summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c')
-rw-r--r--drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c3181
1 files changed, 3140 insertions, 41 deletions
diff --git a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c
index c35f4c35c9ca..0a8e48bff219 100644
--- a/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c
+++ b/drivers/gpu/drm/amd/powerplay/smumgr/tonga_smumgr.c
@@ -33,141 +33,193 @@
#include "smu/smu_7_1_2_d.h"
#include "smu/smu_7_1_2_sh_mask.h"
#include "cgs_common.h"
-#include "tonga_smc.h"
#include "smu7_smumgr.h"
+#include "smu7_dyn_defaults.h"
-static int tonga_start_in_protection_mode(struct pp_smumgr *smumgr)
+#include "smu7_hwmgr.h"
+#include "hardwaremanager.h"
+#include "ppatomctrl.h"
+
+#include "atombios.h"
+
+#include "pppcielanes.h"
+#include "pp_endian.h"
+
+#include "gmc/gmc_8_1_d.h"
+#include "gmc/gmc_8_1_sh_mask.h"
+
+#include "bif/bif_5_0_d.h"
+#include "bif/bif_5_0_sh_mask.h"
+
+#include "dce/dce_10_0_d.h"
+#include "dce/dce_10_0_sh_mask.h"
+
+
+#define VOLTAGE_SCALE 4
+#define POWERTUNE_DEFAULT_SET_MAX 1
+#define VOLTAGE_VID_OFFSET_SCALE1 625
+#define VOLTAGE_VID_OFFSET_SCALE2 100
+#define MC_CG_ARB_FREQ_F1 0x0b
+#define VDDC_VDDCI_DELTA 200
+
+
+static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
+/* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
+ * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
+ */
+ {1, 0xF, 0xFD, 0x19,
+ 5, 45, 0, 0xB0000,
+ {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8,
+ 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
+ {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203,
+ 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4}
+ },
+};
+
+/* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
+static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = {
+ {600, 1050, 3, 0},
+ {600, 1050, 6, 1}
+};
+
+/* [FF, SS] type, [] 4 voltage ranges,
+ * and [Floor Freq, Boundary Freq, VID min , VID max]
+ */
+static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = {
+ { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
+ { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} }
+};
+
+/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */
+static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = {
+ {0, 1, 3, 2, 4, 5},
+ {0, 2, 4, 5, 6, 5}
+};
+
+static int tonga_start_in_protection_mode(struct pp_hwmgr *hwmgr)
{
int result;
/* Assert reset */
- SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
+ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
- result = smu7_upload_smu_firmware_image(smumgr);
+ result = smu7_upload_smu_firmware_image(hwmgr);
if (result)
return result;
/* Clear status */
- cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
+ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_STATUS, 0);
/* Enable clock */
- SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
+ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
/* De-assert reset */
- SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
+ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
/* Set SMU Auto Start */
- SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
+ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMU_INPUT_DATA, AUTO_START, 1);
/* Clear firmware interrupt enable flag */
- cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
+ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixFIRMWARE_FLAGS, 0);
- SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
+ PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
/**
* Call Test SMU message with 0x20000 offset to trigger SMU start
*/
- smu7_send_msg_to_smc_offset(smumgr);
+ smu7_send_msg_to_smc_offset(hwmgr);
/* Wait for done bit to be set */
- SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND,
+ PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
SMU_STATUS, SMU_DONE, 0);
/* Check pass/failed indicator */
- if (1 != SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device,
+ if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) {
pr_err("SMU Firmware start failed\n");
return -EINVAL;
}
/* Wait for firmware to initialize */
- SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
+ PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
return 0;
}
-
-static int tonga_start_in_non_protection_mode(struct pp_smumgr *smumgr)
+static int tonga_start_in_non_protection_mode(struct pp_hwmgr *hwmgr)
{
int result = 0;
/* wait for smc boot up */
- SMUM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND,
+ PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
RCU_UC_EVENTS, boot_seq_done, 0);
/*Clear firmware interrupt enable flag*/
- cgs_write_ind_register(smumgr->device, CGS_IND_REG__SMC,
+ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixFIRMWARE_FLAGS, 0);
- SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
+ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
- result = smu7_upload_smu_firmware_image(smumgr);
+ result = smu7_upload_smu_firmware_image(hwmgr);
if (result != 0)
return result;
/* Set smc instruct start point at 0x0 */
- smu7_program_jump_on_start(smumgr);
+ smu7_program_jump_on_start(hwmgr);
- SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
+ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
/*De-assert reset*/
- SMUM_WRITE_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
+ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
/* Wait for firmware to initialize */
- SMUM_WAIT_VFPF_INDIRECT_FIELD(smumgr, SMC_IND,
+ PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
return result;
}
-static int tonga_start_smu(struct pp_smumgr *smumgr)
+static int tonga_start_smu(struct pp_hwmgr *hwmgr)
{
int result;
/* Only start SMC if SMC RAM is not running */
- if (!(smu7_is_smc_ram_running(smumgr) ||
- cgs_is_virtualization_enabled(smumgr->device))) {
+ if (!(smu7_is_smc_ram_running(hwmgr) ||
+ cgs_is_virtualization_enabled(hwmgr->device))) {
/*Check if SMU is running in protected mode*/
- if (0 == SMUM_READ_VFPF_INDIRECT_FIELD(smumgr->device, CGS_IND_REG__SMC,
+ if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMU_FIRMWARE, SMU_MODE)) {
- result = tonga_start_in_non_protection_mode(smumgr);
+ result = tonga_start_in_non_protection_mode(hwmgr);
if (result)
return result;
} else {
- result = tonga_start_in_protection_mode(smumgr);
+ result = tonga_start_in_protection_mode(hwmgr);
if (result)
return result;
}
}
- result = smu7_request_smu_load_fw(smumgr);
+ result = smu7_request_smu_load_fw(hwmgr);
return result;
}
-/**
- * Write a 32bit value to the SMC SRAM space.
- * ALL PARAMETERS ARE IN HOST BYTE ORDER.
- * @param smumgr the address of the powerplay hardware manager.
- * @param smcAddress the address in the SMC RAM to access.
- * @param value to write to the SMC SRAM.
- */
-static int tonga_smu_init(struct pp_smumgr *smumgr)
+static int tonga_smu_init(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *tonga_priv = NULL;
int i;
@@ -176,9 +228,9 @@ static int tonga_smu_init(struct pp_smumgr *smumgr)
if (tonga_priv == NULL)
return -ENOMEM;
- smumgr->backend = tonga_priv;
+ hwmgr->smu_backend = tonga_priv;
- if (smu7_init(smumgr))
+ if (smu7_init(hwmgr))
return -EINVAL;
for (i = 0; i < SMU72_MAX_LEVELS_GRAPHICS; i++)
@@ -187,6 +239,3053 @@ static int tonga_smu_init(struct pp_smumgr *smumgr)
return 0;
}
+
+static int tonga_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
+ phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
+ uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
+{
+ uint32_t i = 0;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct phm_ppt_v1_information *pptable_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+ /* clock - voltage dependency table is empty table */
+ if (allowed_clock_voltage_table->count == 0)
+ return -EINVAL;
+
+ for (i = 0; i < allowed_clock_voltage_table->count; i++) {
+ /* find first sclk bigger than request */
+ if (allowed_clock_voltage_table->entries[i].clk >= clock) {
+ voltage->VddGfx = phm_get_voltage_index(
+ pptable_info->vddgfx_lookup_table,
+ allowed_clock_voltage_table->entries[i].vddgfx);
+ voltage->Vddc = phm_get_voltage_index(
+ pptable_info->vddc_lookup_table,
+ allowed_clock_voltage_table->entries[i].vddc);
+
+ if (allowed_clock_voltage_table->entries[i].vddci)
+ voltage->Vddci =
+ phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci);
+ else
+ voltage->Vddci =
+ phm_get_voltage_id(&data->vddci_voltage_table,
+ allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA);
+
+
+ if (allowed_clock_voltage_table->entries[i].mvdd)
+ *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
+
+ voltage->Phases = 1;
+ return 0;
+ }
+ }
+
+ /* sclk is bigger than max sclk in the dependence table */
+ voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+ allowed_clock_voltage_table->entries[i-1].vddgfx);
+ voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table,
+ allowed_clock_voltage_table->entries[i-1].vddc);
+
+ if (allowed_clock_voltage_table->entries[i-1].vddci)
+ voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table,
+ allowed_clock_voltage_table->entries[i-1].vddci);
+
+ if (allowed_clock_voltage_table->entries[i-1].mvdd)
+ *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
+
+ return 0;
+}
+
+static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ unsigned int count;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+
+ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
+ table->VddcLevelCount = data->vddc_voltage_table.count;
+ for (count = 0; count < table->VddcLevelCount; count++) {
+ table->VddcTable[count] =
+ PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
+ }
+ CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
+ }
+ return 0;
+}
+
+static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ unsigned int count;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+
+ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
+ table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
+ for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
+ table->VddGfxTable[count] =
+ PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
+ }
+ CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
+ }
+ return 0;
+}
+
+static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ uint32_t count;
+
+ table->VddciLevelCount = data->vddci_voltage_table.count;
+ for (count = 0; count < table->VddciLevelCount; count++) {
+ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
+ table->VddciTable[count] =
+ PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
+ } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
+ table->SmioTable1.Pattern[count].Voltage =
+ PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
+ /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
+ table->SmioTable1.Pattern[count].Smio =
+ (uint8_t) count;
+ table->Smio[count] |=
+ data->vddci_voltage_table.entries[count].smio_low;
+ table->VddciTable[count] =
+ PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
+ }
+ }
+
+ table->SmioMask1 = data->vddci_voltage_table.mask_low;
+ CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
+
+ return 0;
+}
+
+static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ uint32_t count;
+
+ if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
+ table->MvddLevelCount = data->mvdd_voltage_table.count;
+ for (count = 0; count < table->MvddLevelCount; count++) {
+ table->SmioTable2.Pattern[count].Voltage =
+ PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
+ /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
+ table->SmioTable2.Pattern[count].Smio =
+ (uint8_t) count;
+ table->Smio[count] |=
+ data->mvdd_voltage_table.entries[count].smio_low;
+ }
+ table->SmioMask2 = data->mvdd_voltage_table.mask_low;
+
+ CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
+ }
+
+ return 0;
+}
+
+static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ uint32_t count;
+ uint8_t index = 0;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct phm_ppt_v1_information *pptable_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table =
+ pptable_info->vddgfx_lookup_table;
+ struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table =
+ pptable_info->vddc_lookup_table;
+
+ /* table is already swapped, so in order to use the value from it
+ * we need to swap it back.
