS_AUTO_OOB: { struct nand_oobfree *free = chip->ecc.layout->oobfree; uint32_t boffs = 0, roffs = ops->ooboffs; size_t bytes = 0; for (; free->length && len; free++, len -= bytes) { - /* Read request not from offset 0 ? */ + /* Read request not from offset 0? */ if (unlikely(roffs)) { if (roffs >= free->length) { roffs -= free->length; @@ -1432,11 +1421,10 @@ static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, } /** - * nand_do_read_ops - [Internal] Read data with ECC - * - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob ops structure + * nand_do_read_ops - [INTERN] Read data with ECC + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob ops structure * * Internal function. Called with chip held. */ @@ -1451,7 +1439,7 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, int ret = 0; uint32_t readlen = ops->len; uint32_t oobreadlen = ops->ooblen; - uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ? + uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; uint8_t *bufpoi, *oob, *buf; @@ -1473,7 +1461,7 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, bytes = min(mtd->writesize - col, readlen); aligned = (bytes == mtd->writesize); - /* Is the current page in the buffer ? */ + /* Is the current page in the buffer? */ if (realpage != chip->pagebuf || oob) { bufpoi = aligned ? buf : chip->buffers->databuf; @@ -1483,7 +1471,7 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, } /* Now read the page into the buffer */ - if (unlikely(ops->mode == MTD_OOB_RAW)) + if (unlikely(ops->mode == MTD_OPS_RAW)) ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, page); else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob) @@ -1492,14 +1480,22 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, else ret = chip->ecc.read_page(mtd, chip, bufpoi, page); - if (ret < 0) + if (ret < 0) { + if (!aligned) + /* Invalidate page cache */ + chip->pagebuf = -1; break; + } /* Transfer not aligned data */ if (!aligned) { if (!NAND_SUBPAGE_READ(chip) && !oob && - !(mtd->ecc_stats.failed - stats.failed)) + !(mtd->ecc_stats.failed - stats.failed) && + (ops->mode != MTD_OPS_RAW)) chip->pagebuf = realpage; + else + /* Invalidate page cache */ + chip->pagebuf = -1; memcpy(buf, chip->buffers->databuf + col, bytes); } @@ -1539,7 +1535,7 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, if (!readlen) break; - /* For subsequent reads align to page boundary. */ + /* For subsequent reads align to page boundary */ col = 0; /* Increment page address */ realpage++; @@ -1552,8 +1548,9 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, chip->select_chip(mtd, chipnr); } - /* Check, if the chip supports auto page increment - * or if we have hit a block boundary. + /* + * Check, if the chip supports auto page increment or if we + * have hit a block boundary. */ if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck)) sndcmd = 1; @@ -1574,18 +1571,19 @@ static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, /** * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc - * @mtd: MTD device structure - * @from: offset to read from - * @len: number of bytes to read - * @retlen: pointer to variable to store the number of read bytes - * @buf: the databuffer to put data + * @mtd: MTD device structure + * @from: offset to read from + * @len: number of bytes to read + * @retlen: pointer to variable to store the number of read bytes + * @buf: the databuffer to put data * - * Get hold of the chip and call nand_do_read + * Get hold of the chip and call nand_do_read. */ static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, uint8_t *buf) { struct nand_chip *chip = mtd->priv; + struct mtd_oob_ops ops; int ret; /* Do not allow reads past end of device */ @@ -1596,13 +1594,14 @@ static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, nand_get_device(chip, mtd, FL_READING); - chip->ops.len = len; - chip->ops.datbuf = buf; - chip->ops.oobbuf = NULL; + ops.len = len; + ops.datbuf = buf; + ops.oobbuf = NULL; + ops.mode = 0; - ret = nand_do_read_ops(mtd, from, &chip->ops); + ret = nand_do_read_ops(mtd, from, &ops); - *retlen = chip->ops.retlen; + *retlen = ops.retlen; nand_release_device(mtd); @@ -1610,11 +1609,11 @@ static int nand_read(struct mtd_info *mtd, loff_t from, size_t len, } /** - * nand_read_oob_std - [REPLACABLE] the most common OOB data read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to read - * @sndcmd: flag whether to issue read command or not + * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read + * @sndcmd: flag whether to issue read command or not */ static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) @@ -1628,12 +1627,12 @@ static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC + * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC * with syndromes - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to read - * @sndcmd: flag whether to issue read command or not + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read + * @sndcmd: flag whether to issue read command or not */ static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) @@ -1667,10 +1666,10 @@ static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_write_oob_std - [REPLACABLE] the most common OOB data write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to write + * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to write */ static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) @@ -1690,11 +1689,11 @@ static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC - * with syndrome - only for large page flash ! - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to write + * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC + * with syndrome - only for large page flash + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to write */ static int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page) @@ -1749,34 +1748,37 @@ static int nand_write_oob_syndrome(struct mtd_info *mtd, } /** - * nand_do_read_oob - [Intern] NAND read out-of-band - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob operations description structure + * nand_do_read_oob - [INTERN] NAND read out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operations description structure * - * NAND read out-of-band data from the spare area + * NAND read out-of-band data from the spare area. */ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { int page, realpage, chipnr, sndcmd = 1; struct nand_chip *chip = mtd->priv; + struct mtd_ecc_stats stats; int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1; int readlen = ops->ooblen; int len; uint8_t *buf = ops->oobbuf; - DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n", + pr_debug("%s: from = 0x%08Lx, len = %i\n", __func__, (unsigned long long)from, readlen); - if (ops->mode == MTD_OOB_AUTO) + stats = mtd->ecc_stats; + + if (ops->mode == MTD_OPS_AUTO_OOB) len = chip->ecc.layout->oobavail; else len = mtd->oobsize; if (unlikely(ops->ooboffs >= len)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read " - "outside oob\n", __func__); + pr_debug("%s: attempt to start read outside oob\n", + __func__); return -EINVAL; } @@ -1784,8 +1786,8 @@ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, if (unlikely(from >= mtd->size || ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) - (from >> chip->page_shift)) * len)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end " - "of device\n", __func__); + pr_debug("%s: attempt to read beyond end of device\n", + __func__); return -EINVAL; } @@ -1797,7 +1799,10 @@ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, page = realpage & chip->pagemask; while (1) { - sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd); + if (ops->mode == MTD_OPS_RAW) + sndcmd = chip->ecc.read_oob_raw(mtd, chip, page, sndcmd); + else + sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd); len = min(len, readlen); buf = nand_transfer_oob(chip, buf, ops, len); @@ -1830,24 +1835,29 @@ static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, chip->select_chip(mtd, chipnr); } - /* Check, if the chip supports auto page increment - * or if we have hit a block boundary. + /* + * Check, if the chip supports auto page increment or if we + * have hit a block boundary. */ if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck)) sndcmd = 1; } ops->oobretlen = ops->ooblen; - return 0; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0; } /** * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob operation description structure + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operation description structure * - * NAND read data and/or out-of-band data + * NAND read data and/or out-of-band data. */ static int nand_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) @@ -1859,17 +1869,17 @@ static int nand_read_oob(struct mtd_info *mtd, loff_t from, /* Do not allow reads past end of device */ if (ops->datbuf && (from + ops->len) > mtd->size) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read " - "beyond end of device\n", __func__); + pr_debug("%s: attempt to read beyond end of device\n", + __func__); return -EINVAL; } nand_get_device(chip, mtd, FL_READING); switch (ops->mode) { - case MTD_OOB_PLACE: - case MTD_OOB_AUTO: - case MTD_OOB_RAW: + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + case MTD_OPS_RAW: break; default: @@ -1888,12 +1898,12 @@ out: /** - * nand_write_page_raw - [Intern] raw page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer + * nand_write_page_raw - [INTERN] raw page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer * - * Not for syndrome calculating ecc controllers, which use a special oob layout + * Not for syndrome calculating ECC controllers, which use a special oob layout. */ static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) @@ -1903,10 +1913,10 @@ static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_write_page_raw_syndrome - [Intern] raw page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer + * nand_write_page_raw_syndrome - [INTERN] raw page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer * * We need a special oob layout and handling even when ECC isn't checked. */ @@ -1942,10 +1952,10 @@ static void nand_write_page_raw_syndrome(struct mtd_info *mtd, chip->write_buf(mtd, oob, size); } /** - * nand_write_page_swecc - [REPLACABLE] software ecc based page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer + * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer */ static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) @@ -1957,7 +1967,7 @@ static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *p = buf; uint32_t *eccpos = chip->ecc.layout->eccpos; - /* Software ecc calculation */ + /* Software ECC calculation */ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(mtd, p, &ecc_calc[i]); @@ -1968,10 +1978,10 @@ static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer + * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer */ static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) @@ -1996,13 +2006,13 @@ static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer + * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer * - * The hw generator calculates the error syndrome automatically. Therefor - * we need a special oob layout and handling. + * The hw generator calculates the error syndrome automatically. Therefore we + * need a special oob layout and handling. */ static void nand_write_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) @@ -2041,12 +2051,12 @@ static void nand_write_page_syndrome(struct mtd_info *mtd, /** * nand_write_page - [REPLACEABLE] write one page - * @mtd: MTD device structure - * @chip: NAND chip descriptor - * @buf: the data to write - * @page: page number to write - * @cached: cached programming - * @raw: use _raw version of write_page + * @mtd: MTD device structure + * @chip: NAND chip descriptor + * @buf: the data to write + * @page: page number to write + * @cached: cached programming + * @raw: use _raw version of write_page */ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int page, int cached, int raw) @@ -2061,8 +2071,8 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, chip->ecc.write_page(mtd, chip, buf); /* - * Cached progamming disabled for now, Not sure if its worth the - * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s) + * Cached progamming disabled for now. Not sure if it's worth the + * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s). */ cached = 0; @@ -2072,7 +2082,7 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, status = chip->waitfunc(mtd, chip); /* * See if operation failed and additional status checks are - * available + * available. */ if ((status & NAND_STATUS_FAIL) && (chip->errstat)) status = chip->errstat(mtd, chip, FL_WRITING, status, @@ -2096,29 +2106,37 @@ static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_fill_oob - [Internal] Transfer client buffer to oob - * @chip: nand chip structure - * @oob: oob data buffer - * @len: oob data write length - * @ops: oob ops structure + * nand_fill_oob - [INTERN] Transfer client buffer to oob + * @mtd: MTD device structure + * @oob: oob data buffer + * @len: oob data write length + * @ops: oob ops structure */ -static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, - struct mtd_oob_ops *ops) +static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, + struct mtd_oob_ops *ops) { + struct nand_chip *chip = mtd->priv; + + /* + * Initialise to all 0xFF, to avoid the possibility of left over OOB + * data from a previous OOB read. + */ + memset(chip->oob_poi, 0xff, mtd->oobsize); + switch (ops->mode) { - case MTD_OOB_PLACE: - case MTD_OOB_RAW: + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: memcpy(chip->oob_poi + ops->ooboffs, oob, len); return oob + len; - case MTD_OOB_AUTO: { + case MTD_OPS_AUTO_OOB: { struct nand_oobfree *free = chip->ecc.layout->oobfree; uint32_t boffs = 0, woffs = ops->ooboffs; size_t bytes = 0; for (; free->length && len; free++, len -= bytes) { - /* Write request not from offset 0 ? */ + /* Write request not from offset 0? */ if (unlikely(woffs)) { if (woffs >= free->length) { woffs -= free->length; @@ -2146,12 +2164,12 @@ static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) /** - * nand_do_write_ops - [Internal] NAND write with ECC - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operations description structure + * nand_do_write_ops - [INTERN] NAND write with ECC + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operations description structure * - * NAND write with ECC + * NAND write with ECC. */ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) @@ -2161,7 +2179,7 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, uint32_t writelen = ops->len; uint32_t oobwritelen = ops->ooblen; - uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ? + uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; uint8_t *oob = ops->oobbuf; @@ -2172,10 +2190,10 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, if (!writelen) return 0; - /* reject writes, which are not page aligned */ + /* Reject writes, which are not page aligned */ if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { - printk(KERN_NOTICE "%s: Attempt to write not " - "page aligned data\n", __func__); + pr_notice("%s: attempt to write non page aligned data\n", + __func__); return -EINVAL; } @@ -2201,10 +2219,6 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, (chip->pagebuf << chip->page_shift) < (to + ops->len)) chip->pagebuf = -1; - /* If we're not given explicit OOB data, let it be 0xFF */ - if (likely(!oob)) - memset(chip->oob_poi, 0xff, mtd->oobsize); - /* Don't allow multipage oob writes with offset */ if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) return -EINVAL; @@ -2214,7 +2228,7 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, int cached = writelen > bytes && page != blockmask; uint8_t *wbuf = buf; - /* Partial page write ? */ + /* Partial page write? */ if (unlikely(column || writelen < (mtd->writesize - 1))) { cached = 0; bytes = min_t(int, bytes - column, (int) writelen); @@ -2226,12 +2240,15 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, if (unlikely(oob)) { size_t len = min(oobwritelen, oobmaxlen); - oob = nand_fill_oob(chip, oob, len, ops); + oob = nand_fill_oob(mtd, oob, len, ops); oobwritelen -= len; + } else { + /* We still need to erase leftover OOB data */ + memset(chip->oob_poi, 0xff, mtd->oobsize); } ret = chip->write_page(mtd, chip, wbuf, page, cached, - (ops->mode == MTD_OOB_RAW)); + (ops->mode == MTD_OPS_RAW)); if (ret) break; @@ -2260,11 +2277,11 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, /** * panic_nand_write - [MTD Interface] NAND write with ECC - * @mtd: MTD device structure - * @to: offset to write to - * @len: number of bytes to write - * @retlen: pointer to variable to store the number of written bytes - * @buf: the data to write + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write * * NAND write with ECC. Used when performing writes in interrupt context, this * may for example be called by mtdoops when writing an oops while in panic. @@ -2273,6 +2290,7 @@ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) { struct nand_chip *chip = mtd->priv; + struct mtd_oob_ops ops; int ret; /* Do not allow reads past end of device */ @@ -2281,36 +2299,38 @@ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, if (!len) return 0; - /* Wait for the device