summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/intel_pm.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/i915/intel_pm.c')
-rw-r--r--drivers/gpu/drm/i915/intel_pm.c79
1 files changed, 79 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/intel_pm.c b/drivers/gpu/drm/i915/intel_pm.c
index 87fae2e93c40..7b2545c32ce8 100644
--- a/drivers/gpu/drm/i915/intel_pm.c
+++ b/drivers/gpu/drm/i915/intel_pm.c
@@ -3812,6 +3812,84 @@ static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
}
+static int
+skl_compute_ddb(struct drm_atomic_state *state)
+{
+ struct drm_device *dev = state->dev;
+ struct drm_i915_private *dev_priv = to_i915(dev);
+ struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
+ struct intel_crtc *intel_crtc;
+ unsigned realloc_pipes = dev_priv->active_crtcs;
+ int ret;
+
+ /*
+ * If this is our first atomic update following hardware readout,
+ * we can't trust the DDB that the BIOS programmed for us. Let's
+ * pretend that all pipes switched active status so that we'll
+ * ensure a full DDB recompute.
+ */
+ if (dev_priv->wm.distrust_bios_wm)
+ intel_state->active_pipe_changes = ~0;
+
+ /*
+ * If the modeset changes which CRTC's are active, we need to
+ * recompute the DDB allocation for *all* active pipes, even
+ * those that weren't otherwise being modified in any way by this
+ * atomic commit. Due to the shrinking of the per-pipe allocations
+ * when new active CRTC's are added, it's possible for a pipe that
+ * we were already using and aren't changing at all here to suddenly
+ * become invalid if its DDB needs exceeds its new allocation.
+ *
+ * Note that if we wind up doing a full DDB recompute, we can't let
+ * any other display updates race with this transaction, so we need
+ * to grab the lock on *all* CRTC's.
+ */
+ if (intel_state->active_pipe_changes)
+ realloc_pipes = ~0;
+
+ for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
+ struct intel_crtc_state *cstate;
+
+ cstate = intel_atomic_get_crtc_state(state, intel_crtc);
+ if (IS_ERR(cstate))
+ return PTR_ERR(cstate);
+
+ ret = skl_allocate_pipe_ddb(cstate, &intel_state->ddb);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int
+skl_compute_wm(struct drm_atomic_state *state)
+{
+ struct drm_crtc *crtc;
+ struct drm_crtc_state *cstate;
+ int ret, i;
+ bool changed = false;
+
+ /*
+ * If this transaction isn't actually touching any CRTC's, don't
+ * bother with watermark calculation. Note that if we pass this
+ * test, we're guaranteed to hold at least one CRTC state mutex,
+ * which means we can safely use values like dev_priv->active_crtcs
+ * since any racing commits that want to update them would need to
+ * hold _all_ CRTC state mutexes.
+ */
+ for_each_crtc_in_state(state, crtc, cstate, i)
+ changed = true;
+ if (!changed)
+ return 0;
+
+ ret = skl_compute_ddb(state);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
static void skl_update_wm(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
@@ -7334,6 +7412,7 @@ void intel_init_pm(struct drm_device *dev)
if (INTEL_INFO(dev)->gen >= 9) {
skl_setup_wm_latency(dev);
dev_priv->display.update_wm = skl_update_wm;
+ dev_priv->display.compute_global_watermarks = skl_compute_wm;
} else if (HAS_PCH_SPLIT(dev)) {
ilk_setup_wm_latency(dev);