+ */
+ uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
+ uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
+
+ for (count = 0; count < vddc_level_count; count++) {
+ /* We are populating vddc CAC data to BapmVddc table in split and merged mode */
+ index = phm_get_voltage_index(vddc_lookup_table,
+ data->vddc_voltage_table.entries[count].value);
+ table->BapmVddcVidLoSidd[count] =
+ convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
+ table->BapmVddcVidHiSidd[count] =
+ convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
+ table->BapmVddcVidHiSidd2[count] =
+ convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
+ }
+
+ if ((data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2)) {
+ /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
+ for (count = 0; count < vddgfx_level_count; count++) {
+ index = phm_get_voltage_index(vddgfx_lookup_table,
+ convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid));
+ table->BapmVddGfxVidHiSidd2[count] =
+ convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
+ }
+ } else {
+ for (count = 0; count < vddc_level_count; count++) {
+ index = phm_get_voltage_index(vddc_lookup_table,
+ data->vddc_voltage_table.entries[count].value);
+ table->BapmVddGfxVidLoSidd[count] =
+ convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
+ table->BapmVddGfxVidHiSidd[count] =
+ convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
+ table->BapmVddGfxVidHiSidd2[count] =
+ convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
+ }
+ }
+
+ return 0;
+}
+
+static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ int result;
+
+ result = tonga_populate_smc_vddc_table(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "can not populate VDDC voltage table to SMC",
+ return -EINVAL);
+
+ result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "can not populate VDDCI voltage table to SMC",
+ return -EINVAL);
+
+ result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "can not populate VDDGFX voltage table to SMC",
+ return -EINVAL);
+
+ result = tonga_populate_smc_mvdd_table(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "can not populate MVDD voltage table to SMC",
+ return -EINVAL);
+
+ result = tonga_populate_cac_tables(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "can not populate CAC voltage tables to SMC",
+ return -EINVAL);
+
+ return 0;
+}
+
+static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr,
+ struct SMU72_Discrete_Ulv *state)
+{
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+ state->CcPwrDynRm = 0;
+ state->CcPwrDynRm1 = 0;
+
+ state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
+ state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
+ VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
+
+ state->VddcPhase = 1;
+
+ CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
+ CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
+ CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
+
+ return 0;
+}
+
+static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr,
+ struct SMU72_Discrete_DpmTable *table)
+{
+ return tonga_populate_ulv_level(hwmgr, &table->Ulv);
+}
+
+static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct smu7_dpm_table *dpm_table = &data->dpm_table;
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+ uint32_t i;
+
+ /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
+ for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
+ table->LinkLevel[i].PcieGenSpeed =
+ (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
+ table->LinkLevel[i].PcieLaneCount =
+ (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
+ table->LinkLevel[i].EnabledForActivity =
+ 1;
+ table->LinkLevel[i].SPC =
+ (uint8_t)(data->pcie_spc_cap & 0xff);
+ table->LinkLevel[i].DownThreshold =
+ PP_HOST_TO_SMC_UL(5);
+ table->LinkLevel[i].UpThreshold =
+ PP_HOST_TO_SMC_UL(30);
+ }
+
+ smu_data->smc_state_table.LinkLevelCount =
+ (uint8_t)dpm_table->pcie_speed_table.count;
+ data->dpm_level_enable_mask.pcie_dpm_enable_mask =
+ phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
+
+ return 0;
+}
+
+static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
+ uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
+{
+ const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ pp_atomctrl_clock_dividers_vi dividers;
+ uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
+ uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
+ uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
+ uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
+ uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
+ uint32_t reference_clock;
+ uint32_t reference_divider;
+ uint32_t fbdiv;
+ int result;
+
+ /* get the engine clock dividers for this clock value*/
+ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
+
+ PP_ASSERT_WITH_CODE(result == 0,
+ "Error retrieving Engine Clock dividers from VBIOS.", return result);
+
+ /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
+ reference_clock = atomctrl_get_reference_clock(hwmgr);
+
+ reference_divider = 1 + dividers.uc_pll_ref_div;
+
+ /* low 14 bits is fraction and high 12 bits is divider*/
+ fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
+
+ /* SPLL_FUNC_CNTL setup*/
+ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
+ CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
+ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
+ CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
+
+ /* SPLL_FUNC_CNTL_3 setup*/
+ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
+ CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
+
+ /* set to use fractional accumulation*/
+ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
+ CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
+ pp_atomctrl_internal_ss_info ss_info;
+
+ uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
+ if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
+ /*
+ * ss_info.speed_spectrum_percentage -- in unit of 0.01%
+ * ss_info.speed_spectrum_rate -- in unit of khz
+ */
+ /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
+ uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
+
+ /* clkv = 2 * D * fbdiv / NS */
+ uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
+
+ cg_spll_spread_spectrum =
+ PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
+ cg_spll_spread_spectrum =
+ PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
+ cg_spll_spread_spectrum_2 =
+ PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
+ }
+ }
+
+ sclk->SclkFrequency = engine_clock;
+ sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
+ sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
+ sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
+ sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
+ sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
+
+ return 0;
+}
+
+static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
+ uint32_t engine_clock,
+ uint16_t sclk_activity_level_threshold,
+ SMU72_Discrete_GraphicsLevel *graphic_level)
+{
+ int result;
+ uint32_t mvdd;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct phm_ppt_v1_information *pptable_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+ result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
+
+ /* populate graphics levels*/
+ result = tonga_get_dependency_volt_by_clk(hwmgr,
+ pptable_info->vdd_dep_on_sclk, engine_clock,
+ &graphic_level->MinVoltage, &mvdd);
+ PP_ASSERT_WITH_CODE((!result),
+ "can not find VDDC voltage value for VDDC "
+ "engine clock dependency table", return result);
+
+ /* SCLK frequency in units of 10KHz*/
+ graphic_level->SclkFrequency = engine_clock;
+ /* Indicates maximum activity level for this performance level. 50% for now*/
+ graphic_level->ActivityLevel = sclk_activity_level_threshold;
+
+ graphic_level->CcPwrDynRm = 0;
+ graphic_level->CcPwrDynRm1 = 0;
+ /* this level can be used if activity is high enough.*/
+ graphic_level->EnabledForActivity = 0;
+ /* this level can be used for throttling.*/
+ graphic_level->EnabledForThrottle = 1;
+ graphic_level->UpHyst = 0;
+ graphic_level->DownHyst = 0;
+ graphic_level->VoltageDownHyst = 0;
+ graphic_level->PowerThrottle = 0;
+
+ data->display_timing.min_clock_in_sr =
+ hwmgr->display_config.min_core_set_clock_in_sr;
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_SclkDeepSleep))
+ graphic_level->DeepSleepDivId =
+ smu7_get_sleep_divider_id_from_clock(engine_clock,
+ data->display_timing.min_clock_in_sr);
+
+ /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
+ graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
+
+ if (!result) {
+ /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
+ /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
+ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
+ CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
+ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
+ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
+ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
+ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
+ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
+ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
+ }
+
+ return result;
+}
+
+static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+ struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ struct smu7_dpm_table *dpm_table = &data->dpm_table;
+ struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
+ uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
+ uint32_t level_array_address = smu_data->smu7_data.dpm_table_start +
+ offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
+
+ uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
+ SMU72_MAX_LEVELS_GRAPHICS;
+
+ SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
+
+ uint32_t i, max_entry;
+ uint8_t highest_pcie_level_enabled = 0;
+ uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
+ uint8_t count = 0;
+ int result = 0;
+
+ memset(levels, 0x00, level_array_size);
+
+ for (i = 0; i < dpm_table->sclk_table.count; i++) {
+ result = tonga_populate_single_graphic_level(hwmgr,
+ dpm_table->sclk_table.dpm_levels[i].value,
+ (uint16_t)smu_data->activity_target[i],
+ &(smu_data->smc_state_table.GraphicsLevel[i]));
+ if (result != 0)
+ return result;
+
+ /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
+ if (i > 1)
+ smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
+ }
+
+ /* Only enable level 0 for now. */
+ smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
+
+ /* set highest level watermark to high */
+ if (dpm_table->sclk_table.count > 1)
+ smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
+ PPSMC_DISPLAY_WATERMARK_HIGH;
+
+ smu_data->smc_state_table.GraphicsDpmLevelCount =
+ (uint8_t)dpm_table->sclk_table.count;
+ data->dpm_level_enable_mask.sclk_dpm_enable_mask =
+ phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
+
+ if (pcie_table != NULL) {
+ PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
+ "There must be 1 or more PCIE levels defined in PPTable.",
+ return -EINVAL);
+ max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
+ for (i = 0; i < dpm_table->sclk_table.count; i++) {
+ smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
+ (uint8_t) ((i < max_entry) ? i : max_entry);
+ }
+ } else {
+ if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
+ pr_err("Pcie Dpm Enablemask is 0 !");
+
+ while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
+ ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
+ (1<<(highest_pcie_level_enabled+1))) != 0)) {