to get ready. */ + /* Wait for the device to get ready */ panic_nand_wait(mtd, chip, 400); - /* Grab the device. */ + /* Grab the device */ panic_nand_get_device(chip, mtd, FL_WRITING); - chip->ops.len = len; - chip->ops.datbuf = (uint8_t *)buf; - chip->ops.oobbuf = NULL; + ops.len = len; + ops.datbuf = (uint8_t *)buf; + ops.oobbuf = NULL; + ops.mode = 0; - ret = nand_do_write_ops(mtd, to, &chip->ops); + ret = nand_do_write_ops(mtd, to, &ops); - *retlen = chip->ops.retlen; + *retlen = ops.retlen; return ret; } /** * nand_write - [MTD Interface] NAND write with ECC - * @mtd: MTD device structure - * @to: offset to write to - * @len: number of bytes to write - * @retlen: pointer to variable to store the number of written bytes - * @buf: the data to write + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write * - * NAND write with ECC + * NAND write with ECC. */ static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) { struct nand_chip *chip = mtd->priv; + struct mtd_oob_ops ops; int ret; /* Do not allow reads past end of device */ @@ -2321,13 +2341,14 @@ static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, nand_get_device(chip, mtd, FL_WRITING); - chip->ops.len = len; - chip->ops.datbuf = (uint8_t *)buf; - chip->ops.oobbuf = NULL; + ops.len = len; + ops.datbuf = (uint8_t *)buf; + ops.oobbuf = NULL; + ops.mode = 0; - ret = nand_do_write_ops(mtd, to, &chip->ops); + ret = nand_do_write_ops(mtd, to, &ops); - *retlen = chip->ops.retlen; + *retlen = ops.retlen; nand_release_device(mtd); @@ -2336,11 +2357,11 @@ static int nand_write(struct mtd_info *mtd, loff_t to, size_t len, /** * nand_do_write_oob - [MTD Interface] NAND write out-of-band - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operation description structure + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure * - * NAND write out-of-band + * NAND write out-of-band. */ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) @@ -2348,24 +2369,24 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, int chipnr, page, status, len; struct nand_chip *chip = mtd->priv; - DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n", + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, (int)ops->ooblen); - if (ops->mode == MTD_OOB_AUTO) + if (ops->mode == MTD_OPS_AUTO_OOB) len = chip->ecc.layout->oobavail; else len = mtd->oobsize; /* Do not allow write past end of page */ if ((ops->ooboffs + ops->ooblen) > len) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write " - "past end of page\n", __func__); + pr_debug("%s: attempt to write past end of page\n", + __func__); return -EINVAL; } if (unlikely(ops->ooboffs >= len)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start " - "write outside oob\n", __func__); + pr_debug("%s: attempt to start write outside oob\n", + __func__); return -EINVAL; } @@ -2374,8 +2395,8 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, ops->ooboffs + ops->ooblen > ((mtd->size >> chip->page_shift) - (to >> chip->page_shift)) * len)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond " - "end of device\n", __func__); + pr_debug("%s: attempt to write beyond end of device\n", + __func__); return -EINVAL; } @@ -2401,10 +2422,12 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, if (page == chip->pagebuf) chip->pagebuf = -1; - memset(chip->oob_poi, 0xff, mtd->oobsize); - nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); - status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); - memset(chip->oob_poi, 0xff, mtd->oobsize); + nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); + + if (ops->mode == MTD_OPS_RAW) + status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); + else + status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); if (status) return status; @@ -2416,9 +2439,9 @@ static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, /** * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operation description structure + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure */ static int nand_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) @@ -2430,17 +2453,17 @@ static int nand_write_oob(struct mtd_info *mtd, loff_t to, /* Do not allow writes past end of device */ if (ops->datbuf && (to + ops->len) > mtd->size) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond " - "end of device\n", __func__); + pr_debug("%s: attempt to write beyond end of device\n", + __func__); return -EINVAL; } nand_get_device(chip, mtd, FL_WRITING); switch (ops->mode) { - case MTD_OOB_PLACE: - case MTD_OOB_AUTO: - case MTD_OOB_RAW: + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + case MTD_OPS_RAW: break; default: @@ -2458,11 +2481,11 @@ out: } /** - * single_erease_cmd - [GENERIC] NAND standard block erase command function - * @mtd: MTD device structure - * @page: the page address of the block which will be erased + * single_erase_cmd - [GENERIC] NAND standard block erase command function + * @mtd: MTD device structure + * @page: the page address of the block which will be erased * - * Standard erase command for NAND chips + * Standard erase command for NAND chips. */ static void single_erase_cmd(struct mtd_info *mtd, int page) { @@ -2473,12 +2496,11 @@ static void single_erase_cmd(struct mtd_info *mtd, int page) } /** - * multi_erease_cmd - [GENERIC] AND specific block erase command function - * @mtd: MTD device structure - * @page: the page address of the block which will be erased + * multi_erase_cmd - [GENERIC] AND specific block erase command function + * @mtd: MTD device structure + * @page: the page address of the block which will be erased * - * AND multi block erase command function - * Erase 4 consecutive blocks + * AND multi block erase command function. Erase 4 consecutive blocks. */ static void multi_erase_cmd(struct mtd_info *mtd, int page) { @@ -2493,10 +2515,10 @@ static void multi_erase_cmd(struct mtd_info *mtd, int page) /** * nand_erase - [MTD Interface] erase block(s) - * @mtd: MTD device structure - * @instr: erase instruction + * @mtd: MTD device structure + * @instr: erase instruction * - * Erase one ore more blocks + * Erase one ore more blocks. */ static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) { @@ -2505,12 +2527,12 @@ static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) #define BBT_PAGE_MASK 0xffffff3f /** - * nand_erase_nand - [Internal] erase block(s) - * @mtd: MTD device structure - * @instr: erase instruction - * @allowbbt: allow erasing the bbt area + * nand_erase_nand - [INTERN] erase block(s) + * @mtd: MTD device structure + * @instr: erase instruction + * @allowbbt: allow erasing the bbt area * - * Erase one ore more blocks + * Erase one ore more blocks. */ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, int allowbbt) @@ -2521,9 +2543,9 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, unsigned int bbt_masked_page = 0xffffffff; loff_t len; - DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n", - __func__, (unsigned long long)instr->addr, - (unsigned long long)instr->len); + pr_debug("%s: start = 0x%012llx, len = %llu\n", + __func__, (unsigned long long)instr->addr, + (unsigned long long)instr->len); if (check_offs_len(mtd, instr->addr, instr->len)) return -EINVAL; @@ -2545,8 +2567,8 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, /* Check, if it is write protected */ if (nand_check_wp(mtd)) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n", - __func__); + pr_debug("%s: device is write protected!\n", + __func__); instr->state = MTD_ERASE_FAILED; goto erase_exit; } @@ -2555,7 +2577,7 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, * If BBT requires refresh, set the BBT page mask to see if the BBT * should be rewritten. Otherwise the mask is set to 0xffffffff which * can not be matched. This is also done when the bbt is actually - * erased to avoid recusrsive updates + * erased to avoid recursive updates. */ if (chip->options & BBT_AUTO_REFRESH && !allowbbt) bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK; @@ -2566,20 +2588,18 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, instr->state = MTD_ERASING; while (len) { - /* - * heck if we have a bad block, we do not erase bad blocks ! - */ + /* Heck if we have a bad block, we do not erase bad blocks! */ if (nand_block_checkbad(mtd, ((loff_t) page) << chip->page_shift, 0, allowbbt)) { - printk(KERN_WARNING "%s: attempt to erase a bad block " - "at page 0x%08x\n", __func__, page); + pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", + __func__, page); instr->state = MTD_ERASE_FAILED; goto erase_exit; } /* * Invalidate the page cache, if we erase the block which - * contains the current cached page + * contains the current cached page. */ if (page <= chip->pagebuf && chip->pagebuf < (page + pages_per_block)) @@ -2599,8 +2619,8 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, /* See if block erase succeeded */ if (status & NAND_STATUS_FAIL) { - DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, " - "page 0x%08x\n", __func__, page); + pr_debug("%s: failed erase, page 0x%08x\n", + __func__, page); instr->state = MTD_ERASE_FAILED; instr->fail_addr = ((loff_t)page << chip->page_shift); @@ -2609,7 +2629,7 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, /* * If BBT requires refresh, set the BBT rewrite flag to the - * page being erased + * page being erased. */ if (bbt_masked_page != 0xffffffff && (page & BBT_PAGE_MASK) == bbt_masked_page) @@ -2628,7 +2648,7 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, /* * If BBT requires refresh and BBT-PERCHIP, set the BBT - * page mask to see if this BBT should be rewritten + * page mask to see if this BBT should be rewritten. */ if (bbt_masked_page != 0xffffffff && (chip->bbt_td->options & NAND_BBT_PERCHIP)) @@ -2651,7 +2671,7 @@ erase_exit: /* * If BBT requires refresh and erase was successful, rewrite any - * selected bad block tables + * selected bad block tables. */ if (bbt_masked_page == 0xffffffff || ret) return ret; @@ -2659,10 +2679,10 @@ erase_exit: for (chipnr = 0; chipnr < chip->numchips; chipnr++) { if (!rewrite_bbt[chipnr]) continue; - /* update the BBT for chip */ - DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt " - "(%d:0x%0llx 0x%0x)\n", __func__, chipnr, - rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]); + /* Update the BBT for chip */ + pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n", + __func__, chipnr, rewrite_bbt[chipnr], + chip->bbt_td->pages[chipnr]); nand_update_bbt(mtd, rewrite_bbt[chipnr]); } @@ -2672,15 +2692,15 @@ erase_exit: /** * nand_sync - [MTD Interface] sync - * @mtd: MTD device structure + * @mtd: MTD device structure * - * Sync is actually a wait for chip ready function + * Sync is actually a wait for chip ready function. */ static void nand_sync(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; - DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__); + pr_debug("%s: called\n", __func__); /* Grab the lock and see if the device is available */ nand_get_device(chip, mtd, FL_SYNCING); @@ -2690,8 +2710,8 @@ static void nand_sync(struct mtd_info *mtd) /** * nand_block_isbad - [MTD Interface] Check if block at offset is bad - * @mtd: MTD device structure - * @offs: offset relative to mtd start + * @mtd: MTD device structure + * @offs: offset relative to mtd start */ static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) { @@ -2704,8 +2724,8 @@ static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) /** * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad - * @mtd: MTD device structure - * @ofs: offset relative to mtd start + * @mtd: MTD device structure + * @ofs: offset relative to mtd start */ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) { @@ -2714,7 +2734,7 @@ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) ret = nand_block_isbad(mtd, ofs); if (ret) { - /* If it was bad already, return success and do nothing. */ + /* If it was bad already, return success and do nothing */ if (ret > 0) return 0; return ret; @@ -2725,7 +2745,7 @@ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) /** * nand_suspend - [MTD Interface] Suspend the NAND flash - * @mtd: MTD device structure + * @mtd: MTD device structure */ static int nand_suspend(struct mtd_info *mtd) { @@ -2736,7 +2756,7 @@ static int nand_suspend(struct mtd_info *mtd) /** * nand_resume - [MTD Interface] Resume the NAND flash - * @mtd: MTD device structure + * @mtd: MTD device structure */ static void nand_resume(struct mtd_info *mtd) { @@ -2745,13 +2765,11 @@ static void nand_resume(struct mtd_info *mtd) if (chip->state == FL_PM_SUSPENDED) nand_release_device(mtd); else - printk(KERN_ERR "%s called for a chip which is not " - "in suspended state\n", __func__); + pr_err("%s called for a chip which is not in suspended state\n", + __func__); } -/* - * Set default functions - */ +/* Set default functions */ static void nand_set_defaults(struct nand_chip *chip, int busw) { /* check for proper chip_delay setup, set 20us if not */ @@ -2793,23 +2811,21 @@ static void nand_set_defaults(struct nand_chip *chip, int busw) } -/* - * sanitize ONFI strings so we can safely print them - */ +/* Sanitize ONFI strings so we can safely print them */ static void sanitize_string(uint8_t *s, size_t len) { ssize_t i; - /* null terminate */ + /* Null terminate */ s[len - 1] = 0; - /* remove non printable chars */ + /* Remove non printable chars */ for (i = 0; i < len - 1; i++) { if (s[i] < ' ' || s[i] > 127) s[i] = '?'; } - /* remove trailing spaces */ + /* Remove trailing spaces */ strim(s); } @@ -2826,28 +2842,28 @@ static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) } /* - * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise + * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. */ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, - int busw) + int *busw) { struct nand_onfi_params *p = &chip->onfi_params; int i; int val; - /* try ONFI for unknow chip or LP */ + /* Try ONFI for unknown chip or LP */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1); if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' || chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I') return 0; - printk(KERN_INFO "ONFI flash detected\n"); + pr_info("ONFI flash detected\n"); chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1); for (i = 0; i < 3; i++) { chip->read_buf(mtd, (uint8_t *)p, sizeof(*p)); if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == le16_to_cpu(p->crc)) { - printk(KERN_INFO "ONFI param page %d valid\n", i); + pr_info("ONFI param page %d valid\n", i); break; } } @@ -2855,7 +2871,7 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, if (i == 3) return 0; - /* check version */ + /* Check version */ val = le16_to_cpu(p->revision); if (val & (1 << 5)) chip->onfi_version = 23; @@ -2871,8 +2887,7 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, chip->onfi_version = 0; if (!chip->onfi_version) { - printk(KERN_INFO "%s: unsupported ONFI version: %d\n", - __func__, val); + pr_info("%s: unsupported ONFI version: %d\n", __func__, val); return 0; } @@ -2884,9 +2899,9 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize; mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize; - busw = 0; + *busw = 0; if (le16_to_cpu(p->features) & 1) - busw = NAND_BUSWIDTH_16; + *busw = NAND_BUSWIDTH_16; chip->options &= ~NAND_CHIPOPTIONS_MSK; chip->options |= (NAND_NO_READRDY | @@ -2896,7 +2911,7 @@ static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip, } /* - * Get the flash and manufacturer id and lookup if the type is supported + * Get the flash and manufacturer id and lookup if the type is supported. */ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip, @@ -2913,7 +2928,7 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, /* * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) - * after power-up + * after power-up. */ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); @@ -2924,7 +2939,8 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, *maf_id = chip->read_byte(mtd); *dev_id = chip->read_byte(mtd); - /* Try again to make sure, as some systems the bus-hold or other + /* + * Try again to make sure, as some systems the bus-hold or other * interface concerns can cause random data which looks like a * possibly credible NAND flash to appear. If the two results do * not match, ignore the device completely. @@ -2936,9 +2952,9 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, id_data[i] = chip->read_byte(mtd); if (id_data[0] != *maf_id || id_data[1] != *dev_id) { - printk(KERN_INFO "%s: second ID read did not match " - "%02x,%02x against %02x,%02x\n", __func__, - *maf_id, *dev_id, id_data[0], id_data[1]); + pr_info("%s: second ID read did not match " + "%02x,%02x against %02x,%02x\n", __func__, + *maf_id, *dev_id, id_data[0], id_data[1]); return ERR_PTR(-ENODEV); } @@ -2952,7 +2968,7 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, chip->onfi_version = 0; if (!type->name || !type->pagesize) { /* Check is chip is ONFI compliant */ - ret = nand_flash_detect_onfi(mtd, chip, busw); + ret = nand_flash_detect_onfi(mtd, chip, &busw); if (ret) goto ident_done; } @@ -2973,7 +2989,7 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, chip->chipsize = (uint64_t)type->chipsize << 20; if (!type->pagesize && chip->init_size) { - /* set the pagesize, oobsize, erasesize by the driver*/ + /* Set the pagesize, oobsize, erasesize by the driver */ busw = chip->init_size(mtd, chip, id_data); } else if (!type->pagesize) { int extid; @@ -3033,7 +3049,7 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, } } else { /* - * Old devices have chip data hardcoded in the device id table + * Old devices have chip data hardcoded in the device id table. */ mtd->erasesize = type->erasesize; mtd->writesize = type->pagesize; @@ -3043,7 +3059,7 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, /* * Check for Spansion/AMD ID + repeating 5th, 6th byte since * some Spansion chips have erasesize that conflicts with size - * listed in nand_ids table + * listed in nand_ids table. * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) */ if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && @@ -3057,15 +3073,16 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, chip->options &= ~NAND_CHIPOPTIONS_MSK; chip->options |= type->options & NAND_CHIPOPTIONS_MSK; - /* Check if chip is a not a samsung device. Do not clear the - * options for chips which are not having an extended id. + /* + * Check if chip is not a Samsung device. Do not clear the + * options for chips which do not have an extended id. */ if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize) chip->options &= ~NAND_SAMSUNG_LP_OPTIONS; ident_done: /* - * Set chip as a default. Board drivers can override it, if necessary + * Set chip as a default. Board drivers can override it, if necessary. */ chip->options |= NAND_NO_AUTOINCR; @@ -3077,21 +3094,21 @@ ident_done: /* * Check, if buswidth is correct. Hardware drivers should set - * chip correct ! + * chip correct! */ if (busw != (chip->options & NAND_BUSWIDTH_16)) { - printk(KERN_INFO "NAND device: Manufacturer ID:" - " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, - *dev_id, nand_manuf_ids[maf_idx].name, mtd->name); - printk(KERN_WARNING "NAND bus width %d instead %d bit\n", - (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, - busw ? 