+ highest_pcie_level_enabled++;
+ }
+
+ while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
+ ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
+ (1<<lowest_pcie_level_enabled)) == 0)) {
+ lowest_pcie_level_enabled++;
+ }
+
+ while ((count < highest_pcie_level_enabled) &&
+ ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
+ (1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
+ count++;
+ }
+ mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
+ (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
+
+
+ /* set pcieDpmLevel to highest_pcie_level_enabled*/
+ for (i = 2; i < dpm_table->sclk_table.count; i++)
+ smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
+
+ /* set pcieDpmLevel to lowest_pcie_level_enabled*/
+ smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
+
+ /* set pcieDpmLevel to mid_pcie_level_enabled*/
+ smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
+ }
+ /* level count will send to smc once at init smc table and never change*/
+ result = smu7_copy_bytes_to_smc(hwmgr, level_array_address,
+ (uint8_t *)levels, (uint32_t)level_array_size,
+ SMC_RAM_END);
+
+ return result;
+}
+
+static int tonga_calculate_mclk_params(
+ struct pp_hwmgr *hwmgr,
+ uint32_t memory_clock,
+ SMU72_Discrete_MemoryLevel *mclk,
+ bool strobe_mode,
+ bool dllStateOn
+ )
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+
+ uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
+ uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
+ uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
+ uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
+ uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
+ uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
+ uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
+ uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
+ uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
+
+ pp_atomctrl_memory_clock_param mpll_param;
+ int result;
+
+ result = atomctrl_get_memory_pll_dividers_si(hwmgr,
+ memory_clock, &mpll_param, strobe_mode);
+ PP_ASSERT_WITH_CODE(
+ !result,
+ "Error retrieving Memory Clock Parameters from VBIOS.",
+ return result);
+
+ /* MPLL_FUNC_CNTL setup*/
+ mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL,
+ mpll_param.bw_ctrl);
+
+ /* MPLL_FUNC_CNTL_1 setup*/
+ mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
+ MPLL_FUNC_CNTL_1, CLKF,
+ mpll_param.mpll_fb_divider.cl_kf);
+ mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
+ MPLL_FUNC_CNTL_1, CLKFRAC,
+ mpll_param.mpll_fb_divider.clk_frac);
+ mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
+ MPLL_FUNC_CNTL_1, VCO_MODE,
+ mpll_param.vco_mode);
+
+ /* MPLL_AD_FUNC_CNTL setup*/
+ mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
+ MPLL_AD_FUNC_CNTL, YCLK_POST_DIV,
+ mpll_param.mpll_post_divider);
+
+ if (data->is_memory_gddr5) {
+ /* MPLL_DQ_FUNC_CNTL setup*/
+ mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
+ MPLL_DQ_FUNC_CNTL, YCLK_SEL,
+ mpll_param.yclk_sel);
+ mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
+ MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV,
+ mpll_param.mpll_post_divider);
+ }
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
+ /*
+ ************************************
+ Fref = Reference Frequency
+ NF = Feedback divider ratio
+ NR = Reference divider ratio
+ Fnom = Nominal VCO output frequency = Fref * NF / NR
+ Fs = Spreading Rate
+ D = Percentage down-spread / 2
+ Fint = Reference input frequency to PFD = Fref / NR
+ NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
+ CLKS = NS - 1 = ISS_STEP_NUM[11:0]
+ NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
+ CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
+ *************************************
+ */
+ pp_atomctrl_internal_ss_info ss_info;
+ uint32_t freq_nom;
+ uint32_t tmp;
+ uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
+
+ /* for GDDR5 for all modes and DDR3 */
+ if (1 == mpll_param.qdr)
+ freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
+ else
+ freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
+
+ /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
+ tmp = (freq_nom / reference_clock);
+ tmp = tmp * tmp;
+
+ if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
+ /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
+ /* ss.Info.speed_spectrum_rate -- in unit of khz */
+ /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
+ /* = reference_clock * 5 / speed_spectrum_rate */
+ uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
+
+ /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
+ /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
+ uint32_t clkv =
+ (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
+ ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
+
+ mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
+ mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
+ }
+ }
+
+ /* MCLK_PWRMGT_CNTL setup */
+ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+ MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
+ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+ MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
+ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+ MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
+
+ /* Save the result data to outpupt memory level structure */
+ mclk->MclkFrequency = memory_clock;
+ mclk->MpllFuncCntl = mpll_func_cntl;
+ mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
+ mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
+ mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
+ mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
+ mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
+ mclk->DllCntl = dll_cntl;
+ mclk->MpllSs1 = mpll_ss1;
+ mclk->MpllSs2 = mpll_ss2;
+
+ return 0;
+}
+
+static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
+ bool strobe_mode)
+{
+ uint8_t mc_para_index;
+
+ if (strobe_mode) {
+ if (memory_clock < 12500)
+ mc_para_index = 0x00;
+ else if (memory_clock > 47500)
+ mc_para_index = 0x0f;
+ else
+ mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
+ } else {
+ if (memory_clock < 65000)
+ mc_para_index = 0x00;
+ else if (memory_clock > 135000)
+ mc_para_index = 0x0f;
+ else
+ mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
+ }
+
+ return mc_para_index;
+}
+
+static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
+{
+ uint8_t mc_para_index;
+
+ if (memory_clock < 10000)
+ mc_para_index = 0;
+ else if (memory_clock >= 80000)
+ mc_para_index = 0x0f;
+ else
+ mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
+
+ return mc_para_index;
+}
+
+
+static int tonga_populate_single_memory_level(
+ struct pp_hwmgr *hwmgr,
+ uint32_t memory_clock,
+ SMU72_Discrete_MemoryLevel *memory_level
+ )
+{
+ uint32_t mvdd = 0;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct phm_ppt_v1_information *pptable_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ int result = 0;
+ bool dll_state_on;
+ struct cgs_display_info info = {0};
+ uint32_t mclk_edc_wr_enable_threshold = 40000;
+ uint32_t mclk_stutter_mode_threshold = 30000;
+ uint32_t mclk_edc_enable_threshold = 40000;
+ uint32_t mclk_strobe_mode_threshold = 40000;
+
+ if (NULL != pptable_info->vdd_dep_on_mclk) {
+ result = tonga_get_dependency_volt_by_clk(hwmgr,
+ pptable_info->vdd_dep_on_mclk,
+ memory_clock,
+ &memory_level->MinVoltage, &mvdd);
+ PP_ASSERT_WITH_CODE(
+ !result,
+ "can not find MinVddc voltage value from memory VDDC "
+ "voltage dependency table",
+ return result);
+ }
+
+ if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
+ memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
+ else
+ memory_level->MinMvdd = mvdd;
+
+ memory_level->EnabledForThrottle = 1;
+ memory_level->EnabledForActivity = 0;
+ memory_level->UpHyst = 0;
+ memory_level->DownHyst = 100;
+ memory_level->VoltageDownHyst = 0;
+
+ /* Indicates maximum activity level for this performance level.*/
+ memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
+ memory_level->StutterEnable = 0;
+ memory_level->StrobeEnable = 0;
+ memory_level->EdcReadEnable = 0;
+ memory_level->EdcWriteEnable = 0;
+ memory_level->RttEnable = 0;
+
+ /* default set to low watermark. Highest level will be set to high later.*/
+ memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
+
+ cgs_get_active_displays_info(hwmgr->device, &info);
+ data->display_timing.num_existing_displays = info.display_count;
+
+ if ((mclk_stutter_mode_threshold != 0) &&
+ (memory_clock <= mclk_stutter_mode_threshold) &&
+ (!data->is_uvd_enabled)
+ && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
+ && (data->display_timing.num_existing_displays <= 2)
+ && (data->display_timing.num_existing_displays != 0))
+ memory_level->StutterEnable = 1;
+
+ /* decide strobe mode*/
+ memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
+ (memory_clock <= mclk_strobe_mode_threshold);
+
+ /* decide EDC mode and memory clock ratio*/
+ if (data->is_memory_gddr5) {
+ memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
+ memory_level->StrobeEnable);
+
+ if ((mclk_edc_enable_threshold != 0) &&
+ (memory_clock > mclk_edc_enable_threshold)) {
+ memory_level->EdcReadEnable = 1;
+ }
+
+ if ((mclk_edc_wr_enable_threshold != 0) &&
+ (memory_clock > mclk_edc_wr_enable_threshold)) {
+ memory_level->EdcWriteEnable = 1;
+ }
+
+ if (memory_level->StrobeEnable) {
+ if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
+ ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
+ dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
+ } else {
+ dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
+ }
+
+ } else {
+ dll_state_on = data->dll_default_on;
+ }
+ } else {
+ memory_level->StrobeRatio =
+ tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
+ dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
+ }
+
+ result = tonga_calculate_mclk_params(hwmgr,
+ memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
+
+ if (!result) {
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
+ /* MCLK frequency in units of 10KHz*/
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
+ /* Indicates maximum activity level for this performance level.*/
+ CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
+ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
+ }
+
+ return result;
+}
+
+int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ struct smu7_dpm_table *dpm_table = &data->dpm_table;
+ int result;
+
+ /* populate MCLK dpm table to SMU7 */
+ uint32_t level_array_address =
+ smu_data->smu7_data.dpm_table_start +
+ offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
+ uint32_t level_array_size =
+ sizeof(SMU72_Discrete_MemoryLevel) *
+ SMU72_MAX_LEVELS_MEMORY;
+ SMU72_Discrete_MemoryLevel *levels =
+ smu_data->smc_state_table.MemoryLevel;
+ uint32_t i;
+
+ memset(levels, 0x00, level_array_size);
+
+ for (i = 0; i < dpm_table->mclk_table.count; i++) {
+ PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
+ "can not populate memory level as memory clock is zero",
+ return -EINVAL);
+ result = tonga_populate_single_memory_level(
+ hwmgr,
+ dpm_table->mclk_table.dpm_levels[i].value,
+ &(smu_data->smc_state_table.MemoryLevel[i]));
+ if (result)
+ return result;
+ }
+
+ /* Only enable level 0 for now.*/
+ smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
+
+ /*
+ * in order to prevent MC activity from stutter mode to push DPM up.
+ * the UVD change complements this by putting the MCLK in a higher state
+ * by default such that we are not effected by up threshold or and MCLK DPM latency.
+ */
+ smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
+ CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
+
+ smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
+ data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
+ /* set highest level watermark to high*/
+ smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
+
+ /* level count will send to smc once at init smc table and never change*/
+ result = smu7_copy_bytes_to_smc(hwmgr,
+ level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
+ SMC_RAM_END);
+
+ return result;
+}
+
+static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr,
+ uint32_t mclk, SMIO_Pattern *smio_pattern)
+{
+ const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ uint32_t i = 0;
+
+ if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
+ /* find mvdd value which clock is more than request */
+ for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
+ if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
+ /* Always round to higher voltage. */
+ smio_pattern->Voltage =
+ data->mvdd_voltage_table.entries[i].value;
+ break;
+ }
+ }
+
+ PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
+ "MVDD Voltage is outside the supported range.",
+ return -EINVAL);
+ } else {
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+
+static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ int result = 0;
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct pp_atomctrl_clock_dividers_vi dividers;
+
+ SMIO_Pattern voltage_level;
+ uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
+ uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
+ uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
+ uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
+
+ /* The ACPI state should not do DPM on DC (or ever).*/
+ table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
+
+ table->ACPILevel.MinVoltage =
+ smu_data->smc_state_table.GraphicsLevel[0].MinVoltage;
+
+ /* assign zero for now*/
+ table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
+
+ /* get the engine clock dividers for this clock value*/
+ result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
+ table->ACPILevel.SclkFrequency, &dividers);
+
+ PP_ASSERT_WITH_CODE(result == 0,
+ "Error retrieving Engine Clock dividers from VBIOS.",
+ return result);
+
+ /* divider ID for required SCLK*/
+ table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
+ table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
+ table->ACPILevel.DeepSleepDivId = 0;
+
+ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
+ SPLL_PWRON, 0);
+ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
+ SPLL_RESET, 1);
+ spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
+ SCLK_MUX_SEL, 4);
+
+ table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
+ table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
+ table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
+ table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
+ table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
+ table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
+ table->ACPILevel.CcPwrDynRm = 0;
+ table->ACPILevel.CcPwrDynRm1 = 0;
+
+
+ /* For various features to be enabled/disabled while this level is active.*/
+ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
+ /* SCLK frequency in units of 10KHz*/
+ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
+
+ /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
+ table->MemoryACPILevel.MinVoltage =
+ smu_data->smc_state_table.MemoryLevel[0].MinVoltage;
+
+ /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
+
+ if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
+ table->MemoryACPILevel.MinMvdd =
+ PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
+ else
+ table->MemoryACPILevel.MinMvdd = 0;
+
+ /* Force reset on DLL*/
+ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+ MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
+ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+ MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
+
+ /* Disable DLL in ACPIState*/
+ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+ MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
+ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
+ MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
+
+ /* Enable DLL bypass signal*/
+ dll_cntl = PHM_SET_FIELD(dll_cntl,
+ DLL_CNTL, MRDCK0_BYPASS, 0);
+ dll_cntl = PHM_SET_FIELD(dll_cntl,
+ DLL_CNTL, MRDCK1_BYPASS, 0);
+
+ table->MemoryACPILevel.DllCntl =
+ PP_HOST_TO_SMC_UL(dll_cntl);
+ table->MemoryACPILevel.MclkPwrmgtCntl =
+ PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
+ table->MemoryACPILevel.MpllAdFuncCntl =
+ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
+ table->MemoryACPILevel.MpllDqFuncCntl =
+ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
+ table->MemoryACPILevel.MpllFuncCntl =
+ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
+ table->MemoryACPILevel.MpllFuncCntl_1 =
+ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
+ table->MemoryACPILevel.MpllFuncCntl_2 =
+ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
+ table->MemoryACPILevel.MpllSs1 =
+ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
+ table->MemoryACPILevel.MpllSs2 =
+ PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
+
+ table->MemoryACPILevel.EnabledForThrottle = 0;
+ table->MemoryACPILevel.EnabledForActivity = 0;
+ table->MemoryACPILevel.UpHyst = 0;
+ table->MemoryACPILevel.DownHyst = 100;
+ table->MemoryACPILevel.VoltageDownHyst = 0;
+ /* Indicates maximum activity level for this performance level.*/
+ table->MemoryACPILevel.ActivityLevel =
+ PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
+
+ table->MemoryACPILevel.StutterEnable = 0;
+ table->MemoryACPILevel.StrobeEnable = 0;
+ table->MemoryACPILevel.EdcReadEnable = 0;
+ table->MemoryACPILevel.EdcWriteEnable = 0;
+ table->MemoryACPILevel.RttEnable = 0;
+
+ return result;
+}
+
+static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ int result = 0;
+
+ uint8_t count;
+ pp_atomctrl_clock_dividers_vi dividers;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct phm_ppt_v1_information *pptable_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
+ pptable_info->mm_dep_table;
+
+ table->UvdLevelCount = (uint8_t) (mm_table->count);
+ table->UvdBootLevel = 0;
+
+ for (count = 0; count < table->UvdLevelCount; count++) {
+ table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
+ table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
+ table->UvdLevel[count].MinVoltage.Vddc =
+ phm_get_voltage_index(pptable_info->vddc_lookup_table,
+ mm_table->entries[count].vddc);
+ table->UvdLevel[count].MinVoltage.VddGfx =
+ (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
+ phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+ mm_table->entries[count].vddgfx) : 0;
+ table->UvdLevel[count].MinVoltage.Vddci =
+ phm_get_voltage_id(&data->vddci_voltage_table,
+ mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
+ table->UvdLevel[count].MinVoltage.Phases = 1;
+
+ /* retrieve divider value for VBIOS */
+ result = atomctrl_get_dfs_pll_dividers_vi(
+ hwmgr,
+ table->UvdLevel[count].VclkFrequency,
+ &dividers);
+
+ PP_ASSERT_WITH_CODE((!result),
+ "can not find divide id for Vclk clock",
+ return result);
+
+ table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
+
+ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+ table->UvdLevel[count].DclkFrequency, &dividers);
+ PP_ASSERT_WITH_CODE((!result),
+ "can not find divide id for Dclk clock",
+ return result);
+
+ table->UvdLevel[count].DclkDivider =
+ (uint8_t)dividers.pll_post_divider;
+
+ CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
+ }
+
+ return result;
+
+}
+
+static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ int result = 0;
+
+ uint8_t count;
+ pp_atomctrl_clock_dividers_vi dividers;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct phm_ppt_v1_information *pptable_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
+ pptable_info->mm_dep_table;
+
+ table->VceLevelCount = (uint8_t) (mm_table->count);
+ table->VceBootLevel = 0;
+
+ for (count = 0; count < table->VceLevelCount; count++) {
+ table->VceLevel[count].Frequency =
+ mm_table->entries[count].eclk;
+ table->VceLevel[count].MinVoltage.Vddc =
+ phm_get_voltage_index(pptable_info->vddc_lookup_table,
+ mm_table->entries[count].vddc);
+ table->VceLevel[count].MinVoltage.VddGfx =
+ (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
+ phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+ mm_table->entries[count].vddgfx) : 0;
+ table->VceLevel[count].MinVoltage.Vddci =
+ phm_get_voltage_id(&data->vddci_voltage_table,
+ mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
+ table->VceLevel[count].MinVoltage.Phases = 1;
+
+ /* retrieve divider value for VBIOS */
+ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+ table->VceLevel[count].Frequency, &dividers);
+ PP_ASSERT_WITH_CODE((!result),
+ "can not find divide id for VCE engine clock",
+ return result);
+
+ table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
+
+ CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
+ }
+
+ return result;
+}
+
+static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ int result = 0;
+ uint8_t count;
+ pp_atomctrl_clock_dividers_vi dividers;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct phm_ppt_v1_information *pptable_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
+ pptable_info->mm_dep_table;
+
+ table->AcpLevelCount = (uint8_t) (mm_table->count);
+ table->AcpBootLevel = 0;
+
+ for (count = 0; count < table->AcpLevelCount; count++) {
+ table->AcpLevel[count].Frequency =
+ pptable_info->mm_dep_table->entries[count].aclk;
+ table->AcpLevel[count].MinVoltage.Vddc =
+ phm_get_voltage_index(pptable_info->vddc_lookup_table,
+ mm_table->entries[count].vddc);
+ table->AcpLevel[count].MinVoltage.VddGfx =
+ (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
+ phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+ mm_table->entries[count].vddgfx) : 0;
+ table->AcpLevel[count].MinVoltage.Vddci =
+ phm_get_voltage_id(&data->vddci_voltage_table,
+ mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
+ table->AcpLevel[count].MinVoltage.Phases = 1;
+
+ /* retrieve divider value for VBIOS */
+ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+ table->AcpLevel[count].Frequency, &dividers);
+ PP_ASSERT_WITH_CODE((!result),
+ "can not find divide id for engine clock", return result);
+
+ table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
+
+ CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
+ }
+
+ return result;
+}
+
+static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ int result = 0;
+ uint8_t count;
+ pp_atomctrl_clock_dividers_vi dividers;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct phm_ppt_v1_information *pptable_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
+ pptable_info->mm_dep_table;
+
+ table->SamuBootLevel = 0;
+ table->SamuLevelCount = (uint8_t) (mm_table->count);
+
+ for (count = 0; count < table->SamuLevelCount; count++) {
+ /* not sure whether we need evclk or not */
+ table->SamuLevel[count].Frequency =
+ pptable_info->mm_dep_table->entries[count].samclock;
+ table->SamuLevel[count].MinVoltage.Vddc =
+ phm_get_voltage_index(pptable_info->vddc_lookup_table,
+ mm_table->entries[count].vddc);
+ table->SamuLevel[count].MinVoltage.VddGfx =
+ (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
+ phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
+ mm_table->entries[count].vddgfx) : 0;
+ table->SamuLevel[count].MinVoltage.Vddci =
+ phm_get_voltage_id(&data->vddci_voltage_table,
+ mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
+ table->SamuLevel[count].MinVoltage.Phases = 1;
+
+ /* retrieve divider value for VBIOS */
+ result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
+ table->SamuLevel[count].Frequency, &dividers);
+ PP_ASSERT_WITH_CODE((!result),
+ "can not find divide id for samu clock", return result);
+
+ table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
+
+ CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
+ }
+
+ return result;
+}
+
+static int tonga_populate_memory_timing_parameters(
+ struct pp_hwmgr *hwmgr,
+ uint32_t engine_clock,
+ uint32_t memory_clock,
+ struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
+ )
+{
+ uint32_t dramTiming;
+ uint32_t dramTiming2;
+ uint32_t burstTime;
+ int result;
+
+ result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
+ engine_clock, memory_clock);
+
+ PP_ASSERT_WITH_CODE(result == 0,
+ "Error calling VBIOS to set DRAM_TIMING.", return result);
+
+ dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
+ dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
+ burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
+
+ arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
+ arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
+ arb_regs->McArbBurstTime = (uint8_t)burstTime;
+
+ return 0;
+}
+
+static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ int result = 0;
+ SMU72_Discrete_MCArbDramTimingTable arb_regs;
+ uint32_t i, j;
+
+ memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
+
+ for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
+ for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
+ result = tonga_populate_memory_timing_parameters
+ (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
+ data->dpm_table.mclk_table.dpm_levels[j].value,
+ &arb_regs.entries[i][j]);
+
+ if (result)
+ break;
+ }
+ }
+
+ if (!result) {
+ result = smu7_copy_bytes_to_smc(
+ hwmgr,
+ smu_data->smu7_data.arb_table_start,
+ (uint8_t *)&arb_regs,
+ sizeof(SMU72_Discrete_MCArbDramTimingTable),
+ SMC_RAM_END
+ );
+ }
+
+ return result;
+}
+
+static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ int result = 0;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ table->GraphicsBootLevel = 0;
+ table->MemoryBootLevel = 0;
+
+ /* find boot level from dpm table*/
+ result = phm_find_boot_level(&(data->dpm_table.sclk_table),
+ data->vbios_boot_state.sclk_bootup_value,
+ (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
+
+ if (result != 0) {
+ smu_data->smc_state_table.GraphicsBootLevel = 0;
+ pr_err("[powerplay] VBIOS did not find boot engine "
+ "clock value in dependency table. "
+ "Using Graphics DPM level 0 !");
+ result = 0;
+ }
+
+ result = phm_find_boot_level(&(data->dpm_table.mclk_table),
+ data->vbios_boot_state.mclk_bootup_value,
+ (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
+
+ if (result != 0) {
+ smu_data->smc_state_table.MemoryBootLevel = 0;
+ pr_err("[powerplay] VBIOS did not find boot "
+ "engine clock value in dependency table."