16 : 8); + pr_info("NAND device: Manufacturer ID:" + " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, + *dev_id, nand_manuf_ids[maf_idx].name, mtd->name); + pr_warn("NAND bus width %d instead %d bit\n", + (chip->options & NAND_BUSWIDTH_16) ? 16 : 8, + busw ? 16 : 8); return ERR_PTR(-EINVAL); } /* Calculate the address shift from the page size */ chip->page_shift = ffs(mtd->writesize) - 1; - /* Convert chipsize to number of pages per chip -1. */ + /* Convert chipsize to number of pages per chip -1 */ chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; chip->bbt_erase_shift = chip->phys_erase_shift = @@ -3121,7 +3138,7 @@ ident_done: if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) && (*maf_id == NAND_MFR_SAMSUNG || *maf_id == NAND_MFR_HYNIX)) - chip->options |= NAND_BBT_SCANLASTPAGE; + chip->bbt_options |= NAND_BBT_SCANLASTPAGE; else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) && (*maf_id == NAND_MFR_SAMSUNG || *maf_id == NAND_MFR_HYNIX || @@ -3129,17 +3146,7 @@ ident_done: *maf_id == NAND_MFR_AMD)) || (mtd->writesize == 2048 && *maf_id == NAND_MFR_MICRON)) - chip->options |= NAND_BBT_SCAN2NDPAGE; - - /* - * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6 - */ - if (!(busw & NAND_BUSWIDTH_16) && - *maf_id == NAND_MFR_STMICRO && - mtd->writesize == 2048) { - chip->options |= NAND_BBT_SCANBYTE1AND6; - chip->badblockpos = 0; - } + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; /* Check for AND chips with 4 page planes */ if (chip->options & NAND_4PAGE_ARRAY) @@ -3147,12 +3154,11 @@ ident_done: else chip->erase_cmd = single_erase_cmd; - /* Do not replace user supplied command function ! */ + /* Do not replace user supplied command function! */ if (mtd->writesize > 512 && chip->cmdfunc == nand_command) chip->cmdfunc = nand_command_lp; - /* TODO onfi flash name */ - printk(KERN_INFO "NAND device: Manufacturer ID:" + pr_info("NAND device: Manufacturer ID:" " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id, nand_manuf_ids[maf_idx].name, chip->onfi_version ? chip->onfi_params.model : type->name); @@ -3162,12 +3168,12 @@ ident_done: /** * nand_scan_ident - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure - * @maxchips: Number of chips to scan for - * @table: Alternative NAND ID table + * @mtd: MTD device structure + * @maxchips: number of chips to scan for + * @table: alternative NAND ID table * - * This is the first phase of the normal nand_scan() function. It - * reads the flash ID and sets up MTD fields accordingly. + * This is the first phase of the normal nand_scan() function. It reads the + * flash ID and sets up MTD fields accordingly. * * The mtd->owner field must be set to the module of the caller. */ @@ -3189,7 +3195,7 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, if (IS_ERR(type)) { if (!(chip->options & NAND_SCAN_SILENT_NODEV)) - printk(KERN_WARNING "No NAND device found.\n"); + pr_warn("No NAND device found\n"); chip->select_chip(mtd, -1); return PTR_ERR(type); } @@ -3207,7 +3213,7 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, break; } if (i > 1) - printk(KERN_INFO "%d NAND chips detected\n", i); + pr_info("%d NAND chips detected\n", i); /* Store the number of chips and calc total size for mtd */ chip->numchips = i; @@ -3220,11 +3226,11 @@ EXPORT_SYMBOL(nand_scan_ident); /** * nand_scan_tail - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure + * @mtd: MTD device structure * - * This is the second phase of the normal nand_scan() function. It - * fills out all the uninitialized function pointers with the defaults - * and scans for a bad block table if appropriate. + * This is the second phase of the normal nand_scan() function. It fills out + * all the uninitialized function pointers with the defaults and scans for a + * bad block table if appropriate. */ int nand_scan_tail(struct mtd_info *mtd) { @@ -3240,7 +3246,7 @@ int nand_scan_tail(struct mtd_info *mtd) chip->oob_poi = chip->buffers->databuf + mtd->writesize; /* - * If no default placement scheme is given, select an appropriate one + * If no default placement scheme is given, select an appropriate one. */ if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) { switch (mtd->oobsize) { @@ -3257,8 +3263,8 @@ int nand_scan_tail(struct mtd_info *mtd) chip->ecc.layout = &nand_oob_128; break; default: - printk(KERN_WARNING "No oob scheme defined for " - "oobsize %d\n", mtd->oobsize); + pr_warn("No oob scheme defined for oobsize %d\n", + mtd->oobsize); BUG(); } } @@ -3267,7 +3273,7 @@ int nand_scan_tail(struct mtd_info *mtd) chip->write_page = nand_write_page; /* - * check ECC mode, default to software if 3byte/512byte hardware ECC is + * Check ECC mode, default to software if 3byte/512byte hardware ECC is * selected and we have 256 byte pagesize fallback to software ECC */ @@ -3276,15 +3282,15 @@ int nand_scan_tail(struct mtd_info *mtd) /* Similar to NAND_ECC_HW, but a separate read_page handle */ if (!chip->ecc.calculate || !chip->ecc.correct || !chip->ecc.hwctl) { - printk(KERN_WARNING "No ECC functions supplied; " - "Hardware ECC not possible\n"); + pr_warn("No ECC functions supplied; " + "hardware ECC not possible\n"); BUG(); } if (!chip->ecc.read_page) chip->ecc.read_page = nand_read_page_hwecc_oob_first; case NAND_ECC_HW: - /* Use standard hwecc read page function ? */ + /* Use standard hwecc read page function? */ if (!chip->ecc.read_page) chip->ecc.read_page = nand_read_page_hwecc; if (!chip->ecc.write_page) @@ -3305,11 +3311,11 @@ int nand_scan_tail(struct mtd_info *mtd) chip->ecc.read_page == nand_read_page_hwecc || !chip->ecc.write_page || chip->ecc.write_page == nand_write_page_hwecc)) { - printk(KERN_WARNING "No ECC functions supplied; " - "Hardware ECC not possible\n"); + pr_warn("No ECC functions supplied; " + "hardware ECC not possible\n"); BUG(); } - /* Use standard syndrome read/write page function ? */ + /* Use standard syndrome read/write page function? */ if (!chip->ecc.read_page) chip->ecc.read_page = nand_read_page_syndrome; if (!chip->ecc.write_page) @@ -3325,9 +3331,9 @@ int nand_scan_tail(struct mtd_info *mtd) if (mtd->writesize >= chip->ecc.size) break; - printk(KERN_WARNING "%d byte HW ECC not possible on " - "%d byte page size, fallback to SW ECC\n", - chip->ecc.size, mtd->writesize); + pr_warn("%d byte HW ECC not possible on " + "%d byte page size, fallback to SW ECC\n", + chip->ecc.size, mtd->writesize); chip->ecc.mode = NAND_ECC_SOFT; case NAND_ECC_SOFT: @@ -3347,7 +3353,7 @@ int nand_scan_tail(struct mtd_info *mtd) case NAND_ECC_SOFT_BCH: if (!mtd_nand_has_bch()) { - printk(KERN_WARNING "CONFIG_MTD_ECC_BCH not enabled\n"); + pr_warn("CONFIG_MTD_ECC_BCH not enabled\n"); BUG(); } chip->ecc.calculate = nand_bch_calculate_ecc; @@ -3362,8 +3368,8 @@ int nand_scan_tail(struct mtd_info *mtd) /* * Board driver should supply ecc.size and ecc.bytes values to * select how many bits are correctable; see nand_bch_init() - * for details. - * Otherwise, default to 4 bits for large page devices + * for details. Otherwise, default to 4 bits for large page + * devices. */ if (!chip->ecc.size && (mtd->oobsize >= 64)) { chip->ecc.size = 512; @@ -3374,14 +3380,14 @@ int nand_scan_tail(struct mtd_info *mtd) chip->ecc.bytes, &chip->ecc.layout); if (!chip->ecc.priv) { - printk(KERN_WARNING "BCH ECC initialization failed!\n"); + pr_warn("BCH ECC initialization failed!\n"); BUG(); } break; case NAND_ECC_NONE: - printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. " - "This is not recommended !!\n"); + pr_warn("NAND_ECC_NONE selected by board driver. " + "This is not recommended!\n"); chip->ecc.read_page = nand_read_page_raw; chip->ecc.write_page = nand_write_page_raw; chip->ecc.read_oob = nand_read_oob_std; @@ -3393,14 +3399,19 @@ int nand_scan_tail(struct mtd_info *mtd) break; default: - printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n", - chip->ecc.mode); + pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode); BUG(); } + /* For many systems, the standard OOB write also works for raw */ + if (!chip->ecc.read_oob_raw) + chip->ecc.read_oob_raw = chip->ecc.read_oob; + if (!chip->ecc.write_oob_raw) + chip->ecc.write_oob_raw = chip->ecc.write_oob; + /* * The number of bytes available for a client to place data into - * the out of band area + * the out of band area. */ chip->ecc.layout->oobavail = 0; for (i = 0; chip->ecc.layout->oobfree[i].length @@ -3411,19 +3422,16 @@ int nand_scan_tail(struct mtd_info *mtd) /* * Set the number of read / write steps for one page depending on ECC - * mode + * mode. */ chip->ecc.steps = mtd->writesize / chip->ecc.size; if (chip->ecc.steps * chip->ecc.size != mtd->writesize) { - printk(KERN_WARNING "Invalid ecc parameters\n"); + pr_warn("Invalid ECC parameters\n"); BUG(); } chip->ecc.total = chip->ecc.steps * chip->ecc.bytes; - /* - * Allow subpage writes up to ecc.steps. Not possible for MLC - * FLASH. - */ + /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) { switch (chip->ecc.steps) { @@ -3481,9 +3489,11 @@ int nand_scan_tail(struct mtd_info *mtd) } EXPORT_SYMBOL(nand_scan_tail); -/* is_module_text_address() isn't exported, and it's mostly a pointless +/* + * is_module_text_address() isn't exported, and it's mostly a pointless * test if this is a module _anyway_ -- they'd have to try _really_ hard - * to call us from in-kernel code if the core NAND support is modular. */ + * to call us from in-kernel code if the core NAND support is modular. + */ #ifdef MODULE #define caller_is_module() (1) #else @@ -3493,15 +3503,13 @@ EXPORT_SYMBOL(nand_scan_tail); /** * nand_scan - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure - * @maxchips: Number of chips to scan for - * - * This fills out all the uninitialized function pointers - * with the defaults. - * The flash ID is read and the mtd/chip structures are - * filled with the appropriate values. - * The mtd->owner field must be set to the module of the caller + * @mtd: MTD device structure + * @maxchips: number of chips to scan for * + * This fills out all the uninitialized function pointers with the defaults. + * The flash ID is read and the mtd/chip structures are filled with the + * appropriate values. The mtd->owner field must be set to the module of the + * caller. */ int nand_scan(struct mtd_info *mtd, int maxchips) { @@ -3509,8 +3517,7 @@ int nand_scan(struct mtd_info *mtd, int maxchips) /* Many callers got this wrong, so check for it for a while... */ if (!mtd->owner && caller_is_module()) { - printk(KERN_CRIT "%s called with NULL mtd->owner!\n", - __func__); + pr_crit("%s called with NULL mtd->owner!\n", __func__); BUG(); } @@ -3523,8 +3530,8 @@ EXPORT_SYMBOL(nand_scan); /** * nand_release - [NAND Interface] Free resources held by the NAND device - * @mtd: MTD device structure -*/ + * @mtd: MTD device structure + */ void nand_release(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c index ccbeaa1e4a8e..69148ae3bf58 100644 --- a/drivers/mtd/nand/nand_bbt.c +++ b/drivers/mtd/nand/nand_bbt.c @@ -14,7 +14,7 @@ * * When nand_scan_bbt is called, then it tries to find the bad block table * depending on the options in the BBT descriptor(s). If no flash based BBT - * (NAND_USE_FLASH_BBT) is specified then the device is scanned for factory + * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory * marked good / bad blocks. This information is used to create a memory BBT. * Once a new bad block is discovered then the "factory" information is updated * on the device. @@ -36,9 +36,9 @@ * The table is marked in the OOB area with an ident pattern and a version * number which indicates which of both tables is more up to date. If the NAND * controller needs the complete OOB area for the ECC information then the - * option NAND_USE_FLASH_BBT_NO_OOB should be used: it moves the ident pattern - * and the version byte into the data area and the OOB area will remain - * untouched. + * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of + * course): it moves the ident pattern and the version byte into the data area + * and the OOB area will remain untouched. * * The table uses 2 bits per block * 11b: block is good @@ -67,6 +67,7 @@ #include <linux/bitops.h> #include <linux/delay.h> #include <linux/vmalloc.h> +#include <linux/export.h> static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) { @@ -80,17 +81,15 @@ static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) /** * check_pattern - [GENERIC] check if a pattern is in the buffer - * @buf: the buffer to search - * @len: the length of buffer to search - * @paglen: the pagelength - * @td: search pattern descriptor + * @buf: the buffer to search + * @len: the length of buffer to search + * @paglen: the pagelength + * @td: search pattern descriptor * - * Check for a pattern at the given place. Used to search bad block - * tables and good / bad block identifiers. - * If the SCAN_EMPTY option is set then check, if all bytes except the - * pattern area contain 0xff - * -*/ + * Check for a pattern at the given place. Used to search bad block tables and + * good / bad block identifiers. If the SCAN_EMPTY option is set then check, if + * all bytes except the pattern area contain 0xff. + */ static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) { int i, end = 0; @@ -109,32 +108,8 @@ static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_desc p += end; /* Compare the pattern */ - for (i = 0; i < td->len; i++) { - if (p[i] != td->pattern[i]) - return -1; - } - - /* Check both positions 1 and 6 for pattern? */ - if (td->options & NAND_BBT_SCANBYTE1AND6) { - if (td->options & NAND_BBT_SCANEMPTY) { - p += td->len; - end += NAND_SMALL_BADBLOCK_POS - td->offs; - /* Check region between positions 1 and 6 */ - for (i = 0; i < NAND_SMALL_BADBLOCK_POS - td->offs - td->len; - i++) { - if (*p++ != 0xff) - return -1; - } - } - else { - p += NAND_SMALL_BADBLOCK_POS - td->offs; - } - /* Compare the pattern */ - for (i = 0; i < td->len; i++) { - if (p[i] != td->pattern[i]) - return -1; - } - } + if (memcmp(p, td->pattern, td->len)) + return -1; if (td->options & NAND_BBT_SCANEMPTY) { p += td->len; @@ -149,14 +124,13 @@ static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_desc /** * check_short_pattern - [GENERIC] check if a pattern is in the buffer - * @buf: the buffer to search - * @td: search pattern descriptor - * - * Check for a pattern at the given place. Used to search bad block - * tables and good / bad block identifiers. Same as check_pattern, but - * no optional empty check + * @buf: the buffer to search + * @td: search pattern descriptor * -*/ + * Check for a pattern at the given place. Used to search bad block tables and + * good / bad block identifiers. Same as check_pattern, but no optional empty + * check. + */ static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) { int i; @@ -167,21 +141,14 @@ static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) if (p[td->offs + i] != td->pattern[i]) return -1; } - /* Need to check location 1 AND 6? */ - if (td->options & NAND_BBT_SCANBYTE1AND6) { - for (i = 0; i < td->len; i++) { - if (p[NAND_SMALL_BADBLOCK_POS + i] != td->pattern[i]) - return -1; - } - } return 0; } /** * add_marker_len - compute the length of the marker in data area - * @td: BBT descriptor used for computation + * @td: BBT descriptor used for computation * - * The length will be 0 if the markeris located in OOB area. + * The length will be 0 if the marker is located in OOB area. */ static u32 add_marker_len(struct nand_bbt_descr *td) { @@ -198,34 +165,33 @@ static u32 add_marker_len(struct