+ "Using Memory DPM level 0 !");
+ result = 0;
+ }
+
+ table->BootVoltage.Vddc =
+ phm_get_voltage_id(&(data->vddc_voltage_table),
+ data->vbios_boot_state.vddc_bootup_value);
+ table->BootVoltage.VddGfx =
+ phm_get_voltage_id(&(data->vddgfx_voltage_table),
+ data->vbios_boot_state.vddgfx_bootup_value);
+ table->BootVoltage.Vddci =
+ phm_get_voltage_id(&(data->vddci_voltage_table),
+ data->vbios_boot_state.vddci_bootup_value);
+ table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
+
+ CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
+
+ return result;
+}
+
+static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
+{
+ uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
+ volt_with_cks, value;
+ uint16_t clock_freq_u16;
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
+ volt_offset = 0;
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
+ table_info->vdd_dep_on_sclk;
+ uint32_t hw_revision, dev_id;
+ struct cgs_system_info sys_info = {0};
+
+ stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
+
+ sys_info.size = sizeof(struct cgs_system_info);
+
+ sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV;
+ cgs_query_system_info(hwmgr->device, &sys_info);
+ hw_revision = (uint32_t)sys_info.value;
+
+ sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV;
+ cgs_query_system_info(hwmgr->device, &sys_info);
+ dev_id = (uint32_t)sys_info.value;
+
+ /* Read SMU_Eefuse to read and calculate RO and determine
+ * if the part is SS or FF. if RO >= 1660MHz, part is FF.
+ */
+ efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+ ixSMU_EFUSE_0 + (146 * 4));
+ efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+ ixSMU_EFUSE_0 + (148 * 4));
+ efuse &= 0xFF000000;
+ efuse = efuse >> 24;
+ efuse2 &= 0xF;
+
+ if (efuse2 == 1)
+ ro = (2300 - 1350) * efuse / 255 + 1350;
+ else
+ ro = (2500 - 1000) * efuse / 255 + 1000;
+
+ if (ro >= 1660)
+ type = 0;
+ else
+ type = 1;
+
+ /* Populate Stretch amount */
+ smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
+
+
+ /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
+ for (i = 0; i < sclk_table->count; i++) {
+ smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
+ sclk_table->entries[i].cks_enable << i;
+ if (ASICID_IS_TONGA_P(dev_id, hw_revision)) {
+ volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 *
+ (sclk_table->entries[i].clk/100) / 10000) * 1000 /
+ (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000)));
+ volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 *
+ (sclk_table->entries[i].clk/100) / 100000) * 1000 /
+ (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000)));
+ } else {
+ volt_without_cks = (uint32_t)((14041 *
+ (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
+ (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
+ volt_with_cks = (uint32_t)((13946 *
+ (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
+ (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
+ }
+ if (volt_without_cks >= volt_with_cks)
+ volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
+ sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
+ smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
+ }
+
+ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
+ STRETCH_ENABLE, 0x0);
+ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
+ masterReset, 0x1);
+ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
+ staticEnable, 0x1);
+ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
+ masterReset, 0x0);
+
+ /* Populate CKS Lookup Table */
+ if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
+ stretch_amount2 = 0;
+ else if (stretch_amount == 3 || stretch_amount == 4)
+ stretch_amount2 = 1;
+ else {
+ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_ClockStretcher);
+ PP_ASSERT_WITH_CODE(false,
+ "Stretch Amount in PPTable not supported\n",
+ return -EINVAL);
+ }
+
+ value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+ ixPWR_CKS_CNTL);
+ value &= 0xFFC2FF87;
+ smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
+ tonga_clock_stretcher_lookup_table[stretch_amount2][0];
+ smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
+ tonga_clock_stretcher_lookup_table[stretch_amount2][1];
+ clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
+ GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
+ SclkFrequency) / 100);
+ if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] <
+ clock_freq_u16 &&
+ tonga_clock_stretcher_lookup_table[stretch_amount2][1] >
+ clock_freq_u16) {
+ /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
+ value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
+ /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
+ value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
+ /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
+ value |= (tonga_clock_stretch_amount_conversion
+ [tonga_clock_stretcher_lookup_table[stretch_amount2][3]]
+ [stretch_amount]) << 3;
+ }
+ CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
+ CKS_LOOKUPTableEntry[0].minFreq);
+ CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
+ CKS_LOOKUPTableEntry[0].maxFreq);
+ smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
+ tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
+ smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
+ (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
+
+ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+ ixPWR_CKS_CNTL, value);
+
+ /* Populate DDT Lookup Table */
+ for (i = 0; i < 4; i++) {
+ /* Assign the minimum and maximum VID stored
+ * in the last row of Clock Stretcher Voltage Table.
+ */
+ smu_data->smc_state_table.ClockStretcherDataTable.
+ ClockStretcherDataTableEntry[i].minVID =
+ (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2];
+ smu_data->smc_state_table.ClockStretcherDataTable.
+ ClockStretcherDataTableEntry[i].maxVID =
+ (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3];
+ /* Loop through each SCLK and check the frequency
+ * to see if it lies within the frequency for clock stretcher.
+ */
+ for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
+ cks_setting = 0;
+ clock_freq = PP_SMC_TO_HOST_UL(
+ smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
+ /* Check the allowed frequency against the sclk level[j].
+ * Sclk's endianness has already been converted,
+ * and it's in 10Khz unit,
+ * as opposed to Data table, which is in Mhz unit.
+ */
+ if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) {
+ cks_setting |= 0x2;
+ if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100)
+ cks_setting |= 0x1;
+ }
+ smu_data->smc_state_table.ClockStretcherDataTable.
+ ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
+ }
+ CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
+ ClockStretcherDataTable.
+ ClockStretcherDataTableEntry[i].setting);
+ }
+
+ value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+ ixPWR_CKS_CNTL);
+ value &= 0xFFFFFFFE;
+ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+ ixPWR_CKS_CNTL, value);
+
+ return 0;
+}
+
+static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_DpmTable *table)
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ uint16_t config;
+
+ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
+ /* Splitted mode */
+ config = VR_SVI2_PLANE_1;
+ table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
+
+ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
+ config = VR_SVI2_PLANE_2;
+ table->VRConfig |= config;
+ } else {
+ pr_err("VDDC and VDDGFX should "
+ "be both on SVI2 control in splitted mode !\n");
+ }
+ } else {
+ /* Merged mode */
+ config = VR_MERGED_WITH_VDDC;
+ table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
+
+ /* Set Vddc Voltage Controller */
+ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
+ config = VR_SVI2_PLANE_1;
+ table->VRConfig |= config;
+ } else {
+ pr_err("VDDC should be on "
+ "SVI2 control in merged mode !\n");
+ }
+ }
+
+ /* Set Vddci Voltage Controller */
+ if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
+ config = VR_SVI2_PLANE_2; /* only in merged mode */
+ table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
+ } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
+ config = VR_SMIO_PATTERN_1;
+ table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
+ }
+
+ /* Set Mvdd Voltage Controller */
+ if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
+ config = VR_SMIO_PATTERN_2;
+ table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
+ }
+
+ return 0;
+}
+
+static int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+ uint32_t tmp;
+ int result;
+
+ /*
+ * This is a read-modify-write on the first byte of the ARB table.
+ * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure
+ * is the field 'current'.
+ * This solution is ugly, but we never write the whole table only
+ * individual fields in it.
+ * In reality this field should not be in that structure
+ * but in a soft register.
+ */
+ result = smu7_read_smc_sram_dword(hwmgr,
+ smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
+
+ if (result != 0)
+ return result;
+
+ tmp &= 0x00FFFFFF;
+ tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
+
+ return smu7_write_smc_sram_dword(hwmgr,
+ smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
+}
+
+
+static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
+ SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
+ int i, j, k;
+ const uint16_t *pdef1, *pdef2;
+
+ dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
+ (uint16_t)(cac_dtp_table->usTDP * 256));
+ dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
+ (uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
+
+ PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
+ "Target Operating Temp is out of Range !",
+ );
+
+ dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
+ dpm_table->GpuTjHyst = 8;
+
+ dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
+
+ dpm_table->BAPM_TEMP_GRADIENT =
+ PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
+ pdef1 = defaults->bapmti_r;
+ pdef2 = defaults->bapmti_rc;
+
+ for (i = 0; i < SMU72_DTE_ITERATIONS; i++) {
+ for (j = 0; j < SMU72_DTE_SOURCES; j++) {
+ for (k = 0; k < SMU72_DTE_SINKS; k++) {
+ dpm_table->BAPMTI_R[i][j][k] =
+ PP_HOST_TO_SMC_US(*pdef1);
+ dpm_table->BAPMTI_RC[i][j][k] =
+ PP_HOST_TO_SMC_US(*pdef2);
+ pdef1++;
+ pdef2++;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
+
+ smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
+ smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC;
+ smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
+ smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
+
+ return 0;
+}
+
+static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr)
+{
+ uint16_t tdc_limit;
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+ /* TDC number of fraction bits are changed from 8 to 7
+ * for Fiji as requested by SMC team
+ */
+ tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256);
+ smu_data->power_tune_table.TDC_VDDC_PkgLimit =
+ CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
+ smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
+ defaults->tdc_vddc_throttle_release_limit_perc;
+ smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
+
+ return 0;
+}
+
+static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
+{
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
+ uint32_t temp;
+
+ if (smu7_read_smc_sram_dword(hwmgr,
+ fuse_table_offset +
+ offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl),
+ (uint32_t *)&temp, SMC_RAM_END))
+ PP_ASSERT_WITH_CODE(false,
+ "Attempt to read PmFuses.DW6 "
+ "(SviLoadLineEn) from SMC Failed !",
+ return -EINVAL);
+ else
+ smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
+
+ return 0;
+}
+
+static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
+{
+ int i;
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+
+ /* Currently not used. Set all to zero. */
+ for (i = 0; i < 16; i++)
+ smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
+
+ return 0;
+}
+
+static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+
+ if ((hwmgr->thermal_controller.advanceFanControlParameters.
+ usFanOutputSensitivity & (1 << 15)) ||
+ (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0))
+ hwmgr->thermal_controller.advanceFanControlParameters.
+ usFanOutputSensitivity = hwmgr->thermal_controller.