nand_bbt_descr *td) /** * read_bbt - [GENERIC] Read the bad block table starting from page - * @mtd: MTD device structure - * @buf: temporary buffer - * @page: the starting page - * @num: the number of bbt descriptors to read - * @td: the bbt describtion table - * @offs: offset in the memory table + * @mtd: MTD device structure + * @buf: temporary buffer + * @page: the starting page + * @num: the number of bbt descriptors to read + * @td: the bbt describtion table + * @offs: offset in the memory table * * Read the bad block table starting from page. - * */ static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, struct nand_bbt_descr *td, int offs) { - int res, i, j, act = 0; + int res, ret = 0, i, j, act = 0; struct nand_chip *this = mtd->priv; size_t retlen, len, totlen; loff_t from; int bits = td->options & NAND_BBT_NRBITS_MSK; - uint8_t msk = (uint8_t) ((1 << bits) - 1); + uint8_t msk = (uint8_t)((1 << bits) - 1); u32 marker_len; int reserved_block_code = td->reserved_block_code; totlen = (num * bits) >> 3; marker_len = add_marker_len(td); - from = ((loff_t) page) << this->page_shift; + from = ((loff_t)page) << this->page_shift; while (totlen) { - len = min(totlen, (size_t) (1 << this->bbt_erase_shift)); + len = min(totlen, (size_t)(1 << this->bbt_erase_shift)); if (marker_len) { /* * In case the BBT marker is not in the OOB area it @@ -237,11 +203,18 @@ static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, } res = mtd->read(mtd, from, len, &retlen, buf); if (res < 0) { - if (retlen != len) { - printk(KERN_INFO "nand_bbt: Error reading bad block table\n"); + if (mtd_is_eccerr(res)) { + pr_info("nand_bbt: ECC error in BBT at " + "0x%012llx\n", from & ~mtd->writesize); + return res; + } else if (mtd_is_bitflip(res)) { + pr_info("nand_bbt: corrected error in BBT at " + "0x%012llx\n", from & ~mtd->writesize); + ret = res; + } else { + pr_info("nand_bbt: error reading BBT\n"); return res; } - printk(KERN_WARNING "nand_bbt: ECC error while reading bad block table\n"); } /* Analyse data */ @@ -252,17 +225,19 @@ static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, if (tmp == msk) continue; if (reserved_block_code && (tmp == reserved_block_code)) { - printk(KERN_DEBUG "nand_read_bbt: Reserved block at 0x%012llx\n", - (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift); + pr_info("nand_read_bbt: reserved block at 0x%012llx\n", + (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift); this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06); mtd->ecc_stats.bbtblocks++; continue; } - /* Leave it for now, if its matured we can move this - * message to MTD_DEBUG_LEVEL0 */ - printk(KERN_DEBUG "nand_read_bbt: Bad block at 0x%012llx\n", - (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift); - /* Factory marked bad or worn out ? */ + /* + * Leave it for now, if it's matured we can + * move this message to pr_debug. + */ + pr_info("nand_read_bbt: bad block at 0x%012llx\n", + (loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift); + /* Factory marked bad or worn out? */ if (tmp == 0) this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06); else @@ -273,20 +248,20 @@ static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, totlen -= len; from += len; } - return 0; + return ret; } /** * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @chip: read the table for a specific chip, -1 read all chips. - * Applies only if NAND_BBT_PERCHIP option is set + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @chip: read the table for a specific chip, -1 read all chips; applies only if + * NAND_BBT_PERCHIP option is set * - * Read the bad block table for all chips starting at a given page - * We assume that the bbt bits are in consecutive order. -*/ + * Read the bad block table for all chips starting at a given page. We assume + * that the bbt bits are in consecutive order. + */ static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) { struct nand_chip *this = mtd->priv; @@ -312,9 +287,7 @@ static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc return 0; } -/* - * BBT marker is in the first page, no OOB. - */ +/* BBT marker is in the first page, no OOB */ static int scan_read_raw_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, struct nand_bbt_descr *td) { @@ -328,35 +301,26 @@ static int scan_read_raw_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, return mtd->read(mtd, offs, len, &retlen, buf); } -/* - * Scan read raw data from flash - */ +/* Scan read raw data from flash */ static int scan_read_raw_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, size_t len) { struct mtd_oob_ops ops; int res; - ops.mode = MTD_OOB_RAW; + ops.mode = MTD_OPS_RAW; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; - while (len > 0) { - if (len <= mtd->writesize) { - ops.oobbuf = buf + len; - ops.datbuf = buf; - ops.len = len; - return mtd->read_oob(mtd, offs, &ops); - } else { - ops.oobbuf = buf + mtd->writesize; - ops.datbuf = buf; - ops.len = mtd->writesize; - res = mtd->read_oob(mtd, offs, &ops); + ops.datbuf = buf; + ops.len = min(len, (size_t)mtd->writesize); + ops.oobbuf = buf + ops.len; - if (res) - return res; - } + res = mtd->read_oob(mtd, offs, &ops); + + if (res) + return res; buf += mtd->oobsize + mtd->writesize; len -= mtd->writesize; @@ -373,15 +337,13 @@ static int scan_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t offs, return scan_read_raw_oob(mtd, buf, offs, len); } -/* - * Scan write data with oob to flash - */ +/* Scan write data with oob to flash */ static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len, uint8_t *buf, uint8_t *oob) { struct mtd_oob_ops ops; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; ops.datbuf = buf; @@ -402,15 +364,14 @@ static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td) /** * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @md: descriptor for the bad block table mirror + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror * - * Read the bad block table(s) for all chips starting at a given page - * We assume that the bbt bits are in consecutive order. - * -*/ + * Read the bad block table(s) for all chips starting at a given page. We + * assume that the bbt bits are in consecutive order. + */ static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) { @@ -421,8 +382,8 @@ static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, scan_read_raw(mtd, buf, (loff_t)td->pages[0] << this->page_shift, mtd->writesize, td); td->version[0] = buf[bbt_get_ver_offs(mtd, td)]; - printk(KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", - td->pages[0], td->version[0]); + pr_info("Bad block table at page %d, version 0x%02X\n", + td->pages[0], td->version[0]); } /* Read the mirror version, if available */ @@ -430,15 +391,13 @@ static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, scan_read_raw(mtd, buf, (loff_t)md->pages[0] << this->page_shift, mtd->writesize, td); md->version[0] = buf[bbt_get_ver_offs(mtd, md)]; - printk(KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", - md->pages[0], md->version[0]); + pr_info("Bad block table at page %d, version 0x%02X\n", + md->pages[0], md->version[0]); } return 1; } -/* - * Scan a given block full - */ +/* Scan a given block full */ static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd, loff_t offs, uint8_t *buf, size_t readlen, int scanlen, int len) @@ -446,7 +405,8 @@ static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd, int ret, j; ret = scan_read_raw_oob(mtd, buf, offs, readlen); - if (ret) + /* Ignore ECC errors when checking for BBM */ + if (ret && !mtd_is_bitflip_or_eccerr(ret)) return ret; for (j = 0; j < len; j++, buf += scanlen) { @@ -456,9 +416,7 @@ static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd, return 0; } -/* - * Scan a given block partially - */ +/* Scan a given block partially */ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, loff_t offs, uint8_t *buf, int len) { @@ -469,16 +427,16 @@ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, ops.oobbuf = buf; ops.ooboffs = 0; ops.datbuf = NULL; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; for (j = 0; j < len; j++) { /* - * Read the full oob until read_oob is fixed to - * handle single byte reads for 16 bit - * buswidth + * Read the full oob until read_oob is fixed to handle single + * byte reads for 16 bit buswidth. */ ret = mtd->read_oob(mtd, offs, &ops); - if (ret) + /* Ignore ECC errors when checking for BBM */ + if (ret && !mtd_is_bitflip_or_eccerr(ret)) return ret; if (check_short_pattern(buf, bd)) @@ -491,14 +449,14 @@ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, /** * create_bbt - [GENERIC] Create a bad block table by scanning the device - * @mtd: MTD device structure - * @buf: temporary buffer - * @bd: descriptor for the good/bad block search pattern - * @chip: create the table for a specific chip, -1 read all chips. - * Applies only if NAND_BBT_PERCHIP option is set + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * @chip: create the table for a specific chip, -1 read all chips; applies only + * if NAND_BBT_PERCHIP option is set * - * Create a bad block table by scanning the device - * for the given good/bad block identify pattern + * Create a bad block table by scanning the device for the given good/bad block + * identify pattern. */ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) @@ -509,7 +467,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, loff_t from; size_t readlen; - printk(KERN_INFO "Scanning device for bad blocks\n"); + pr_info("Scanning device for bad blocks\n"); if (bd->options & NAND_BBT_SCANALLPAGES) len = 1 << (this->bbt_erase_shift - this->page_shift); @@ -529,14 +487,16 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, } if (chip == -1) { - /* Note that numblocks is 2 * (real numblocks) here, see i+=2 - * below as it makes shifting and masking less painful */ + /* + * Note that numblocks is 2 * (real numblocks) here, see i+=2 + * below as it makes shifting and masking less painful + */ numblocks = mtd->size >> (this->bbt_erase_shift - 1); startblock = 0; from = 0; } else { if (chip >= this->numchips) { - printk(KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n", + pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n", chip + 1, this->numchips); return -EINVAL; } @@ -546,7 +506,7 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, from = (loff_t)startblock << (this->bbt_erase_shift - 1); } - if (this->options & NAND_BBT_SCANLASTPAGE) + if (this->bbt_options & NAND_BBT_SCANLASTPAGE) from += mtd->erasesize - (mtd->writesize * len); for (i = startblock; i < numblocks;) { @@ -565,8 +525,8 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, if (ret) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); - printk(KERN_WARNING "Bad eraseblock %d at 0x%012llx\n", - i >> 1, (unsigned long long)from); + pr_warn("Bad eraseblock %d at 0x%012llx\n", + i >> 1, (unsigned long long)from); mtd->ecc_stats.badblocks++; } @@ -578,20 +538,18 @@ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, /** * search_bbt - [GENERIC] scan the device for a specific bad block table - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table * - * Read the bad block table by searching for a given ident pattern. - * Search is preformed either from the beginning up or from the end of - * the device downwards. The search starts always at the start of a - * block. - * If the option NAND_BBT_PERCHIP is given, each chip is searched - * for a bbt, which contains the bad block information of this chip. - * This is necessary to provide support for certain DOC devices. + * Read the bad block table by searching for a given ident pattern. Search is + * preformed either from the beginning up or from the end of the device + * downwards. The search starts always at the start of a block. If the option + * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains + * the bad block information of this chip. This is necessary to provide support + * for certain DOC devices. * - * The bbt ident pattern resides in the oob area of the first page - * in a block. + * The bbt ident pattern resides in the oob area of the first page in a block. */ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) { @@ -602,7 +560,7 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr int bbtblocks; int blocktopage = this->bbt_erase_shift - this->page_shift; - /* Search direction top -> down ? */ + /* Search direction top -> down? */ if (td->options & NAND_BBT_LASTBLOCK) { startblock = (mtd->size >> this->bbt_erase_shift) - 1; dir = -1; @@ -611,7 +569,7 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr dir = 1; } - /* Do we have a bbt per chip ? */ + /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chips = this->numchips; bbtblocks = this->chipsize >> this->bbt_erase_shift; @@ -650,23 +608,23 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr /* Check, if we found a bbt for each requested chip */ for (i = 0; i < chips; i++) { if (td->pages[i] == -1) - printk(KERN_WARNING "Bad block table not found for chip %d\n", i); + pr_warn("Bad block table not found for chip %d\n", i); else - printk(KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], - td->version[i]); + pr_info("Bad block table found at page %d, version " + "0x%02X\n", td->pages[i], td->version[i]); } return 0; } /** * search_read_bbts - [GENERIC] scan the device for bad block table(s) - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @md: descriptor for the bad block table mirror + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror * - * Search and read the bad block table(s) -*/ + * Search and read the bad block table(s). + */ static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) { /* Search the primary table */ @@ -682,16 +640,14 @@ static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt /** * write_bbt - [GENERIC] (Re)write the bad block table + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * @chipsel: selector for a specific chip, -1 for all * - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @md: descriptor for the bad block table mirror - * @chipsel: selector for a specific chip, -1 for all - * - * (Re)write the bad block table - * -*/ + * (Re)write the bad block table. + */ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel) @@ -710,14 +666,14 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, ops.ooblen = mtd->oobsize; ops.ooboffs = 0; ops.datbuf = NULL; - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; if (!rcode) rcode = 0xff; - /* Write bad block table per chip rather than per device ? */ + /* Write bad block table per chip rather than per device? */ if (td->options & NAND_BBT_PERCHIP) { numblocks = (int)(this->chipsize >> this->bbt_erase_shift); - /* Full device write or specific chip ? */ + /* Full device write or specific chip? */ if (chipsel == -1) { nrchips = this->numchips; } else { @@ -731,8 +687,8 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, /* Loop through the chips */ for (; chip < nrchips; chip++) { - - /* There was already a version of the table, reuse the page + /* + * There was already a version of the table, reuse the page * This applies for absolute placement too, as we have the * page nr. in td->pages. */ @@ -741,8 +697,10 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, goto write; } - /* Automatic placement of the bad block table */ - /* Search direction top -> down ? */ + /* + * Automatic placement of the bad block table. Search direction + * top -> down? + */ if (td->options & NAND_BBT_LASTBLOCK) { startblock = numblocks * (chip + 1) - 1; dir = -1; @@ -766,7 +724,7 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, if (!md || md->pages[chip] != page) goto write; } - printk(KERN_ERR "No space left to write bad block table\n"); + pr_err("No space left to write bad block table\n"); return -ENOSPC; write: @@ -791,24 +749,22 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, bbtoffs = chip * (numblocks >> 2); - to = ((loff_t) page) << this->page_shift; + to = ((loff_t)page) << this->page_shift; - /* Must we save the block contents ? */ + /* Must we save the block contents? */ if (td->options & NAND_BBT_SAVECONTENT) { /* Make it block aligned */ - to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1)); + to &= ~((loff_t)((1 << this->bbt_erase_shift) - 1)); len = 1 << this->bbt_erase_shift; res = mtd->read(mtd, to, len, &retlen, buf); if (res < 0) { if (retlen != len) { - printk(KERN_INFO "nand_bbt: Error " - "reading block for writing " - "the bad block table\n"); + pr_info("nand_bbt: error reading block " + "for writing the bad block table\n"); return res; } - printk(KERN_WARNING "nand_bbt: ECC error " - "while reading block for writing " - "bad block table\n"); + pr_warn("nand_bbt: ECC error while reading " + "block for writing bad block table\n"); } /* Read oob data */ ops.ooblen = (len >> this->page_shift) * mtd->oobsize; @@ -821,19 +777,19 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, pageoffs = page - (int)(to >> this->page_shift); offs = pageoffs << this->page_shift; /* Preset the bbt area with 0xff */ - memset(&buf[offs], 0xff, (size_t) (numblocks >> sft)); + memset(&buf[offs], 0xff, (size_t)(numblocks >> sft)); ooboffs = len + (pageoffs * mtd->oobsize); } else if (td->options & NAND_BBT_NO_OOB) { ooboffs = 0; offs = td->len; - /* the version byte */ + /* The version byte */ if (td->options & NAND_BBT_VERSION) offs++; /* Calc