+ advanceFanControlParameters.usDefaultFanOutputSensitivity;
+
+ smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
+ PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
+ advanceFanControlParameters.usFanOutputSensitivity);
+ return 0;
+}
+
+static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
+{
+ int i;
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+
+ /* Currently not used. Set all to zero. */
+ for (i = 0; i < 16; i++)
+ smu_data->power_tune_table.GnbLPML[i] = 0;
+
+ return 0;
+}
+
+static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+ uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
+ uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
+ struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
+
+ hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
+ lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
+
+ smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
+ CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
+ smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
+ CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
+
+ return 0;
+}
+
+static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ uint32_t pm_fuse_table_offset;
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_PowerContainment)) {
+ if (smu7_read_smc_sram_dword(hwmgr,
+ SMU72_FIRMWARE_HEADER_LOCATION +
+ offsetof(SMU72_Firmware_Header, PmFuseTable),
+ &pm_fuse_table_offset, SMC_RAM_END))
+ PP_ASSERT_WITH_CODE(false,
+ "Attempt to get pm_fuse_table_offset Failed !",
+ return -EINVAL);
+
+ /* DW6 */
+ if (tonga_populate_svi_load_line(hwmgr))
+ PP_ASSERT_WITH_CODE(false,
+ "Attempt to populate SviLoadLine Failed !",
+ return -EINVAL);
+ /* DW7 */
+ if (tonga_populate_tdc_limit(hwmgr))
+ PP_ASSERT_WITH_CODE(false,
+ "Attempt to populate TDCLimit Failed !",
+ return -EINVAL);
+ /* DW8 */
+ if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset))
+ PP_ASSERT_WITH_CODE(false,
+ "Attempt to populate TdcWaterfallCtl Failed !",
+ return -EINVAL);
+
+ /* DW9-DW12 */
+ if (tonga_populate_temperature_scaler(hwmgr) != 0)
+ PP_ASSERT_WITH_CODE(false,
+ "Attempt to populate LPMLTemperatureScaler Failed !",
+ return -EINVAL);
+
+ /* DW13-DW14 */
+ if (tonga_populate_fuzzy_fan(hwmgr))
+ PP_ASSERT_WITH_CODE(false,
+ "Attempt to populate Fuzzy Fan "
+ "Control parameters Failed !",
+ return -EINVAL);
+
+ /* DW15-DW18 */
+ if (tonga_populate_gnb_lpml(hwmgr))
+ PP_ASSERT_WITH_CODE(false,
+ "Attempt to populate GnbLPML Failed !",
+ return -EINVAL);
+
+ /* DW20 */
+ if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr))
+ PP_ASSERT_WITH_CODE(
+ false,
+ "Attempt to populate BapmVddCBaseLeakage "
+ "Hi and Lo Sidd Failed !",
+ return -EINVAL);
+
+ if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
+ (uint8_t *)&smu_data->power_tune_table,
+ sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END))
+ PP_ASSERT_WITH_CODE(false,
+ "Attempt to download PmFuseTable Failed !",
+ return -EINVAL);
+ }
+ return 0;
+}
+
+static int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_MCRegisters *mc_reg_table)
+{
+ const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)hwmgr->smu_backend;
+
+ uint32_t i, j;
+
+ for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
+ if (smu_data->mc_reg_table.validflag & 1<<j) {
+ PP_ASSERT_WITH_CODE(
+ i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
+ "Index of mc_reg_table->address[] array "
+ "out of boundary",
+ return -EINVAL);
+ mc_reg_table->address[i].s0 =
+ PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
+ mc_reg_table->address[i].s1 =
+ PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
+ i++;
+ }
+ }
+
+ mc_reg_table->last = (uint8_t)i;
+
+ return 0;
+}
+
+/*convert register values from driver to SMC format */
+static void tonga_convert_mc_registers(
+ const struct tonga_mc_reg_entry *entry,
+ SMU72_Discrete_MCRegisterSet *data,
+ uint32_t num_entries, uint32_t valid_flag)
+{
+ uint32_t i, j;
+
+ for (i = 0, j = 0; j < num_entries; j++) {
+ if (valid_flag & 1<<j) {
+ data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
+ i++;
+ }
+ }
+}
+
+static int tonga_convert_mc_reg_table_entry_to_smc(
+ struct pp_hwmgr *hwmgr,
+ const uint32_t memory_clock,
+ SMU72_Discrete_MCRegisterSet *mc_reg_table_data
+ )
+{
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+ uint32_t i = 0;
+
+ for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
+ if (memory_clock <=
+ smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
+ break;
+ }
+ }
+
+ if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
+ --i;
+
+ tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
+ mc_reg_table_data, smu_data->mc_reg_table.last,
+ smu_data->mc_reg_table.validflag);
+
+ return 0;
+}
+
+static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
+ SMU72_Discrete_MCRegisters *mc_regs)
+{
+ int result = 0;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ int res;
+ uint32_t i;
+
+ for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
+ res = tonga_convert_mc_reg_table_entry_to_smc(
+ hwmgr,
+ data->dpm_table.mclk_table.dpm_levels[i].value,
+ &mc_regs->data[i]
+ );
+
+ if (0 != res)
+ result = res;
+ }
+
+ return result;
+}
+
+static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ uint32_t address;
+ int32_t result;
+
+ if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
+ return 0;
+
+
+ memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters));
+
+ result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
+
+ if (result != 0)
+ return result;
+
+
+ address = smu_data->smu7_data.mc_reg_table_start +
+ (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
+
+ return smu7_copy_bytes_to_smc(
+ hwmgr, address,
+ (uint8_t *)&smu_data->mc_regs.data[0],
+ sizeof(SMU72_Discrete_MCRegisterSet) *
+ data->dpm_table.mclk_table.count,
+ SMC_RAM_END);
+}
+
+static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
+{
+ int result;
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+
+ memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters));
+ result = tonga_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize MCRegTable for the MC register addresses !",
+ return result;);
+
+ result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize MCRegTable for driver state !",
+ return result;);
+
+ return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
+ (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END);
+}
+
+static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+ if (table_info &&
+ table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
+ table_info->cac_dtp_table->usPowerTuneDataSetID)
+ smu_data->power_tune_defaults =
+ &tonga_power_tune_data_set_array
+ [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
+ else
+ smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0];
+}
+
+static void tonga_save_default_power_profile(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+ struct SMU72_Discrete_GraphicsLevel *levels =
+ data->smc_state_table.GraphicsLevel;
+ unsigned min_level = 1;
+
+ hwmgr->default_gfx_power_profile.activity_threshold =
+ be16_to_cpu(levels[0].ActivityLevel);
+ hwmgr->default_gfx_power_profile.up_hyst = levels[0].UpHyst;
+ hwmgr->default_gfx_power_profile.down_hyst = levels[0].DownHyst;
+ hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE;
+
+ hwmgr->default_compute_power_profile = hwmgr->default_gfx_power_profile;
+ hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE;
+
+ /* Workaround compute SDMA instability: disable lowest SCLK
+ * DPM level. Optimize compute power profile: Use only highest
+ * 2 power levels (if more than 2 are available), Hysteresis:
+ * 0ms up, 5ms down
+ */
+ if (data->smc_state_table.GraphicsDpmLevelCount > 2)
+ min_level = data->smc_state_table.GraphicsDpmLevelCount - 2;
+ else if (data->smc_state_table.GraphicsDpmLevelCount == 2)
+ min_level = 1;
+ else
+ min_level = 0;
+ hwmgr->default_compute_power_profile.min_sclk =
+ be32_to_cpu(levels[min_level].SclkFrequency);
+ hwmgr->default_compute_power_profile.up_hyst = 0;
+ hwmgr->default_compute_power_profile.down_hyst = 5;
+
+ hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile;
+ hwmgr->compute_power_profile = hwmgr->default_compute_power_profile;
+}
+
+static int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
+{
+ int result;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table);
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+ uint8_t i;
+ pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
+
+
+ memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
+
+ tonga_initialize_power_tune_defaults(hwmgr);
+
+ if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
+ tonga_populate_smc_voltage_tables(hwmgr, table);
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_AutomaticDCTransition))
+ table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
+
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_StepVddc))
+ table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
+
+ if (data->is_memory_gddr5)
+ table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
+
+ i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
+
+ if (i == 1 || i == 0)
+ table->SystemFlags |= 0x40;
+
+ if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
+ result = tonga_populate_ulv_state(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize ULV state !",
+ return result;);
+
+ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
+ ixCG_ULV_PARAMETER, 0x40035);
+ }
+
+ result = tonga_populate_smc_link_level(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize Link Level !", return result);
+
+ result = tonga_populate_all_graphic_levels(hwmgr);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize Graphics Level !", return result);
+
+ result = tonga_populate_all_memory_levels(hwmgr);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize Memory Level !", return result);
+
+ result = tonga_populate_smc_acpi_level(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize ACPI Level !", return result);
+
+ result = tonga_populate_smc_vce_level(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize VCE Level !", return result);
+
+ result = tonga_populate_smc_acp_level(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize ACP Level !", return result);
+
+ result = tonga_populate_smc_samu_level(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize SAMU Level !", return result);
+
+ /* Since only the initial state is completely set up at this
+ * point (the other states are just copies of the boot state) we only
+ * need to populate the ARB settings for the initial state.