length */ - len = (size_t) (numblocks >> sft); + len = (size_t)(numblocks >> sft); len += offs; - /* Make it page aligned ! */ + /* Make it page aligned! */ len = ALIGN(len, mtd->writesize); /* Preset the buffer with 0xff */ memset(buf, 0xff, len); @@ -841,8 +797,8 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, memcpy(buf, td->pattern, td->len); } else { /* Calc length */ - len = (size_t) (numblocks >> sft); - /* Make it page aligned ! */ + len = (size_t)(numblocks >> sft); + /* Make it page aligned! */ len = ALIGN(len, mtd->writesize); /* Preset the buffer with 0xff */ memset(buf, 0xff, len + @@ -856,13 +812,13 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, if (td->options & NAND_BBT_VERSION) buf[ooboffs + td->veroffs] = td->version[chip]; - /* walk through the memory table */ + /* Walk through the memory table */ for (i = 0; i < numblocks;) { uint8_t dat; dat = this->bbt[bbtoffs + (i >> 2)]; for (j = 0; j < 4; j++, i++) { int sftcnt = (i << (3 - sft)) & sftmsk; - /* Do not store the reserved bbt blocks ! */ + /* Do not store the reserved bbt blocks! */ buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt); dat >>= 2; @@ -883,8 +839,8 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, if (res < 0) goto outerr; - printk(KERN_DEBUG "Bad block table written to 0x%012llx, version " - "0x%02X\n", (unsigned long long)to, td->version[chip]); + pr_info("Bad block table written to 0x%012llx, version 0x%02X\n", + (unsigned long long)to, td->version[chip]); /* Mark it as used */ td->pages[chip] = page; @@ -892,19 +848,18 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, return 0; outerr: - printk(KERN_WARNING - "nand_bbt: Error while writing bad block table %d\n", res); + pr_warn("nand_bbt: error while writing bad block table %d\n", res); return res; } /** * nand_memory_bbt - [GENERIC] create a memory based bad block table - * @mtd: MTD device structure - * @bd: descriptor for the good/bad block search pattern + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern * - * The function creates a memory based bbt by scanning the device - * for manufacturer / software marked good / bad blocks -*/ + * The function creates a memory based bbt by scanning the device for + * manufacturer / software marked good / bad blocks. + */ static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; @@ -915,25 +870,24 @@ static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *b /** * check_create - [GENERIC] create and write bbt(s) if necessary - * @mtd: MTD device structure - * @buf: temporary buffer - * @bd: descriptor for the good/bad block search pattern + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern * - * The function checks the results of the previous call to read_bbt - * and creates / updates the bbt(s) if necessary - * Creation is necessary if no bbt was found for the chip/device - * Update is necessary if one of the tables is missing or the - * version nr. of one table is less than the other -*/ + * The function checks the results of the previous call to read_bbt and creates + * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found + * for the chip/device. Update is necessary if one of the tables is missing or + * the version nr. of one table is less than the other. + */ static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd) { - int i, chips, writeops, chipsel, res; + int i, chips, writeops, create, chipsel, res, res2; struct nand_chip *this = mtd->priv; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; struct nand_bbt_descr *rd, *rd2; - /* Do we have a bbt per chip ? */ + /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) chips = this->numchips; else @@ -941,86 +895,98 @@ static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc for (i = 0; i < chips; i++) { writeops = 0; + create = 0; rd = NULL; rd2 = NULL; - /* Per chip or per device ? */ + res = res2 = 0; + /* Per chip or per device? */ chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; - /* Mirrored table available ? */ + /* Mirrored table available? */ if (md) { if (td->pages[i] == -1 && md->pages[i] == -1) { + create = 1; writeops = 0x03; - goto create; - } - - if (td->pages[i] == -1) { + } else if (td->pages[i] == -1) { rd = md; - td->version[i] = md->version[i]; - writeops = 1; - goto writecheck; - } - - if (md->pages[i] == -1) { + writeops = 0x01; + } else if (md->pages[i] == -1) { rd = td; - md->version[i] = td->version[i]; - writeops = 2; - goto writecheck; - } - - if (td->version[i] == md->version[i]) { + writeops = 0x02; + } else if (td->version[i] == md->version[i]) { rd = td; if (!(td->options & NAND_BBT_VERSION)) rd2 = md; - goto writecheck; - } - - if (((int8_t) (td->version[i] - md->version[i])) > 0) { + } else if (((int8_t)(td->version[i] - md->version[i])) > 0) { rd = td; - md->version[i] = td->version[i]; - writeops = 2; + writeops = 0x02; } else { rd = md; - td->version[i] = md->version[i]; - writeops = 1; + writeops = 0x01; } - - goto writecheck; - } else { if (td->pages[i] == -1) { + create = 1; writeops = 0x01; - goto create; + } else { + rd = td; } - rd = td; - goto writecheck; } - create: - /* Create the bad block table by scanning the device ? */ - if (!(td->options & NAND_BBT_CREATE)) - continue; - /* Create the table in memory by scanning the chip(s) */ - if (!(this->options & NAND_CREATE_EMPTY_BBT)) - create_bbt(mtd, buf, bd, chipsel); - - td->version[i] = 1; - if (md) - md->version[i] = 1; - writecheck: - /* read back first ? */ - if (rd) - read_abs_bbt(mtd, buf, rd, chipsel); - /* If they weren't versioned, read both. */ - if (rd2) - read_abs_bbt(mtd, buf, rd2, chipsel); - - /* Write the bad block table to the device ? */ + if (create) { + /* Create the bad block table by scanning the device? */ + if (!(td->options & NAND_BBT_CREATE)) + continue; + + /* Create the table in memory by scanning the chip(s) */ + if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY)) + create_bbt(mtd, buf, bd, chipsel); + + td->version[i] = 1; + if (md) + md->version[i] = 1; + } + + /* Read back first? */ + if (rd) { + res = read_abs_bbt(mtd, buf, rd, chipsel); + if (mtd_is_eccerr(res)) { + /* Mark table as invalid */ + rd->pages[i] = -1; + rd->version[i] = 0; + i--; + continue; + } + } + /* If they weren't versioned, read both */ + if (rd2) { + res2 = read_abs_bbt(mtd, buf, rd2, chipsel); + if (mtd_is_eccerr(res2)) { + /* Mark table as invalid */ + rd2->pages[i] = -1; + rd2->version[i] = 0; + i--; + continue; + } + } + + /* Scrub the flash table(s)? */ + if (mtd_is_bitflip(res) || mtd_is_bitflip(res2)) + writeops = 0x03; + + /* Update version numbers before writing */ + if (md) { + td->version[i] = max(td->version[i], md->version[i]); + md->version[i] = td->version[i]; + } + + /* Write the bad block table to the device? */ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { res = write_bbt(mtd, buf, td, md, chipsel); if (res < 0) return res; } - /* Write the mirror bad block table to the device ? */ + /* Write the mirror bad block table to the device? */ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { res = write_bbt(mtd, buf, md, td, chipsel); if (res < 0) @@ -1032,20 +998,19 @@ static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_desc /** * mark_bbt_regions - [GENERIC] mark the bad block table regions - * @mtd: MTD device structure - * @td: bad block table descriptor + * @mtd: MTD device structure + * @td: bad block table descriptor * - * The bad block table regions are marked as "bad" to prevent - * accidental erasures / writes. The regions are identified by - * the mark 0x02. -*/ + * The bad block table regions are marked as "bad" to prevent accidental + * erasures / writes. The regions are identified by the mark 0x02. + */ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) { struct nand_chip *this = mtd->priv; int i, j, chips, block, nrblocks, update; uint8_t oldval, newval; - /* Do we have a bbt per chip ? */ + /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chips = this->numchips; nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); @@ -1082,9 +1047,11 @@ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) update = 1; block += 2; } - /* If we want reserved blocks to be recorded to flash, and some - new ones have been marked, then we need to update the stored - bbts. This should only happen once. */ + /* + * If we want reserved blocks to be recorded to flash, and some + * new ones have been marked, then we need to update the stored + * bbts. This should only happen once. + */ if (update && td->reserved_block_code) nand_update_bbt(mtd, (loff_t)(block - 2) << (this->bbt_erase_shift - 1)); } @@ -1092,8 +1059,8 @@ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) /** * verify_bbt_descr - verify the bad block description - * @mtd: MTD device structure - * @bd: the table to verify + * @mtd: MTD device structure + * @bd: the table to verify * * This functions performs a few sanity checks on the bad block description * table. @@ -1111,16 +1078,16 @@ static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd) pattern_len = bd->len; bits = bd->options & NAND_BBT_NRBITS_MSK; - BUG_ON((this->options & NAND_USE_FLASH_BBT_NO_OOB) && - !(this->options & NAND_USE_FLASH_BBT)); + BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) && + !(this->bbt_options & NAND_BBT_USE_FLASH)); BUG_ON(!bits); if (bd->options & NAND_BBT_VERSION) pattern_len++; if (bd->options & NAND_BBT_NO_OOB) { - BUG_ON(!(this->options & NAND_USE_FLASH_BBT)); - BUG_ON(!(this->options & NAND_USE_FLASH_BBT_NO_OOB)); + BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH)); + BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB)); BUG_ON(bd->offs); if (bd->options & NAND_BBT_VERSION) BUG_ON(bd->veroffs != bd->len); @@ -1140,18 +1107,16 @@ static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd) /** * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) - * @mtd: MTD device structure - * @bd: descriptor for the good/bad block search pattern - * - * The function checks, if a bad block table(s) is/are already - * available. If not it scans the device for manufacturer - * marked good / bad blocks and writes the bad block table(s) to - * the selected place. + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern * - * The bad block table memory is allocated here. It must be freed - * by calling the nand_free_bbt function. + * The function checks, if a bad block table(s) is/are already available. If + * not it scans the device for manufacturer marked good / bad blocks and writes + * the bad block table(s) to the selected place. * -*/ + * The bad block table memory is allocated here. It must be freed by calling + * the nand_free_bbt function. + */ int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; @@ -1161,19 +1126,21 @@ int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) struct nand_bbt_descr *md = this->bbt_md; len = mtd->size >> (this->bbt_erase_shift + 2); - /* Allocate memory (2bit per block) and clear the memory bad block table */ + /* + * Allocate memory (2bit per block) and clear the memory bad block + * table. + */ this->bbt = kzalloc(len, GFP_KERNEL); - if (!this->bbt) { - printk(KERN_ERR "nand_scan_bbt: Out of memory\n"); + if (!this->bbt) return -ENOMEM; - } - /* If no primary table decriptor is given, scan the device - * to build a memory based bad block table + /* + * If no primary table decriptor is given, scan the device to build a + * memory based bad block table. */ if (!td) { if ((res = nand_memory_bbt(mtd, bd))) { - printk(KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT\n"); + pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n"); kfree(this->bbt); this->bbt = NULL; } @@ -1187,13 +1154,12 @@ int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) len += (len >> this->page_shift) * mtd->oobsize; buf = vmalloc(len); if (!buf) { - printk(KERN_ERR "nand_bbt: Out of memory\n"); kfree(this->bbt); this->bbt = NULL; return -ENOMEM; } - /* Is the bbt at a given page ? */ + /* Is the bbt at a given page? */ if (td->options & NAND_BBT_ABSPAGE) { res = read_abs_bbts(mtd, buf, td, md); } else { @@ -1215,15 +1181,15 @@ int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) /** * nand_update_bbt - [NAND Interface] update bad block table(s) - * @mtd: MTD device structure - * @offs: the offset of the newly marked block + * @mtd: MTD device structure + * @offs: the offset of the newly marked block * - * The function updates the bad block table(s) -*/ + * The function updates the bad block table(s). + */ int nand_update_bbt(struct mtd_info *mtd, loff_t offs) { struct nand_chip *this = mtd->priv; - int len, res = 0, writeops = 0; + int len, res = 0; int chip, chipsel; uint8_t *buf; struct nand_bbt_descr *td = this->bbt_td; @@ -1236,14 +1202,10 @@ int nand_update_bbt(struct mtd_info *mtd, loff_t offs) len = (1 << this->bbt_erase_shift); len += (len >> this->page_shift) * mtd->oobsize; buf = kmalloc(len, GFP_KERNEL); - if (!buf) { - printk(KERN_ERR "nand_update_bbt: Out of memory\n"); + if (!buf) return -ENOMEM; - } - - writeops = md != NULL ? 0x03 : 0x01; - /* Do we have a bbt per chip ? */ + /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chip = (int)(offs >> this->chip_shift); chipsel = chip; @@ -1256,14 +1218,14 @@ int nand_update_bbt(struct mtd_info *mtd, loff_t offs) if (md) md->version[chip]++; - /* Write the bad block table to the device ? */ - if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { + /* Write the bad block table to the device? */ + if (td->options & NAND_BBT_WRITE) { res = write_bbt(mtd, buf, td, md, chipsel); if (res < 0) goto out; } - /* Write the mirror bad block table to the device ? */ - if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { + /* Write the mirror bad block table to the device? */ + if (md && (md->options & NAND_BBT_WRITE)) { res = write_bbt(mtd, buf, md, td, chipsel); } @@ -1272,8 +1234,10 @@ int nand_update_bbt(struct mtd_info *mtd, loff_t offs) return res; } -/* Define some generic bad / good block scan pattern which are used - * while scanning a device for factory marked good / bad blocks. */ +/* + * Define some generic bad / good block scan pattern which are used + * while scanning a device for factory marked good / bad blocks. + */ static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 }; @@ -1285,8 +1249,7 @@ static struct nand_bbt_descr agand_flashbased = { .pattern = scan_agand_pattern }; -/* Generic flash bbt decriptors -*/ +/* Generic flash bbt descriptors */ static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; @@ -1330,31 +1293,27 @@ static struct nand_bbt_descr bbt_mirror_no_bbt_descr = { .pattern = mirror_pattern }; -#define BBT_SCAN_OPTIONS (NAND_BBT_SCANLASTPAGE | NAND_BBT_SCAN2NDPAGE | \ - NAND_BBT_SCANBYTE1AND6) +#define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB) /** - * nand_create_default_bbt_descr - [Internal] Creates a BBT descriptor structure - * @this: NAND chip to create descriptor for + * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure + * @this: NAND chip to create descriptor for * * This function allocates and initializes a nand_bbt_descr for BBM detection - * based on the properties of "this". The new descriptor is stored in + * based on the properties of @this. The new descriptor is stored in * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when * passed to this function. - * */ -static int nand_create_default_bbt_descr(struct nand_chip *this) +static int nand_create_badblock_pattern(struct nand_chip *this) { struct nand_bbt_descr *bd; if (this->badblock_pattern) { - printk(KERN_WARNING "BBT descr already allocated; not replacing.