+ */
+ result = tonga_program_memory_timing_parameters(hwmgr);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to Write ARB settings for the initial state.",
+ return result;);
+
+ result = tonga_populate_smc_uvd_level(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize UVD Level !", return result);
+
+ result = tonga_populate_smc_boot_level(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to initialize Boot Level !", return result);
+
+ tonga_populate_bapm_parameters_in_dpm_table(hwmgr);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to populate BAPM Parameters !", return result);
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_ClockStretcher)) {
+ result = tonga_populate_clock_stretcher_data_table(hwmgr);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to populate Clock Stretcher Data Table !",
+ return result;);
+ }
+ table->GraphicsVoltageChangeEnable = 1;
+ table->GraphicsThermThrottleEnable = 1;
+ table->GraphicsInterval = 1;
+ table->VoltageInterval = 1;
+ table->ThermalInterval = 1;
+ table->TemperatureLimitHigh =
+ table_info->cac_dtp_table->usTargetOperatingTemp *
+ SMU7_Q88_FORMAT_CONVERSION_UNIT;
+ table->TemperatureLimitLow =
+ (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
+ SMU7_Q88_FORMAT_CONVERSION_UNIT;
+ table->MemoryVoltageChangeEnable = 1;
+ table->MemoryInterval = 1;
+ table->VoltageResponseTime = 0;
+ table->PhaseResponseTime = 0;
+ table->MemoryThermThrottleEnable = 1;
+
+ /*
+ * Cail reads current link status and reports it as cap (we cannot
+ * change this due to some previous issues we had)
+ * SMC drops the link status to lowest level after enabling
+ * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
+ * but this time Cail reads current link status which was set to low by
+ * SMC and reports it as cap to powerplay
+ * To avoid it, we set PCIeBootLinkLevel to highest dpm level
+ */
+ PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
+ "There must be 1 or more PCIE levels defined in PPTable.",
+ return -EINVAL);
+
+ table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
+
+ table->PCIeGenInterval = 1;
+
+ result = tonga_populate_vr_config(hwmgr, table);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to populate VRConfig setting !", return result);
+
+ table->ThermGpio = 17;
+ table->SclkStepSize = 0x4000;
+
+ if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID,
+ &gpio_pin_assignment)) {
+ table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
+ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_RegulatorHot);
+ } else {
+ table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
+ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_RegulatorHot);
+ }
+
+ if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
+ &gpio_pin_assignment)) {
+ table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
+ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_AutomaticDCTransition);
+ } else {
+ table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
+ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_AutomaticDCTransition);
+ }
+
+ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_Falcon_QuickTransition);
+
+ if (0) {
+ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_AutomaticDCTransition);
+ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_Falcon_QuickTransition);
+ }
+
+ if (atomctrl_get_pp_assign_pin(hwmgr,
+ THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) {
+ phm_cap_set(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_ThermalOutGPIO);
+
+ table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
+
+ table->ThermOutPolarity =
+ (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
+ (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0;
+
+ table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
+
+ /* if required, combine VRHot/PCC with thermal out GPIO*/
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_RegulatorHot) &&
+ phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_CombinePCCWithThermalSignal)){
+ table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
+ }
+ } else {
+ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_ThermalOutGPIO);
+
+ table->ThermOutGpio = 17;
+ table->ThermOutPolarity = 1;
+ table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
+ }
+
+ for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++)
+ table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
+
+ CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
+ CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
+ CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
+ CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
+ CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
+ CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
+
+ /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
+ result = smu7_copy_bytes_to_smc(
+ hwmgr,
+ smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags),
+ (uint8_t *)&(table->SystemFlags),
+ sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController),
+ SMC_RAM_END);
+
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to upload dpm data to SMC memory !", return result;);
+
+ result = tonga_init_arb_table_index(hwmgr);
+ PP_ASSERT_WITH_CODE(!result,
+ "Failed to upload arb data to SMC memory !", return result);
+
+ tonga_populate_pm_fuses(hwmgr);
+ PP_ASSERT_WITH_CODE((!result),
+ "Failed to populate initialize pm fuses !", return result);
+
+ result = tonga_populate_initial_mc_reg_table(hwmgr);
+ PP_ASSERT_WITH_CODE((!result),
+ "Failed to populate initialize MC Reg table !", return result);
+
+ tonga_save_default_power_profile(hwmgr);
+
+ return 0;
+}
+
+static int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
+ uint32_t duty100;
+ uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
+ uint16_t fdo_min, slope1, slope2;
+ uint32_t reference_clock;
+ int res;
+ uint64_t tmp64;
+
+ if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_MicrocodeFanControl))
+ return 0;
+
+ if (hwmgr->thermal_controller.fanInfo.bNoFan) {
+ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_MicrocodeFanControl);
+ return 0;
+ }
+
+ if (0 == smu_data->smu7_data.fan_table_start) {
+ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_MicrocodeFanControl);
+ return 0;
+ }
+
+ duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
+ CGS_IND_REG__SMC,
+ CG_FDO_CTRL1, FMAX_DUTY100);
+
+ if (0 == duty100) {
+ phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_MicrocodeFanControl);
+ return 0;
+ }
+
+ tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
+ do_div(tmp64, 10000);
+ fdo_min = (uint16_t)tmp64;
+
+ t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
+ hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
+ t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
+ hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
+
+ pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
+ hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
+ pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
+ hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
+
+ slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
+ slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
+
+ fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
+ fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
+ fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
+
+ fan_table.Slope1 = cpu_to_be16(slope1);
+ fan_table.Slope2 = cpu_to_be16(slope2);
+
+ fan_table.FdoMin = cpu_to_be16(fdo_min);
+
+ fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
+
+ fan_table.HystUp = cpu_to_be16(1);
+
+ fan_table.HystSlope = cpu_to_be16(1);
+
+ fan_table.TempRespLim = cpu_to_be16(5);
+
+ reference_clock = smu7_get_xclk(hwmgr);
+
+ fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
+
+ fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
+
+ fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
+
+ fan_table.FanControl_GL_Flag = 1;
+
+ res = smu7_copy_bytes_to_smc(hwmgr,
+ smu_data->smu7_data.fan_table_start,
+ (uint8_t *)&fan_table,
+ (uint32_t)sizeof(fan_table),
+ SMC_RAM_END);
+
+ return 0;
+}
+
+
+static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+
+ if (data->need_update_smu7_dpm_table &
+ (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
+ return tonga_program_memory_timing_parameters(hwmgr);
+
+ return 0;
+}
+
+static int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+
+ int result = 0;
+ uint32_t low_sclk_interrupt_threshold = 0;
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_SclkThrottleLowNotification)
+ && (hwmgr->gfx_arbiter.sclk_threshold !=
+ data->low_sclk_interrupt_threshold)) {
+ data->low_sclk_interrupt_threshold =
+ hwmgr->gfx_arbiter.sclk_threshold;
+ low_sclk_interrupt_threshold =
+ data->low_sclk_interrupt_threshold;
+
+ CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
+
+ result = smu7_copy_bytes_to_smc(
+ hwmgr,
+ smu_data->smu7_data.dpm_table_start +
+ offsetof(SMU72_Discrete_DpmTable,
+ LowSclkInterruptThreshold),
+ (uint8_t *)&low_sclk_interrupt_threshold,
+ sizeof(uint32_t),
+ SMC_RAM_END);
+ }
+
+ result = tonga_update_and_upload_mc_reg_table(hwmgr);
+
+ PP_ASSERT_WITH_CODE((!result),
+ "Failed to upload MC reg table !",
+ return result);
+
+ result = tonga_program_mem_timing_parameters(hwmgr);
+ PP_ASSERT_WITH_CODE((result == 0),
+ "Failed to program memory timing parameters !",
+ );
+
+ return result;
+}
+
+static uint32_t tonga_get_offsetof(uint32_t type, uint32_t member)
+{
+ switch (type) {
+ case SMU_SoftRegisters:
+ switch (member) {
+ case HandshakeDisables:
+ return offsetof(SMU72_SoftRegisters, HandshakeDisables);
+ case VoltageChangeTimeout:
+ return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout);
+ case AverageGraphicsActivity:
+ return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
+ case PreVBlankGap:
+ return offsetof(SMU72_SoftRegisters, PreVBlankGap);
+ case VBlankTimeout:
+ return offsetof(SMU72_SoftRegisters, VBlankTimeout);
+ case UcodeLoadStatus:
+ return offsetof(SMU72_SoftRegisters, UcodeLoadStatus);
+ case DRAM_LOG_ADDR_H:
+ return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_H);
+ case DRAM_LOG_ADDR_L:
+ return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_L);
+ case DRAM_LOG_PHY_ADDR_H:
+ return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
+ case DRAM_LOG_PHY_ADDR_L:
+ return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
+ case DRAM_LOG_BUFF_SIZE:
+ return offsetof(SMU72_SoftRegisters, DRAM_LOG_BUFF_SIZE);
+ }
+ case SMU_Discrete_DpmTable:
+ switch (member) {
+ case UvdBootLevel:
+ return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
+ case VceBootLevel:
+ return offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
+ case SamuBootLevel:
+ return offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);
+ case LowSclkInterruptThreshold:
+ return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold);
+ }
+ }
+ pr_warn("can't get the offset of type %x member %x\n", type, member);
+ return 0;
+}
+
+static uint32_t tonga_get_mac_definition(uint32_t value)
+{
+ switch (value) {
+ case SMU_MAX_LEVELS_GRAPHICS:
+ return SMU72_MAX_LEVELS_GRAPHICS;
+ case SMU_MAX_LEVELS_MEMORY:
+ return SMU72_MAX_LEVELS_MEMORY;
+ case SMU_MAX_LEVELS_LINK:
+ return SMU72_MAX_LEVELS_LINK;
+ case SMU_MAX_ENTRIES_SMIO:
+ return SMU72_MAX_ENTRIES_SMIO;
+ case SMU_MAX_LEVELS_VDDC:
+ return SMU72_MAX_LEVELS_VDDC;
+ case SMU_MAX_LEVELS_VDDGFX:
+ return SMU72_MAX_LEVELS_VDDGFX;
+ case SMU_MAX_LEVELS_VDDCI:
+ return SMU72_MAX_LEVELS_VDDCI;
+ case SMU_MAX_LEVELS_MVDD:
+ return SMU72_MAX_LEVELS_MVDD;
+ }
+ pr_warn("can't get the mac value %x\n", value);
+
+ return 0;
+}
+
+static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ uint32_t mm_boot_level_offset, mm_boot_level_value;
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+ smu_data->smc_state_table.UvdBootLevel = 0;
+ if (table_info->mm_dep_table->count > 0)
+ smu_data->smc_state_table.UvdBootLevel =
+ (uint8_t) (table_info->mm_dep_table->count - 1);
+ mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
+ offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
+ mm_boot_level_offset /= 4;
+ mm_boot_level_offset *= 4;
+ mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
+ CGS_IND_REG__SMC, mm_boot_level_offset);
+ mm_boot_level_value &= 0x00FFFFFF;
+ mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
+ cgs_write_ind_register(hwmgr->device,
+ CGS_IND_REG__SMC,
+ mm_boot_level_offset, mm_boot_level_value);
+
+ if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_UVDDPM) ||
+ phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_StablePState))