\n"); + pr_warn("Bad block pattern already allocated; not replacing\n"); return -EINVAL; } bd = kzalloc(sizeof(*bd), GFP_KERNEL); - if (!bd) { - printk(KERN_ERR "nand_create_default_bbt_descr: Out of memory\n"); + if (!bd) return -ENOMEM; - } - bd->options = this->options & BBT_SCAN_OPTIONS; + bd->options = this->bbt_options & BADBLOCK_SCAN_MASK; bd->offs = this->badblockpos; bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1; bd->pattern = scan_ff_pattern; @@ -1365,22 +1324,20 @@ static int nand_create_default_bbt_descr(struct nand_chip *this) /** * nand_default_bbt - [NAND Interface] Select a default bad block table for the device - * @mtd: MTD device structure - * - * This function selects the default bad block table - * support for the device and calls the nand_scan_bbt function + * @mtd: MTD device structure * -*/ + * This function selects the default bad block table support for the device and + * calls the nand_scan_bbt function. + */ int nand_default_bbt(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; - /* Default for AG-AND. We must use a flash based - * bad block table as the devices have factory marked - * _good_ blocks. Erasing those blocks leads to loss - * of the good / bad information, so we _must_ store - * this information in a good / bad table during - * startup + /* + * Default for AG-AND. We must use a flash based bad block table as the + * devices have factory marked _good_ blocks. Erasing those blocks + * leads to loss of the good / bad information, so we _must_ store this + * information in a good / bad table during startup. */ if (this->options & NAND_IS_AND) { /* Use the default pattern descriptors */ @@ -1388,15 +1345,15 @@ int nand_default_bbt(struct mtd_info *mtd) this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; } - this->options |= NAND_USE_FLASH_BBT; + this->bbt_options |= NAND_BBT_USE_FLASH; return nand_scan_bbt(mtd, &agand_flashbased); } - /* Is a flash based bad block table requested ? */ - if (this->options & NAND_USE_FLASH_BBT) { + /* Is a flash based bad block table requested? */ + if (this->bbt_options & NAND_BBT_USE_FLASH) { /* Use the default pattern descriptors */ if (!this->bbt_td) { - if (this->options & NAND_USE_FLASH_BBT_NO_OOB) { + if (this->bbt_options & NAND_BBT_NO_OOB) { this->bbt_td = &bbt_main_no_bbt_descr; this->bbt_md = &bbt_mirror_no_bbt_descr; } else { @@ -1410,18 +1367,17 @@ int nand_default_bbt(struct mtd_info *mtd) } if (!this->badblock_pattern) - nand_create_default_bbt_descr(this); + nand_create_badblock_pattern(this); return nand_scan_bbt(mtd, this->badblock_pattern); } /** * nand_isbad_bbt - [NAND Interface] Check if a block is bad - * @mtd: MTD device structure - * @offs: offset in the device - * @allowbbt: allow access to bad block table region - * -*/ + * @mtd: MTD device structure + * @offs: offset in the device + * @allowbbt: allow access to bad block table region + */ int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) { struct nand_chip *this = mtd->priv; @@ -1432,8 +1388,9 @@ int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) block = (int)(offs >> (this->bbt_erase_shift - 1)); res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03; - DEBUG(MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", - (unsigned int)offs, block >> 1, res); + pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: " + "(block %d) 0x%02x\n", + (unsigned int)offs, block >> 1, res); switch ((int)res) { case 0x00: diff --git a/drivers/mtd/nand/nand_bch.c b/drivers/mtd/nand/nand_bch.c index 0f931e757116..3803e0bba23b 100644 --- a/drivers/mtd/nand/nand_bch.c +++ b/drivers/mtd/nand/nand_bch.c @@ -93,8 +93,8 @@ int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf, buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7)); /* else error in ecc, no action needed */ - DEBUG(MTD_DEBUG_LEVEL0, "%s: corrected bitflip %u\n", - __func__, errloc[i]); + pr_debug("%s: corrected bitflip %u\n", __func__, + errloc[i]); } } else if (count < 0) { printk(KERN_ERR "ecc unrecoverable error\n"); diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c index 271b8e735e8f..b7cfe0d37121 100644 --- a/drivers/mtd/nand/nand_ecc.c +++ b/drivers/mtd/nand/nand_ecc.c @@ -110,7 +110,7 @@ static const char bitsperbyte[256] = { /* * addressbits is a lookup table to filter out the bits from the xor-ed - * ecc data that identify the faulty location. + * ECC data that identify the faulty location. * this is only used for repairing parity * see the comments in nand_correct_data for more details */ @@ -153,7 +153,7 @@ static const char addressbits[256] = { * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte * block * @buf: input buffer with raw data - * @eccsize: data bytes per ecc step (256 or 512) + * @eccsize: data bytes per ECC step (256 or 512) * @code: output buffer with ECC */ void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize, @@ -348,7 +348,7 @@ void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize, rp17 = (par ^ rp16) & 0xff; /* - * Finally calculate the ecc bits. + * Finally calculate the ECC bits. * Again here it might seem that there are performance optimisations * possible, but benchmarks showed that on the system this is developed * the code below is the fastest @@ -436,7 +436,7 @@ EXPORT_SYMBOL(nand_calculate_ecc); * @buf: raw data read from the chip * @read_ecc: ECC from the chip * @calc_ecc: the ECC calculated from raw data - * @eccsize: data bytes per ecc step (256 or 512) + * @eccsize: data bytes per ECC step (256 or 512) * * Detect and correct a 1 bit error for eccsize byte block */ @@ -505,7 +505,7 @@ int __nand_correct_data(unsigned char *buf, } /* count nr of bits; use table lookup, faster than calculating it */ if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) - return 1; /* error in ecc data; no action needed */ + return 1; /* error in ECC data; no action needed */ printk(KERN_ERR "uncorrectable error : "); return -1; diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c index 357e8c5252a8..34c03be77301 100644 --- a/drivers/mtd/nand/nandsim.c +++ b/drivers/mtd/nand/nandsim.c @@ -2273,9 +2273,9 @@ static int __init ns_init_module(void) switch (bbt) { case 2: - chip->options |= NAND_USE_FLASH_BBT_NO_OOB; + chip->bbt_options |= NAND_BBT_NO_OOB; case 1: - chip->options |= NAND_USE_FLASH_BBT; + chip->bbt_options |= NAND_BBT_USE_FLASH; case 0: break; default: diff --git a/drivers/mtd/nand/ndfc.c b/drivers/mtd/nand/ndfc.c index ea2dea8a9c88..ee1713907b92 100644 --- a/drivers/mtd/nand/ndfc.c +++ b/drivers/mtd/nand/ndfc.c @@ -42,7 +42,6 @@ struct ndfc_controller { struct nand_chip chip; int chip_select; struct nand_hw_control ndfc_control; - struct mtd_partition *parts; }; static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS]; @@ -159,13 +158,9 @@ static int ndfc_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) static int ndfc_chip_init(struct ndfc_controller *ndfc, struct device_node *node) { -#ifdef CONFIG_MTD_CMDLINE_PARTS - static const char *part_types[] = { "cmdlinepart", NULL }; -#else - static const char *part_types[] = { NULL }; -#endif struct device_node *flash_np; struct nand_chip *chip = &ndfc->chip; + struct mtd_part_parser_data ppdata; int ret; chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA; @@ -193,6 +188,7 @@ static int ndfc_chip_init(struct ndfc_controller *ndfc, if (!flash_np) return -ENODEV; + ppdata->of_node = flash_np; ndfc->mtd.name = kasprintf(GFP_KERNEL, "%s.%s", dev_name(&ndfc->ofdev->dev), flash_np->name); if (!ndfc->mtd.name) { @@ -204,18 +200,7 @@ static int ndfc_chip_init(struct ndfc_controller *ndfc, if (ret) goto err; - ret = parse_mtd_partitions(&ndfc->mtd, part_types, &ndfc->parts, 0); - if (ret < 0) - goto err; - - if (ret == 0) { - ret = of_mtd_parse_partitions(&ndfc->ofdev->dev, flash_np, - &ndfc->parts); - if (ret < 0) - goto err; - } - - ret = mtd_device_register(&ndfc->mtd, ndfc->parts, ret); + ret = mtd_device_parse_register(&ndfc->mtd, NULL, &ppdata, NULL, 0); err: of_node_put(flash_np); @@ -288,6 +273,7 @@ static int __devexit ndfc_remove(struct platform_device *ofdev) struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev); nand_release(&ndfc->mtd); + kfree(ndfc->mtd.name); return 0; } diff --git a/drivers/mtd/nand/nomadik_nand.c b/drivers/mtd/nand/nomadik_nand.c index b6a5c86ab31e..b463ecfb4c1a 100644 --- a/drivers/mtd/nand/nomadik_nand.c +++ b/drivers/mtd/nand/nomadik_nand.c @@ -187,6 +187,7 @@ static int nomadik_nand_remove(struct platform_device *pdev) pdata->exit(); if (host) { + nand_release(&host->mtd); iounmap(host->cmd_va); iounmap(host->data_va); iounmap(host->addr_va); diff --git a/drivers/mtd/nand/nuc900_nand.c b/drivers/mtd/nand/nuc900_nand.c index 9c30a0b03171..fa8faedfad6e 100644 --- a/drivers/mtd/nand/nuc900_nand.c +++ b/drivers/mtd/nand/nuc900_nand.c @@ -339,6 +339,7 @@ static int __devexit nuc900_nand_remove(struct platform_device *pdev) struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev); struct resource *res; + nand_release(&nuc900_nand->mtd); iounmap(nuc900_nand->reg); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c index 0db2c0e7656a..f745f00f3167 100644 --- a/drivers/mtd/nand/omap2.c +++ b/drivers/mtd/nand/omap2.c @@ -11,6 +11,7 @@ #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/delay.h> +#include <linux/module.h> #include <linux/interrupt.h> #include <linux/jiffies.h> #include <linux/sched.h> @@ -94,8 +95,6 @@ #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) -static const char *part_probes[] = { "cmdlinepart", NULL }; - /* oob info generated runtime depending on ecc algorithm and layout selected */ static struct nand_ecclayout omap_oobinfo; /* Define some generic bad / good block scan pattern which are used @@ -114,7 +113,6 @@ struct omap_nand_info { struct nand_hw_control controller; struct omap_nand_platform_data *pdata; struct mtd_info mtd; - struct mtd_partition *parts; struct nand_chip nand; struct platform_device *pdev; @@ -744,12 +742,12 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ case 1: /* Uncorrectable error */ - DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); + pr_debug("ECC UNCORRECTED_ERROR 1\n"); return -1; case 11: /* UN-Correctable error */ - DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n"); + pr_debug("ECC UNCORRECTED_ERROR B\n"); return -1; case 12: @@ -766,8 +764,8 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; - DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at " - "offset: %d, bit: %d\n", find_byte, find_bit); + pr_debug("Correcting single bit ECC error at offset: " + "%d, bit: %d\n", find_byte, find_bit); page_data[find_byte] ^= (1 << find_bit); @@ -779,7 +777,7 @@ static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ ecc_data2[2] == 0) return 0; } - DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n"); + pr_debug("UNCORRECTED_ERROR default\n"); return -1; } } @@ -1103,13 +1101,8 @@ static int __devinit omap_nand_probe(struct platform_device *pdev) goto out_release_mem_region; } - err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); - if (err > 0) - mtd_device_register(&info->mtd, info->parts, err); - else if (pdata->parts) - mtd_device_register(&info->mtd, pdata->parts, pdata->nr_parts); - else - mtd_device_register(&info->mtd, NULL, 0); + mtd_device_parse_register(&info->mtd, NULL, 0, + pdata->parts, pdata->nr_parts); platform_set_drvdata(pdev, &info->mtd); diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/orion_nand.c index 7794d0680f91..29f505adaf84 100644 --- a/drivers/mtd/nand/orion_nand.c +++ b/drivers/mtd/nand/orion_nand.c @@ -21,8 +21,6 @@ #include <mach/hardware.h> #include <plat/orion_nand.h> -static const char *part_probes[] = { "cmdlinepart", NULL }; - static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *nc = mtd->priv; @@ -81,8 +79,6 @@ static int __init orion_nand_probe(struct platform_device *pdev) struct resource *res; void __iomem *io_base; int ret = 0; - struct mtd_partition *partitions = NULL; - int num_part = 0; nc = kzalloc(sizeof(struct nand_chip) + sizeof(struct mtd_info), GFP_KERNEL); if (!nc) { @@ -132,17 +128,9 @@ static int __init orion_nand_probe(struct platform_device *pdev) goto no_dev; } -#ifdef CONFIG_MTD_CMDLINE_PARTS mtd->name = "orion_nand"; - num_part = parse_mtd_partitions(mtd, part_probes, &partitions, 0); -#endif - /* If cmdline partitions have been passed, let them be used */ - if (num_part <= 0) { - num_part = board->nr_parts; - partitions = board->parts; - } - - ret = mtd_device_register(mtd, partitions, num_part); + ret = mtd_device_parse_register(mtd, NULL, 0, + board->parts, board->nr_parts); if (ret) { nand_release(mtd); goto no_dev; diff --git a/drivers/mtd/nand/pasemi_nand.c b/drivers/mtd/nand/pasemi_nand.c index b1aa41b8a4eb..a97264ececdb 100644 --- a/drivers/mtd/nand/pasemi_nand.c +++ b/drivers/mtd/nand/pasemi_nand.c @@ -155,7 +155,8 @@ static int __devinit pasemi_nand_probe(struct platform_device *ofdev) chip->ecc.mode = NAND_ECC_SOFT; /* Enable the following for a flash based bad block table */ - chip->options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR; + chip->options = NAND_NO_AUTOINCR; + chip->bbt_options = NAND_BBT_USE_FLASH; /* Scan to find existence of the device */ if (nand_scan(pasemi_nand_mtd, 1)) { diff --git a/drivers/mtd/nand/plat_nand.c b/drivers/mtd/nand/plat_nand.c index 633c04bf76f6..ea8e1234e0e2 100644 --- a/drivers/mtd/nand/plat_nand.c +++ b/drivers/mtd/nand/plat_nand.c @@ -21,8 +21,6 @@ struct plat_nand_data { struct nand_chip chip; struct mtd_info mtd; void __iomem *io_base; - int nr_parts; - struct mtd_partition *parts; }; /* @@ -79,6 +77,7 @@ static int __devinit plat_nand_probe(struct platform_device *pdev) data->chip.read_buf = pdata->ctrl.read_buf; data->chip.chip_delay = pdata->chip.chip_delay; data->chip.options |= pdata->chip.options; + data->chip.bbt_options |= pdata->chip.bbt_options; data->chip.ecc.hwctl = pdata->ctrl.hwcontrol; data->chip.ecc.layout = pdata->chip.ecclayout; @@ -99,23 +98,9 @@ static int __devinit plat_nand_probe(struct platform_device *pdev) goto out; } - if (pdata->chip.part_probe_types) { - err = parse_mtd_partitions(&data->mtd, - pdata->chip.part_probe_types, - &data->parts, 0); - if (err > 0) { - mtd_device_register(&data->mtd, data->parts, err); - return 0; - } - } - if (pdata->chip.set_parts) - pdata->chip.set_parts(data->mtd.size, &pdata->chip); - if (pdata->chip.partitions) { - data->parts = pdata->chip.partitions; - err = mtd_device_register(&data->mtd, data->parts, - pdata->chip.nr_partitions); - } else - err = mtd_device_register(&data->mtd, NULL, 0); + err = mtd_device_parse_register(&data->mtd, + pdata->chip.part_probe_types, 0, + pdata->chip.partitions, pdata->chip.nr_partitions); if (!err) return err; @@ -145,8 +130,6 @@ static int __devexit plat_nand_remove(struct platform_device *pdev) res = platform_get_resource(pdev, IORESOURCE_MEM, 0); nand_release(&data->mtd); - if (data->parts && data->parts != pdata->chip.partitions) - kfree(data->parts); if (pdata->ctrl.remove) pdata->ctrl.remove(pdev); iounmap(data->io_base); diff --git a/drivers/mtd/nand/ppchameleonevb.c b/drivers/mtd/nand/ppchameleonevb.c index 3bbb796b451c..7e52af51a198 100644 --- a/drivers/mtd/nand/ppchameleonevb.c +++ b/drivers/mtd/nand/ppchameleonevb.c @@ -99,8 +99,6 @@ static struct mtd_partition partition_info_evb[] = { #define NUM_PARTITIONS 1 -extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partition **pparts, const char *mtd_id); - /* * hardware specific access to control-lines */ @@ -187,18 +185,12 @@ static int ppchameleonevb_device_ready(struct mtd_info *minfo) } #endif -const char *part_probes[] = { "cmdlinepart", NULL }; -const char *part_probes_evb[] = { "cmdlinepart", NULL }; - /* * Main initialization routine */ static int __init ppchameleonevb_init(void) { struct nand_chip *this; - const char *part_type = 0; - int mtd_parts_nb = 0; - struct mtd_partition *mtd_parts = 0; void __iomem *ppchameleon_fio_base; void __iomem *ppchameleonevb_fio_base; @@ -281,24 +273,13 @@ static int __init ppchameleonevb_init(void) #endif ppchameleon_mtd->name = "ppchameleon-nand"; - mtd_parts_nb = parse_mtd_partitions(ppchameleon_mtd, part_probes, &mtd_parts, 0); - if (mtd_parts_nb > 0) - part_type = "command line"; - else - mtd_parts_nb = 0; - - if (mtd_parts_nb == 0) { - if (ppchameleon_mtd->size == NAND_SMALL_SIZE) - mtd_parts = partition_info_me; - else - mtd_parts = partition_info_hi; - mtd_parts_nb = NUM_PARTITIONS; - part_type = "static"; - } /* Register the partitions */ - printk(KERN_NOTICE "Using %s partition definition\n", part_type); - mtd_device_register(ppchameleon_mtd, mtd_parts, mtd_parts_nb); + mtd_device_parse_register(ppchameleon_mtd, NULL, 0, + ppchameleon_mtd->size == NAND_SMALL_SIZE ? + partition_info_me : + partition_info_hi, + NUM_PARTITIONS); nand_evb_init: /**************************** @@ -382,21 +363,13 @@ static int __init ppchameleonevb_init(void) } ppchameleonevb_mtd->name = NAND_EVB_MTD_NAME; - mtd_parts_nb = parse_mtd_partitions(ppchameleonevb_mtd, part_probes_evb, &mtd_parts, 0); - if (mtd_parts_nb > 0) - part_type = "command line"; - else - mtd_parts_nb = 0; - - if (mtd_parts_nb == 0) { - mtd_parts = partition_info_evb; - mtd_parts_nb = NUM_PARTITIONS; - part_type = "static"; - } /* Register the partitions */ - printk(KERN_NOTICE "Using %s partition definition\n", part_type); - mtd_device_register(ppchameleonevb_mtd, mtd_parts, mtd_parts_nb); + mtd_device_parse_register(ppchameleonevb_mtd, NULL, 0, + ppchameleon_mtd->size == NAND_SMALL_SIZE ? + partition_info_me : + partition_info_hi, + NUM_PARTITIONS); /* Return happy */ return 0; diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c index 1fb3b3a80581..9eb7f879969e 100644 --- a/drivers/mtd/nand/pxa3xx_nand.c +++ b/drivers/mtd/nand/pxa3xx_nand.c @@ -110,6 +110,7 @@ enum { enum { STATE_IDLE = 0, + STATE_PREPARED, STATE_CMD_HANDLE, STATE_DMA_READING, STATE_DMA_WRITING, @@ -120,21 +121,40 @@ enum { STATE_READY, }; -struct pxa3xx_nand_info { - struct nand_chip nand_chip; +struct pxa3xx_nand_host { + struct nand_chip chip; + struct pxa3xx_nand_cmdset *cmdset; + struct mtd_info *mtd; + void *info_data; + + /* page size of attached chip */ + unsigned int page_size; + int use_ecc; + int cs; + /* calculated from pxa3xx_nand_flash data */ + unsigned int col_addr_cycles; + unsigned int row_addr_cycles; + size_t read_id_bytes; + + /* cached register value */ + uint32_t reg_ndcr; + uint32_t ndtr0cs0; + uint32_t ndtr1cs0; +}; + +struct pxa3xx_nand_info { struct nand_hw_control controller; struct platform_device *pdev; - struct pxa3xx_nand_cmdset *cmdset; struct clk *clk; void __iomem *mmio_base; unsigned long mmio_phys; + struct completion cmd_complete; unsigned int buf_start; unsigned int buf_count; - struct mtd_info *mtd; /* DMA information */ int drcmr_dat; int drcmr_cmd; @@ -142,44 +162,27 @@ struct pxa3xx_nand_info { unsigned char *data_buff; unsigned char *oob_buff; dma_addr_t data_buff_phys; - size_t data_buff_size; int data_dma_ch; struct pxa_dma_desc *data_desc; dma_addr_t data_desc_addr; - uint32_t reg_ndcr; - - /* saved column/page_addr during CMD_SEQIN */ - int seqin_column; - int seqin_page_addr; - - /* relate to the command */ + struct pxa3xx_nand_host *host[NUM_CHIP_SELECT]; unsigned int state; + int cs; int use_ecc; /* use HW ECC ? */ int use_dma; /* use DMA ? */ int is_ready; unsigned int page_size; /* page size of attached chip */ unsigned int data_size; /* data size in FIFO */ + unsigned int oob_size; int retcode; - struct completion cmd_complete; /* generated NDCBx register values */ uint32_t ndcb0; uint32_t ndcb1; uint32_t ndcb2; - - /* timing calcuted from setting */ - uint32_t ndtr0cs0; - uint32_t ndtr1cs0; - - /* calculated from pxa3xx_nand_flash data */ - size_t oob_size; - size_t read_id_bytes; - - unsigned int col_addr_cycles; - unsigned int row_addr_cycles; }; static int use_dma = 1; @@ -225,7 +228,7 @@ static struct pxa3xx_nand_flash builtin_flash_types[] = { /* Define a default flash type setting serve as flash detecting only */ #define DEFAULT_FLASH_TYPE (&builtin_flash_types[0]) -const char *mtd_names[] = {"pxa3xx_nand-0", NULL}; +const char *mtd_names[] = {"pxa3xx_nand-0", "pxa3xx_nand-1", NULL}; #define NDTR0_tCH(c) (min((c), 7) << 19) #define NDTR0_tCS(c) (min((c), 7) << 16) @@ -241,9 +244,10 @@ const char *mtd_names[] = {"pxa3xx_nand-0", NULL}; /* convert nano-seconds to nand flash controller clock cycles */ #define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000) -static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info, +static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host, const struct pxa3xx_nand_timing *t) { + struct pxa3xx_nand_info *info = host->info_data; unsigned long nand_clk = clk_get_rate(info->clk); uint32_t ndtr0, ndtr1; @@ -258,23 +262,24 @@ static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info, NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) | NDTR1_tAR(ns2cycle(t->tAR, nand_clk)); - info->ndtr0cs0 = ndtr0; - info->ndtr1cs0 = ndtr1; + host->ndtr0cs0 = ndtr0; + host->ndtr1cs0 = ndtr1; nand_writel(info, NDTR0CS0, ndtr0); nand_writel(info, NDTR1CS0, ndtr1); } static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info) { - int oob_enable = info->reg_ndcr & NDCR_SPARE_EN; + struct pxa3xx_nand_host *host = info->host[info->cs]; + int oob_enable = host->reg_ndcr & NDCR_SPARE_EN; - info->data_size = info->page_size; + info->data_size = host->page_size; if (!oob_enable) { info->oob_size = 0; return; } - switch (info->page_size) { + switch (host->page_size) { case 2048: info->oob_size = (info->use_ecc) ? 40 : 64; break; @@ -292,9 +297,10 @@ static void pxa3xx_set_datasize(struct pxa3xx_nand_info *info) */ static void pxa3xx_nand_start(struct pxa3xx_nand_info *info) { + struct pxa3xx_nand_host *host = info->host[info->cs]; uint32_t ndcr; - ndcr = info->reg_ndcr; + ndcr = host->reg_ndcr; ndcr |= info->use_ecc ? NDCR_ECC_EN : 0; ndcr |= info->use_dma ? NDCR_DMA_EN : 0; ndcr |= NDCR_ND_RUN; @@ -359,7 +365,7 @@ static void handle_data_pio(struct pxa3xx_nand_info *info) DIV_ROUND_UP(info->oob_size, 4)); break; default: - printk(KERN_ERR "%s: invalid state %d\n", __func__, + dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, info->state); BUG(); } @@ -385,7 +391,7 @@ static void start_data_dma(struct pxa3xx_nand_info *info) desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC; break; default: - printk(KERN_ERR "%s: invalid state %d\n", __func__, + dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, info->state); BUG(); } @@ -416,6 +422,15 @@ static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) { struct pxa3xx_nand_info *info = devid; unsigned int status, is_completed = 0; + unsigned int ready, cmd_done; + + if (info->cs == 0) { + ready = NDSR_FLASH_RDY; + cmd_done = NDSR_CS0_CMDD; + } else { + ready = NDSR_RDY; + cmd_done = NDSR_CS1_CMDD; + } status = nand_readl(info, NDSR); @@ -437,11 +452,11 @@ static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) handle_data_pio(info); } } - if (status & NDSR_CS0_CMDD) { + if (status & cmd_done) { info->state = STATE_CMD_DONE; is_completed = 1; } - if (status & NDSR_FLASH_RDY) { + if (status & ready) { info->is_ready = 1; info->state = STATE_READY; } @@ -463,12 +478,6 @@ NORMAL_IRQ_EXIT: return IRQ_HANDLED; } -static int pxa3xx_nand_dev_ready(struct mtd_info *mtd) -{ - struct pxa3xx_nand_info *info = mtd->priv; - return (nand_readl(info, NDSR) & NDSR_RDY) ? 1 : 0; -} - static inline int is_buf_blank(uint8_t *buf, size_t len) { for (; len > 0; len--) @@ -481,10 +490,12 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, uint16_t column, int page_addr) { uint16_t cmd; - int addr_cycle, exec_cmd, ndcb0; - struct mtd_info *mtd = info->mtd; + int addr_cycle, exec_cmd; + struct pxa3xx_nand_host *host; + struct mtd_info *mtd; - ndcb0 = 0; + host = info->host[info->cs]; + mtd = host->mtd; addr_cycle = 0; exec_cmd = 1; @@ -495,6 +506,10 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, info->use_ecc = 0; info->is_ready = 0; info->retcode = ERR_NONE; + if (info->cs != 0) + info->ndcb0 = NDCB0_CSEL; + else + info->ndcb0 = 0; switch (command) { case NAND_CMD_READ0: @@ -512,20 +527,19 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, break; } - info->ndcb0 = ndcb0; - addr_cycle = NDCB0_ADDR_CYC(info->row_addr_cycles - + info->col_addr_cycles); + addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles + + host->col_addr_cycles); switch (command) { case NAND_CMD_READOOB: case NAND_CMD_READ0: - cmd = info->cmdset->read1; + cmd = host->cmdset->read1; if (command == NAND_CMD_READOOB) info->buf_start = mtd->writesize + column; else info->buf_start = column; - if (unlikely(info->page_size < PAGE_CHUNK_SIZE)) + if (unlikely(host->page_size < PAGE_CHUNK_SIZE)) info->ndcb0 |= NDCB0_CMD_TYPE(0) | addr_cycle | (cmd & NDCB0_CMD1_MASK); @@ -537,7 +551,7 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, case NAND_CMD_SEQIN: /* small page addr setting */ - if (unlikely(info->page_size < PAGE_CHUNK_SIZE)) { + if (unlikely(host->page_size < PAGE_CHUNK_SIZE)) { info->ndcb1 = ((page_addr & 0xFFFFFF) << 8) | (column & 0xFF); @@ -564,7 +578,7 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, break; } - cmd = info->cmdset->program; + cmd = host->cmdset->program; info->ndcb0 |= NDCB0_CMD_TYPE(0x1) | NDCB0_AUTO_RS | NDCB0_ST_ROW_EN @@ -574,8 +588,8 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, break; case NAND_CMD_READID: - cmd = info->cmdset->read_id; - info->buf_count = info->read_id_bytes; + cmd = host->cmdset->read_id; + info->buf_count = host->read_id_bytes; info->ndcb0 |= NDCB0_CMD_TYPE(3) | NDCB0_ADDR_CYC(1) | cmd; @@ -583,7 +597,7 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, info->data_size = 8; break; case NAND_CMD_STATUS: - cmd = info->cmdset->read_status; + cmd = host->cmdset->read_status; info->buf_count = 1; info->ndcb0 |= NDCB0_CMD_TYPE(4) | NDCB0_ADDR_CYC(1) @@ -593,7 +607,7 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, break; case NAND_CMD_ERASE1: - cmd = info->cmdset->erase; + cmd = host->cmdset->erase; info->ndcb0 |= NDCB0_CMD_TYPE(2) | NDCB0_AUTO_RS | NDCB0_ADDR_CYC(3) @@ -604,7 +618,7 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, break; case NAND_CMD_RESET: - cmd = info->cmdset->reset; + cmd = host->cmdset->reset; info->ndcb0 |= NDCB0_CMD_TYPE(5) | cmd; @@ -616,8 +630,8 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, default: exec_cmd = 0; - printk(KERN_ERR "pxa3xx-nand: non-supported" - " command %x\n", command); + dev_err(&info->pdev->dev, "non-supported command %x\n", + command); break; } @@ -627,7 +641,8 @@ static int prepare_command_pool(struct pxa3xx_nand_info *info, int command, static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, int column, int page_addr) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; int ret, exec_cmd; /* @@ -635,9 +650,21 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, * "byte" address into a "word" address appropriate * for indexing a word-oriented device */ - if (info->reg_ndcr & NDCR_DWIDTH_M) + if (host->reg_ndcr & NDCR_DWIDTH_M) column /= 2; + /* + * There may be different NAND chip hooked to + * different chip select, so check whether + * chip select has been changed, if yes, reset the timing + */ + if (info->cs != host->cs) { + info->cs = host->cs; + nand_writel(info, NDTR0CS0, host->ndtr0cs0); + nand_writel(info, NDTR1CS0, host->ndtr1cs0); + } + + info->state = STATE_PREPARED; exec_cmd = prepare_command_pool(info, command, column, page_addr); if (exec_cmd) { init_completion(&info->cmd_complete); @@ -646,12 +673,12 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, ret = wait_for_completion_timeout(&info->cmd_complete, CHIP_DELAY_TIMEOUT); if (!ret) { - printk(KERN_ERR "Wait time out!!!\n"); + dev_err(&info->pdev->dev, "Wait time out!!!\n"); /* Stop State Machine for next command cycle */ pxa3xx_nand_stop(info); } - info->state = STATE_IDLE; } + info->state = STATE_IDLE; } static void pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, @@ -664,7 +691,8 @@ static void pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; chip->read_buf(mtd, buf, mtd->writesize); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); @@ -685,6 +713,8 @@ static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, * OOB, ignore such double bit errors */ if (is_buf_blank(buf, mtd->writesize)) + info->retcode = ERR_NONE; + else mtd->ecc_stats.failed++; } @@ -693,7 +723,8 @@ static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; char retval = 0xFF; if (info->buf_start < info->buf_count) @@ -705,7 +736,8 @@ static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) static u16 pxa3xx_nand_read_word(struct mtd_info *mtd) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; u16 retval = 0xFFFF; if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) { @@ -717,7 +749,8 @@ static u16 pxa3xx_nand_read_word(struct mtd_info *mtd) static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; int real_len = min_t(size_t, len, info->buf_count - info->buf_start); memcpy(buf, info->data_buff + info->buf_start, real_len); @@ -727,7 +760,8 @@ static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) static void pxa3xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; int real_len = min_t(size_t, len, info->buf_count - info->buf_start); memcpy(info->data_buff + info->buf_start, buf, real_len); @@ -747,7 +781,8 @@ static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; /* pxa3xx_nand_send_command has waited for command complete */ if (this->state == FL_WRITING || this->state == FL_ERASING) { @@ -770,54 +805,70 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, { struct platform_device *pdev = info->pdev; struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; + struct pxa3xx_nand_host *host = info->host[info->cs]; uint32_t ndcr = 0x0; /* enable all interrupts */ - if (f->page_size != 2048 && f->page_size != 512) + if (f->page_size != 2048 && f->page_size != 512) { + dev_err(&pdev->dev, "Current only support 2048 and 512 size\n"); return -EINVAL; + } - if (f->flash_width != 16 && f->flash_width != 8) + if (f->flash_width != 16 && f->flash_width != 8) { + dev_err(&pdev->dev, "Only support 8bit and 16 bit!\n"); return -EINVAL; + } /* calculate flash information */ - info->cmdset = &default_cmdset; - info->page_size = f->page_size; - info->read_id_bytes = (f->page_size == 2048) ? 4 : 2; + host->cmdset = &default_cmdset; + host->page_size = f->page_size; + host->read_id_bytes = (f->page_size == 2048) ? 4 : 2; /* calculate addressing information */ - info->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; + host->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; if (f->num_blocks * f->page_per_block > 65536) - info->row_addr_cycles = 3; + host->row_addr_cycles = 3; else - info->row_addr_cycles = 2; + host->row_addr_cycles = 2; ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; - ndcr |= (info->col_addr_cycles == 2) ? NDCR_RA_START : 0; + ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0; ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0; ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0; ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0; ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0; - ndcr |= NDCR_RD_ID_CNT(info->read_id_bytes); + ndcr |= NDCR_RD_ID_CNT(host->read_id_bytes); ndcr |= NDCR_SPARE_EN; /* enable spare by default */ - info->reg_ndcr = ndcr; + host->reg_ndcr = ndcr; - pxa3xx_nand_set_timing(info, f->timing); + pxa3xx_nand_set_timing(host, f->timing); return 0; } static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info) { + /* + * We set 0 by hard coding here, for we don't support keep_config + * when there is more than one chip attached to the controller + */ + struct pxa3xx_nand_host *host = info->host[0]; uint32_t ndcr = nand_readl(info, NDCR); - info->page_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512; - /* set info fields needed to read id */ - info->read_id_bytes = (info->page_size == 2048) ? 4 : 2; - info->reg_ndcr = ndcr; - info->cmdset = &default_cmdset; - info->ndtr0cs0 = nand_readl(info, NDTR0CS0); - info->ndtr1cs0 = nand_readl(info, NDTR1CS0); + if (ndcr & NDCR_PAGE_SZ) { + host->page_size = 2048; + host->read_id_bytes = 4; + } else { + host->page_size = 512; + host->read_id_bytes = 2; + } + + host->reg_ndcr = ndcr & ~NDCR_INT_MASK; + host->cmdset = &default_cmdset; + + host->ndtr0cs0 = nand_readl(info, NDTR0CS0); + host->ndtr1cs0 = nand_readl(info, NDTR1CS0); return 0; } @@ -847,7 +898,6 @@ static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) return -ENOMEM; } - info->data_buff_size = MAX_BUFF_SIZE; info->data_desc = (void *)info->data_buff + data_desc_offset; info->data_desc_addr = info->data_buff_phys + data_desc_offset; @@ -855,7 +905,7 @@ static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) pxa3xx_nand_data_dma_irq, info); if (info->data_dma_ch < 0) { dev_err(&pdev->dev, "failed to request data dma\n"); - dma_free_coherent(&pdev->dev, info->data_buff_size, + dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE, info->data_buff, info->data_buff_phys); return info->data_dma_ch; } @@ -865,24 +915,28 @@ static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) static int pxa3xx_nand_sensing(struct pxa3xx_nand_info *info) { - struct mtd_info *mtd = info->mtd; - struct nand_chip *chip = mtd->priv; - + struct mtd_info *mtd; + int ret; + mtd = info->host[info->cs]->mtd; /* use the common timing to make a try */ - pxa3xx_nand_config_flash(info, &builtin_flash_types[0]); - chip->cmdfunc(mtd, NAND_CMD_RESET, 0, 0); + ret = pxa3xx_nand_config_flash(info, &builtin_flash_types[0]); + if (ret) + return ret; + + pxa3xx_nand_cmdfunc(mtd, NAND_CMD_RESET, 0, 0); if (info->is_ready) - return 1; - else return 0; + + return -ENODEV; } static int pxa3xx_nand_scan(struct mtd_info *mtd) { - struct pxa3xx_nand_info *info = mtd->priv; + struct pxa3xx_nand_host *host = mtd->priv; + struct pxa3xx_nand_info *info = host->info_data; struct platform_device *pdev = info->pdev; struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; - struct nand_flash_dev pxa3xx_flash_ids[2] = { {NULL,}, {NULL,} }; + struct nand_flash_dev pxa3xx_flash_ids[2], *def = NULL; const struct pxa3xx_nand_flash *f = NULL; struct nand_chip *chip = mtd->priv; uint32_t id = -1; @@ -893,22 +947,20 @@ static int pxa3xx_nand_scan(struct mtd_info *mtd) goto KEEP_CONFIG; ret = pxa3xx_nand_sensing(info); - if (!ret) { - kfree(mtd); - info->mtd = NULL; - printk(KERN_INFO "There is no nand chip on cs 0!\n"); + if (ret) { + dev_info(&info->pdev->dev, "There is no chip on cs %d!\n", + info->cs); - return -EINVAL; + return ret; } chip->cmdfunc(mtd, NAND_CMD_READID, 0, 0); id = *((uint16_t *)(info->data_buff)); if (id != 0) - printk(KERN_INFO "Detect a flash id %x\n", id); + dev_info(&info->pdev->dev, "Detect a flash id %x\n", id); else { - kfree(mtd); - info->mtd = NULL; - printk(KERN_WARNING "Read out ID 0, potential timing set wrong!!\n"); + dev_warn(&info->pdev->dev, + "Read out ID 0, potential timing set wrong!!\n"); return -EINVAL; } @@ -926,14 +978,17 @@ static int pxa3xx_nand_scan(struct mtd_info *mtd) } if (i >= (ARRAY_SIZE(builtin_flash_types) + pdata->num_flash - 1)) { - kfree(mtd); - info->mtd = NULL; - printk(KERN_ERR "ERROR!! flash not defined!!!\n"); + dev_err(&info->pdev->dev, "ERROR!! flash not defined!!!\n"); return -EINVAL; } - pxa3xx_nand_config_flash(info, f); + ret = pxa3xx_nand_config_flash(info, f); + if (ret) { + dev_err(&info->pdev->dev, "ERROR! Configure failed\n"); + return ret; + } + pxa3xx_flash_ids[0].name = f->name; pxa3xx_flash_ids[0].id = (f->chip_id >> 8) & 0xffff; pxa3xx_flash_ids[0].pagesize = f->page_size; @@ -942,62 +997,78 @@ static int pxa3xx_nand_scan(struct mtd_info *mtd) pxa3xx_flash_ids[0].erasesize = f->page_size * f->page_per_block; if (f->flash_width == 16) pxa3xx_flash_ids[0].options = NAND_BUSWIDTH_16; + pxa3xx_flash_ids[1].name = NULL; + def = pxa3xx_flash_ids; KEEP_CONFIG: - if (nand_scan_ident(mtd, 1, pxa3xx_flash_ids)) + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.size = host->page_size; + + chip->options = NAND_NO_AUTOINCR; + chip->options |= NAND_NO_READRDY; + if (host->reg_ndcr & NDCR_DWIDTH_M) + chip->options |= NAND_BUSWIDTH_16; + + if (nand_scan_ident(mtd, 1, def)) return -ENODEV; /* calculate addressing information */ - info->col_addr_cycles = (mtd->writesize >= 2048) ? 