+ smum_send_msg_to_smc_with_parameter(hwmgr,
+ PPSMC_MSG_UVDDPM_SetEnabledMask,
+ (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
+ return 0;
+}
+
+static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data =
+ (struct tonga_smumgr *)(hwmgr->smu_backend);
+ uint32_t mm_boot_level_offset, mm_boot_level_value;
+ struct phm_ppt_v1_information *table_info =
+ (struct phm_ppt_v1_information *)(hwmgr->pptable);
+
+
+ smu_data->smc_state_table.VceBootLevel =
+ (uint8_t) (table_info->mm_dep_table->count - 1);
+
+ mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
+ offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
+ mm_boot_level_offset /= 4;
+ mm_boot_level_offset *= 4;
+ mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
+ CGS_IND_REG__SMC, mm_boot_level_offset);
+ mm_boot_level_value &= 0xFF00FFFF;
+ mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
+ cgs_write_ind_register(hwmgr->device,
+ CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_StablePState))
+ smum_send_msg_to_smc_with_parameter(hwmgr,
+ PPSMC_MSG_VCEDPM_SetEnabledMask,
+ (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
+ return 0;
+}
+
+static int tonga_update_samu_smc_table(struct pp_hwmgr *hwmgr)
+{
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+ uint32_t mm_boot_level_offset, mm_boot_level_value;
+
+ smu_data->smc_state_table.SamuBootLevel = 0;
+ mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
+ offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);
+
+ mm_boot_level_offset /= 4;
+ mm_boot_level_offset *= 4;
+ mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
+ CGS_IND_REG__SMC, mm_boot_level_offset);
+ mm_boot_level_value &= 0xFFFFFF00;
+ mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
+ cgs_write_ind_register(hwmgr->device,
+ CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
+
+ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
+ PHM_PlatformCaps_StablePState))
+ smum_send_msg_to_smc_with_parameter(hwmgr,
+ PPSMC_MSG_SAMUDPM_SetEnabledMask,
+ (uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
+ return 0;
+}
+
+static int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
+{
+ switch (type) {
+ case SMU_UVD_TABLE:
+ tonga_update_uvd_smc_table(hwmgr);
+ break;
+ case SMU_VCE_TABLE:
+ tonga_update_vce_smc_table(hwmgr);
+ break;
+ case SMU_SAMU_TABLE:
+ tonga_update_samu_smc_table(hwmgr);
+ break;
+ default:
+ break;
+ }
+ return 0;
+}
+
+static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
+{
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+
+ uint32_t tmp;
+ int result;
+ bool error = false;
+
+ result = smu7_read_smc_sram_dword(hwmgr,
+ SMU72_FIRMWARE_HEADER_LOCATION +
+ offsetof(SMU72_Firmware_Header, DpmTable),
+ &tmp, SMC_RAM_END);
+
+ if (!result)
+ smu_data->smu7_data.dpm_table_start = tmp;
+
+ error |= (result != 0);
+
+ result = smu7_read_smc_sram_dword(hwmgr,
+ SMU72_FIRMWARE_HEADER_LOCATION +
+ offsetof(SMU72_Firmware_Header, SoftRegisters),
+ &tmp, SMC_RAM_END);
+
+ if (!result) {
+ data->soft_regs_start = tmp;
+ smu_data->smu7_data.soft_regs_start = tmp;
+ }
+
+ error |= (result != 0);
+
+
+ result = smu7_read_smc_sram_dword(hwmgr,
+ SMU72_FIRMWARE_HEADER_LOCATION +
+ offsetof(SMU72_Firmware_Header, mcRegisterTable),
+ &tmp, SMC_RAM_END);
+
+ if (!result)
+ smu_data->smu7_data.mc_reg_table_start = tmp;
+
+ result = smu7_read_smc_sram_dword(hwmgr,
+ SMU72_FIRMWARE_HEADER_LOCATION +
+ offsetof(SMU72_Firmware_Header, FanTable),
+ &tmp, SMC_RAM_END);
+
+ if (!result)
+ smu_data->smu7_data.fan_table_start = tmp;
+
+ error |= (result != 0);
+
+ result = smu7_read_smc_sram_dword(hwmgr,
+ SMU72_FIRMWARE_HEADER_LOCATION +
+ offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
+ &tmp, SMC_RAM_END);
+
+ if (!result)
+ smu_data->smu7_data.arb_table_start = tmp;
+
+ error |= (result != 0);
+
+ result = smu7_read_smc_sram_dword(hwmgr,
+ SMU72_FIRMWARE_HEADER_LOCATION +
+ offsetof(SMU72_Firmware_Header, Version),
+ &tmp, SMC_RAM_END);
+
+ if (!result)
+ hwmgr->microcode_version_info.SMC = tmp;
+
+ error |= (result != 0);
+
+ return error ? 1 : 0;
+}
+
+/*---------------------------MC----------------------------*/
+
+static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
+{
+ return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
+}
+
+static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
+{
+ bool result = true;
+
+ switch (in_reg) {
+ case mmMC_SEQ_RAS_TIMING:
+ *out_reg = mmMC_SEQ_RAS_TIMING_LP;
+ break;
+
+ case mmMC_SEQ_DLL_STBY:
+ *out_reg = mmMC_SEQ_DLL_STBY_LP;
+ break;
+
+ case mmMC_SEQ_G5PDX_CMD0:
+ *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
+ break;
+
+ case mmMC_SEQ_G5PDX_CMD1:
+ *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
+ break;
+
+ case mmMC_SEQ_G5PDX_CTRL:
+ *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
+ break;
+
+ case mmMC_SEQ_CAS_TIMING:
+ *out_reg = mmMC_SEQ_CAS_TIMING_LP;
+ break;
+
+ case mmMC_SEQ_MISC_TIMING:
+ *out_reg = mmMC_SEQ_MISC_TIMING_LP;
+ break;
+
+ case mmMC_SEQ_MISC_TIMING2:
+ *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
+ break;
+
+ case mmMC_SEQ_PMG_DVS_CMD:
+ *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
+ break;
+
+ case mmMC_SEQ_PMG_DVS_CTL:
+ *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
+ break;
+
+ case mmMC_SEQ_RD_CTL_D0:
+ *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
+ break;
+
+ case mmMC_SEQ_RD_CTL_D1:
+ *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
+ break;
+
+ case mmMC_SEQ_WR_CTL_D0:
+ *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
+ break;
+
+ case mmMC_SEQ_WR_CTL_D1:
+ *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
+ break;
+
+ case mmMC_PMG_CMD_EMRS:
+ *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
+ break;
+
+ case mmMC_PMG_CMD_MRS:
+ *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
+ break;
+
+ case mmMC_PMG_CMD_MRS1:
+ *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
+ break;
+
+ case mmMC_SEQ_PMG_TIMING:
+ *out_reg = mmMC_SEQ_PMG_TIMING_LP;
+ break;
+
+ case mmMC_PMG_CMD_MRS2:
+ *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
+ break;
+
+ case mmMC_SEQ_WR_CTL_2:
+ *out_reg = mmMC_SEQ_WR_CTL_2_LP;
+ break;
+
+ default:
+ result = false;
+ break;
+ }
+
+ return result;
+}
+
+static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table)
+{
+ uint32_t i;
+ uint16_t address;
+
+ for (i = 0; i < table->last; i++) {
+ table->mc_reg_address[i].s0 =
+ tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1,
+ &address) ?
+ address :
+ table->mc_reg_address[i].s1;
+ }
+ return 0;
+}
+
+static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
+ struct tonga_mc_reg_table *ni_table)
+{
+ uint8_t i, j;
+
+ PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+ "Invalid VramInfo table.", return -EINVAL);
+ PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
+ "Invalid VramInfo table.", return -EINVAL);
+
+ for (i = 0; i < table->last; i++)
+ ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
+
+ ni_table->last = table->last;
+
+ for (i = 0; i < table->num_entries; i++) {
+ ni_table->mc_reg_table_entry[i].mclk_max =
+ table->mc_reg_table_entry[i].mclk_max;
+ for (j = 0; j < table->last; j++) {
+ ni_table->mc_reg_table_entry[i].mc_data[j] =
+ table->mc_reg_table_entry[i].mc_data[j];
+ }
+ }
+
+ ni_table->num_entries = table->num_entries;
+
+ return 0;
+}
+
+static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr,
+ struct tonga_mc_reg_table *table)
+{
+ uint8_t i, j, k;
+ uint32_t temp_reg;
+ struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
+
+ for (i = 0, j = table->last; i < table->last; i++) {
+ PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+ "Invalid VramInfo table.", return -EINVAL);
+
+ switch (table->mc_reg_address[i].s1) {
+
+ case mmMC_SEQ_MISC1:
+ temp_reg = cgs_read_register(hwmgr->device,
+ mmMC_PMG_CMD_EMRS);
+ table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
+ table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
+ for (k = 0; k < table->num_entries; k++) {
+ table->mc_reg_table_entry[k].mc_data[j] =
+ ((temp_reg & 0xffff0000)) |
+ ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
+ }
+ j++;
+ PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+ "Invalid VramInfo table.", return -EINVAL);
+
+ temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
+ table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
+ table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
+ for (k = 0; k < table->num_entries; k++) {
+ table->mc_reg_table_entry[k].mc_data[j] =
+ (temp_reg & 0xffff0000) |
+ (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
+
+ if (!data->is_memory_gddr5)
+ table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
+ }
+ j++;
+ PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+ "Invalid VramInfo table.", return -EINVAL);
+
+ if (!data->is_memory_gddr5) {
+ table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
+ table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
+ for (k = 0; k < table->num_entries; k++)
+ table->mc_reg_table_entry[k].mc_data[j] =
+ (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
+ j++;
+ PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+ "Invalid VramInfo table.", return -EINVAL);
+ }
+
+ break;
+
+ case mmMC_SEQ_RESERVE_M:
+ temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
+ table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
+ table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
+ for (k = 0; k < table->num_entries; k++) {
+ table->mc_reg_table_entry[k].mc_data[j] =
+ (temp_reg & 0xffff0000) |
+ (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
+ }
+ j++;
+ PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
+ "Invalid VramInfo table.", return -EINVAL);
+ break;
+
+ default:
+ break;
+ }
+
+ }
+
+ table->last = j;
+
+ return 0;
+}
+
+static int tonga_set_valid_flag(struct tonga_mc_reg_table *table)
+{
+ uint8_t i, j;
+
+ for (i = 0; i < table->last; i++) {
+ for (j = 1; j < table->num_entries; j++) {
+ if (table->mc_reg_table_entry[j-1].mc_data[i] !=
+ table->mc_reg_table_entry[j].mc_data[i]) {
+ table->validflag |= (1<<i);
+ break;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
+{
+ int result;
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
+ pp_atomctrl_mc_reg_table *table;
+ struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table;
+ uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
+
+ table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
+
+ if (table == NULL)
+ return -ENOMEM;
+
+ /* Program additional LP registers that are no longer programmed by VBIOS */
+ cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP,
+ cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP,
+ cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP,
+ cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP,
+ cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
+ cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP,
+ cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
+
+ memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
+
+ result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
+
+ if (!result)
+ result = tonga_copy_vbios_smc_reg_table(table, ni_table);
+
+ if (!result) {
+ tonga_set_s0_mc_reg_index(ni_table);
+ result = tonga_set_mc_special_registers(hwmgr, ni_table);
+ }
+
+ if (!result)
+ tonga_set_valid_flag(ni_table);
+
+ kfree(table);
+
+ return result;
+}
+
+static bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
+{
+ return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
+ CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
+ ? true : false;
+}
+
+static int tonga_populate_requested_graphic_levels(struct pp_hwmgr *hwmgr,
+ struct amd_pp_profile *request)
+{
+ struct tonga_smumgr *smu_data = (struct tonga_smumgr *)
+ (hwmgr->smu_backend);
+ struct SMU72_Discrete_GraphicsLevel *levels =
+ smu_data->smc_state_table.GraphicsLevel;
+ uint32_t array = smu_data->smu7_data.dpm_table_start +
+ offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
+ uint32_t array_size = sizeof(struct SMU72_Discrete_GraphicsLevel) *
+ SMU72_MAX_LEVELS_GRAPHICS;
+ uint32_t i;
+
+ for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
+ levels[i].ActivityLevel =
+ cpu_to_be16(request->activity_threshold);
+ levels[i].EnabledForActivity = 1;
+ levels[i].UpHyst = request->up_hyst;
+ levels[i].DownHyst = request->down_hyst;
+ }
+
+ return smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
+ array_size, SMC_RAM_END);
+}
+
const struct pp_smumgr_func tonga_smu_funcs = {
.smu_init = &tonga_smu_init,
.smu_fini = &smu7_smu_fini,