2 : 1; + if (mtd->writesize >= 2048) + host->col_addr_cycles = 2; + else + host->col_addr_cycles = 1; + info->oob_buff = info->data_buff + mtd->writesize; if ((mtd->size >> chip->page_shift) > 65536) - info->row_addr_cycles = 3; + host->row_addr_cycles = 3; else - info->row_addr_cycles = 2; - mtd->name = mtd_names[0]; - chip->ecc.mode = NAND_ECC_HW; - chip->ecc.size = f->page_size; - - chip->options = (f->flash_width == 16) ? NAND_BUSWIDTH_16 : 0; - chip->options |= NAND_NO_AUTOINCR; - chip->options |= NAND_NO_READRDY; + host->row_addr_cycles = 2; + mtd->name = mtd_names[0]; return nand_scan_tail(mtd); } -static -struct pxa3xx_nand_info *alloc_nand_resource(struct platform_device *pdev) +static int alloc_nand_resource(struct platform_device *pdev) { + struct pxa3xx_nand_platform_data *pdata; struct pxa3xx_nand_info *info; + struct pxa3xx_nand_host *host; struct nand_chip *chip; struct mtd_info *mtd; struct resource *r; - int ret, irq; + int ret, irq, cs; - mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct pxa3xx_nand_info), - GFP_KERNEL); - if (!mtd) { + pdata = pdev->dev.platform_data; + info = kzalloc(sizeof(*info) + (sizeof(*mtd) + + sizeof(*host)) * pdata->num_cs, GFP_KERNEL); + if (!info) { dev_err(&pdev->dev, "failed to allocate memory\n"); - return NULL; + return -ENOMEM; } - info = (struct pxa3xx_nand_info *)(&mtd[1]); - chip = (struct nand_chip *)(&mtd[1]); info->pdev = pdev; - info->mtd = mtd; - mtd->priv = info; - mtd->owner = THIS_MODULE; - - chip->ecc.read_page = pxa3xx_nand_read_page_hwecc; - chip->ecc.write_page = pxa3xx_nand_write_page_hwecc; - chip->controller = &info->controller; - chip->waitfunc = pxa3xx_nand_waitfunc; - chip->select_chip = pxa3xx_nand_select_chip; - chip->dev_ready = pxa3xx_nand_dev_ready; - chip->cmdfunc = pxa3xx_nand_cmdfunc; - chip->read_word = pxa3xx_nand_read_word; - chip->read_byte = pxa3xx_nand_read_byte; - chip->read_buf = pxa3xx_nand_read_buf; - chip->write_buf = pxa3xx_nand_write_buf; - chip->verify_buf = pxa3xx_nand_verify_buf; + for (cs = 0; cs < pdata->num_cs; cs++) { + mtd = (struct mtd_info *)((unsigned int)&info[1] + + (sizeof(*mtd) + sizeof(*host)) * cs); + chip = (struct nand_chip *)(&mtd[1]); + host = (struct pxa3xx_nand_host *)chip; + info->host[cs] = host; + host->mtd = mtd; + host->cs = cs; + host->info_data = info; + mtd->priv = host; + mtd->owner = THIS_MODULE; + + chip->ecc.read_page = pxa3xx_nand_read_page_hwecc; + chip->ecc.write_page = pxa3xx_nand_write_page_hwecc; + chip->controller = &info->controller; + chip->waitfunc = pxa3xx_nand_waitfunc; + chip->select_chip = pxa3xx_nand_select_chip; + chip->cmdfunc = pxa3xx_nand_cmdfunc; + chip->read_word = pxa3xx_nand_read_word; + chip->read_byte = pxa3xx_nand_read_byte; + chip->read_buf = pxa3xx_nand_read_buf; + chip->write_buf = pxa3xx_nand_write_buf; + chip->verify_buf = pxa3xx_nand_verify_buf; + } spin_lock_init(&chip->controller->lock); init_waitqueue_head(&chip->controller->wq); @@ -1070,13 +1141,13 @@ struct pxa3xx_nand_info *alloc_nand_resource(struct platform_device *pdev) platform_set_drvdata(pdev, info); - return info; + return 0; fail_free_buf: free_irq(irq, info); if (use_dma) { pxa_free_dma(info->data_dma_ch); - dma_free_coherent(&pdev->dev, info->data_buff_size, + dma_free_coherent(&pdev->dev, MAX_BUFF_SIZE, info->data_buff, info->data_buff_phys); } else kfree(info->data_buff); @@ -1088,17 +1159,21 @@ fail_put_clk: clk_disable(info->clk); clk_put(info->clk); fail_free_mtd: - kfree(mtd); - return NULL; + kfree(info); + return ret; } static int pxa3xx_nand_remove(struct platform_device *pdev) { struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); - struct mtd_info *mtd = info->mtd; + struct pxa3xx_nand_platform_data *pdata; struct resource *r; - int irq; + int irq, cs; + if (!info) + return 0; + + pdata = pdev->dev.platform_data; platform_set_drvdata(pdev, NULL); irq = platform_get_irq(pdev, 0); @@ -1106,7 +1181,7 @@ static int pxa3xx_nand_remove(struct platform_device *pdev) free_irq(irq, info); if (use_dma) { pxa_free_dma(info->data_dma_ch); - dma_free_writecombine(&pdev->dev, info->data_buff_size, + dma_free_writecombine(&pdev->dev, MAX_BUFF_SIZE, info->data_buff, info->data_buff_phys); } else kfree(info->data_buff); @@ -1118,10 +1193,9 @@ static int pxa3xx_nand_remove(struct platform_device *pdev) clk_disable(info->clk); clk_put(info->clk); - if (mtd) { - mtd_device_unregister(mtd); - kfree(mtd); - } + for (cs = 0; cs < pdata->num_cs; cs++) + nand_release(info->host[cs]->mtd); + kfree(info); return 0; } @@ -1129,6 +1203,7 @@ static int pxa3xx_nand_probe(struct platform_device *pdev) { struct pxa3xx_nand_platform_data *pdata; struct pxa3xx_nand_info *info; + int ret, cs, probe_success; pdata = pdev->dev.platform_data; if (!pdata) { @@ -1136,52 +1211,88 @@ static int pxa3xx_nand_probe(struct platform_device *pdev) return -ENODEV; } - info = alloc_nand_resource(pdev); - if (info == NULL) - return -ENOMEM; - - if (pxa3xx_nand_scan(info->mtd)) { - dev_err(&pdev->dev, "failed to scan nand\n"); - pxa3xx_nand_remove(pdev); - return -ENODEV; + ret = alloc_nand_resource(pdev); + if (ret) { + dev_err(&pdev->dev, "alloc nand resource failed\n"); + return ret; } - if (mtd_has_cmdlinepart()) { - const char *probes[] = { "cmdlinepart", NULL }; - struct mtd_partition *parts; - int nr_parts; + info = platform_get_drvdata(pdev); + probe_success = 0; + for (cs = 0; cs < pdata->num_cs; cs++) { + info->cs = cs; + ret = pxa3xx_nand_scan(info->host[cs]->mtd); + if (ret) { + dev_warn(&pdev->dev, "failed to scan nand at cs %d\n", + cs); + continue; + } - nr_parts = parse_mtd_partitions(info->mtd, probes, &parts, 0); + ret = mtd_device_parse_register(info->host[cs]->mtd, NULL, 0, + pdata->parts[cs], pdata->nr_parts[cs]); + if (!ret) + probe_success = 1; + } - if (nr_parts) - return mtd_device_register(info->mtd, parts, nr_parts); + if (!probe_success) { + pxa3xx_nand_remove(pdev); + return -ENODEV; } - return mtd_device_register(info->mtd, pdata->parts, pdata->nr_parts); + return 0; } #ifdef CONFIG_PM static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state) { struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); - struct mtd_info *mtd = info->mtd; + struct pxa3xx_nand_platform_data *pdata; + struct mtd_info *mtd; + int cs; + pdata = pdev->dev.platform_data; if (info->state) { dev_err(&pdev->dev, "driver busy, state = %d\n", info->state); return -EAGAIN; } + for (cs = 0; cs < pdata->num_cs; cs++) { + mtd = info->host[cs]->mtd; + mtd->suspend(mtd); + } + return 0; } static int pxa3xx_nand_resume(struct platform_device *pdev) { struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); - struct mtd_info *mtd = info->mtd; + struct pxa3xx_nand_platform_data *pdata; + struct mtd_info *mtd; + int cs; - nand_writel(info, NDTR0CS0, info->ndtr0cs0); - nand_writel(info, NDTR1CS0, info->ndtr1cs0); - clk_enable(info->clk); + pdata = pdev->dev.platform_data; + /* We don't want to handle interrupt without calling mtd routine */ + disable_int(info, NDCR_INT_MASK); + + /* + * Directly set the chip select to a invalid value, + * then the driver would reset the timing according + * to current chip select at the beginning of cmdfunc + */ + info->cs = 0xff; + + /* + * As the spec says, the NDSR would be updated to 0x1800 when + * doing the nand_clk disable/enable. + * To prevent it damaging state machine of the driver, clear + * all status before resume + */ + nand_writel(info, NDSR, NDSR_MASK); + for (cs = 0; cs < pdata->num_cs; cs++) { + mtd = info->host[cs]->mtd; + mtd->resume(mtd); + } return 0; } diff --git a/drivers/mtd/nand/r852.c b/drivers/mtd/nand/r852.c index cae2e013c986..f20f393bfda6 100644 --- a/drivers/mtd/nand/r852.c +++ b/drivers/mtd/nand/r852.c @@ -1027,7 +1027,7 @@ void r852_shutdown(struct pci_dev *pci_dev) } #ifdef CONFIG_PM -int r852_suspend(struct device *device) +static int r852_suspend(struct device *device) { struct r852_device *dev = pci_get_drvdata(to_pci_dev(device)); @@ -1048,7 +1048,7 @@ int r852_suspend(struct device *device) return 0; } -int r852_resume(struct device *device) +static int r852_resume(struct device *device) { struct r852_device *dev = pci_get_drvdata(to_pci_dev(device)); @@ -1092,7 +1092,7 @@ static const struct pci_device_id r852_pci_id_tbl[] = { MODULE_DEVICE_TABLE(pci, r852_pci_id_tbl); -SIMPLE_DEV_PM_OPS(r852_pm_ops, r852_suspend, r852_resume); +static SIMPLE_DEV_PM_OPS(r852_pm_ops, r852_suspend, r852_resume); static struct pci_driver r852_pci_driver = { .name = DRV_NAME, diff --git a/drivers/mtd/nand/rtc_from4.c b/drivers/mtd/nand/rtc_from4.c index c9f9127ff770..f309addc2fa0 100644 --- a/drivers/mtd/nand/rtc_from4.c +++ b/drivers/mtd/nand/rtc_from4.c @@ -351,7 +351,7 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha return 0; } - /* Read the syndrom pattern from the FPGA and correct the bitorder */ + /* Read the syndrome pattern from the FPGA and correct the bitorder */ rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); for (i = 0; i < 8; i++) { ecc[i] = bitrev8(*rs_ecc); @@ -380,7 +380,7 @@ static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_cha /* Let the library code do its magic. */ res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL); if (res > 0) { - DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res); + pr_debug("rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res); } return res; } @@ -444,7 +444,6 @@ static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, len = mtd->writesize; buf = kmalloc(len, GFP_KERNEL); if (!buf) { - printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n"); er_stat = 1; goto out; } diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/s3c2410.c index 4405468f196b..868685db6712 100644 --- a/drivers/mtd/nand/s3c2410.c +++ b/drivers/mtd/nand/s3c2410.c @@ -723,7 +723,7 @@ static int s3c24xx_nand_remove(struct platform_device *pdev) /* free the common resources */ - if (info->clk != NULL && !IS_ERR(info->clk)) { + if (!IS_ERR(info->clk)) { s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); clk_put(info->clk); } @@ -744,26 +744,15 @@ static int s3c24xx_nand_remove(struct platform_device *pdev) return 0; } -const char *part_probes[] = { "cmdlinepart", NULL }; static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, struct s3c2410_nand_mtd *mtd, struct s3c2410_nand_set *set) { - struct mtd_partition *part_info; - int nr_part = 0; + if (set) + mtd->mtd.name = set->name; - if (set == NULL) - return mtd_device_register(&mtd->mtd, NULL, 0); - - mtd->mtd.name = set->name; - nr_part = parse_mtd_partitions(&mtd->mtd, part_probes, &part_info, 0); - - if (nr_part <= 0 && set->nr_partitions > 0) { - nr_part = set->nr_partitions; - part_info = set->partitions; - } - - return mtd_device_register(&mtd->mtd, part_info, nr_part); + return mtd_device_parse_register(&mtd->mtd, NULL, 0, + set->partitions, set->nr_partitions); } /** @@ -880,8 +869,10 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, /* If you use u-boot BBT creation code, specifying this flag will * let the kernel fish out the BBT from the NAND, and also skip the * full NAND scan that can take 1/2s or so. Little things... */ - if (set->flash_bbt) - chip->options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN; + if (set->flash_bbt) { + chip->bbt_options |= NAND_BBT_USE_FLASH; + chip->options |= NAND_SKIP_BBTSCAN; + } } /** diff --git a/drivers/mtd/nand/sharpsl.c b/drivers/mtd/nand/sharpsl.c index 19e24ed089ea..619d2a504788 100644 --- a/drivers/mtd/nand/sharpsl.c +++ b/drivers/mtd/nand/sharpsl.c @@ -103,16 +103,12 @@ static int sharpsl_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat, return readb(sharpsl->io + ECCCNTR) != 0; } -static const char *part_probes[] = { "cmdlinepart", NULL }; - /* * Main initialization routine */ static int __devinit sharpsl_nand_probe(struct platform_device *pdev) { struct nand_chip *this; - struct mtd_partition *sharpsl_partition_info; - int nr_partitions; struct resource *r; int err = 0; struct sharpsl_nand *sharpsl; @@ -184,14 +180,9 @@ static int __devinit sharpsl_nand_probe(struct platform_device *pdev) /* Register the partitions */ sharpsl->mtd.name = "sharpsl-nand"; - nr_partitions = parse_mtd_partitions(&sharpsl->mtd, part_probes, &sharpsl_partition_info, 0); - if (nr_partitions <= 0) { - nr_partitions = data->nr_partitions; - sharpsl_partition_info = data->partitions; - } - err = mtd_device_register(&sharpsl->mtd, sharpsl_partition_info, - nr_partitions); + err = mtd_device_parse_register(&sharpsl->mtd, NULL, 0, + data->partitions, data->nr_partitions); if (err) goto err_add; diff --git a/drivers/mtd/nand/sm_common.c b/drivers/mtd/nand/sm_common.c index b6332e83b289..32ae5af7444f 100644 --- a/drivers/mtd/nand/sm_common.c +++ b/drivers/mtd/nand/sm_common.c @@ -8,6 +8,7 @@ */ #include <linux/kernel.h> #include <linux/mtd/nand.h> +#include <linux/module.h> #include "sm_common.h" static struct nand_ecclayout nand_oob_sm = { @@ -47,7 +48,7 @@ static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs) /* As long as this function is called on erase block boundaries it will work correctly for 256 byte nand */ - ops.mode = MTD_OOB_PLACE; + ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; ops.oobbuf = (void *)&oob; diff --git a/drivers/mtd/nand/socrates_nand.c b/drivers/mtd/nand/socrates_nand.c index ca2d0555729e..0fb24f9c2327 100644 --- a/drivers/mtd/nand/socrates_nand.c +++ b/drivers/mtd/nand/socrates_nand.c @@ -155,8 +155,6 @@ static int socrates_nand_device_ready(struct mtd_info *mtd) return 1; } -static const char *part_probes[] = { "cmdlinepart", NULL }; - /* * Probe for the NAND device. */ @@ -166,8 +164,7 @@ static int __devinit socrates_nand_probe(struct platform_device *ofdev) struct mtd_info *mtd; struct nand_chip *nand_chip; int res; - struct mtd_partition *partitions = NULL; - int num_partitions = 0; + struct mtd_part_parser_data ppdata; /* Allocate memory for the device structure (and zero it) */ host = kzalloc(sizeof(struct socrates_nand_host), GFP_KERNEL); @@ -193,6 +190,7 @@ static int __devinit socrates_nand_probe(struct platform_device *ofdev) mtd->name = "socrates_nand"; mtd->owner = THIS_MODULE; mtd->dev.parent = &ofdev->dev; + ppdata.of_node = ofdev->dev.of_node; /*should never be accessed directly */ nand_chip->IO_ADDR_R = (void *)0xdeadbeef; @@ -225,30 +223,10 @@ static int __devinit socrates_nand_probe(struct platform_device *ofdev) goto out; } -#ifdef CONFIG_MTD_CMDLINE_PARTS - num_partitions = parse_mtd_partitions(mtd, part_probes, - &partitions, 0); - if (num_partitions < 0) { - res = num_partitions; - goto release; - } -#endif - - if (num_partitions == 0) { - num_partitions = of_mtd_parse_partitions(&ofdev->dev, - ofdev->dev.of_node, - &partitions); - if (num_partitions < 0) { - res = num_partitions; - goto release; - } - } - - res = mtd_device_register(mtd, partitions, num_partitions); + res = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); if (!res) return res; -release: nand_release(mtd); out: diff --git a/drivers/mtd/nand/tmio_nand.c b/drivers/mtd/nand/tmio_nand.c index 11e8371b5683..beebd95f7690 100644 --- a/drivers/mtd/nand/tmio_nand.c +++ b/drivers/mtd/nand/tmio_nand.c @@ -121,9 +121,6 @@ struct tmio_nand { #define mtd_to_tmio(m) container_of(m, struct tmio_nand, mtd) -#ifdef CONFIG_MTD_CMDLINE_PARTS -static const char *part_probes[] = { "cmdlinepart", NULL }; -#endif /*--------------------------------------------------------------------------*/ @@ -381,8 +378,6 @@ static int tmio_probe(struct platform_device *dev) struct tmio_nand *tmio; struct mtd_info *mtd; struct nand_chip *nand_chip; - struct mtd_partition *parts; - int nbparts = 0; int retval; if (data == NULL) @@ -461,15 +456,9 @@ static int tmio_probe(struct platform_device *dev) goto err_scan; } /* Register the partitions */ -#ifdef CONFIG_MTD_CMDLINE_PARTS - nbparts = parse_mtd_partitions(mtd, part_probes, &parts, 0); -#endif - if (nbparts <= 0 && data) { - parts = data->partition; - nbparts = data->num_partitions; - } - - retval = mtd_device_register(mtd, parts, nbparts); + retval = mtd_device_parse_register(mtd, NULL, 0, + data ? data->partition : NULL, + data ? data->num_partitions : 0); if (!retval) return retval; diff --git a/drivers/mtd/nand/txx9ndfmc.c b/drivers/mtd/nand/txx9ndfmc.c index bfba4e39a6c5..ace46fdaef58 100644 --- a/drivers/mtd/nand/txx9ndfmc.c +++ b/drivers/mtd/nand/txx9ndfmc.c @@ -74,7 +74,6 @@ struct txx9ndfmc_drvdata { unsigned char hold; /* in gbusclock */ unsigned char spw; /* in gbusclock */ struct nand_hw_control hw_control; - struct mtd_partition *parts[MAX_TXX9NDFMC_DEV]; }; static struct platform_device *mtd_to_platdev(struct mtd_info *mtd) @@ -287,7 +286,6 @@ static int txx9ndfmc_nand_scan(struct mtd_info *mtd) static int __init txx9ndfmc_probe(struct platform_device *dev) { struct txx9ndfmc_platform_data *plat = dev->dev.platform_data; - static const char *probes[] = { "cmdlinepart", NULL }; int hold, spw; int i; struct txx9ndfmc_drvdata *drvdata; @@ -333,7 +331,6 @@ static int __init txx9ndfmc_probe(struct platform_device *dev) struct txx9ndfmc_priv *txx9_priv; struct nand_chip *chip; struct mtd_info *mtd; - int nr_parts; if (!(plat->ch_mask & (1 << i))) continue; @@ -393,9 +390,7 @@ static int __init txx9ndfmc_probe(struct platform_device *dev) } mtd->name = txx9_priv->mtdname; - nr_parts = parse_mtd_partitions(mtd, probes, - &drvdata->parts[i], 0); - mtd_device_register(mtd, drvdata->parts[i], nr_parts); + mtd_device_parse_register(mtd, NULL, 0, NULL, 0); drvdata->mtds[i] = mtd; } @@ -421,7 +416,6 @@ static int __exit txx9ndfmc_remove(struct platform_device *dev) txx9_priv = chip->priv; nand_release(mtd); - kfree(drvdata->parts[i]); kfree(txx9_priv->mtdname); kfree(txx9_priv); } |