diff options
Diffstat (limited to 'drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c')
-rw-r--r-- | drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c | 1139 |
1 files changed, 1139 insertions, 0 deletions
diff --git a/drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c b/drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c new file mode 100644 index 000000000000..fc63855ed517 --- /dev/null +++ b/drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c @@ -0,0 +1,1139 @@ +/* + * Copyright 2009 Jerome Glisse. + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, + * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR + * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE + * USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + */ +/* + * Authors: + * Jerome Glisse <glisse@freedesktop.org> + * Dave Airlie + */ +#include <linux/seq_file.h> +#include <linux/atomic.h> +#include <linux/wait.h> +#include <linux/kref.h> +#include <linux/slab.h> +#include <linux/firmware.h> +#include <drm/drmP.h> +#include "amdgpu.h" +#include "amdgpu_trace.h" + +/* + * Fences + * Fences mark an event in the GPUs pipeline and are used + * for GPU/CPU synchronization. When the fence is written, + * it is expected that all buffers associated with that fence + * are no longer in use by the associated ring on the GPU and + * that the the relevant GPU caches have been flushed. + */ + +/** + * amdgpu_fence_write - write a fence value + * + * @ring: ring the fence is associated with + * @seq: sequence number to write + * + * Writes a fence value to memory (all asics). + */ +static void amdgpu_fence_write(struct amdgpu_ring *ring, u32 seq) +{ + struct amdgpu_fence_driver *drv = &ring->fence_drv; + + if (drv->cpu_addr) + *drv->cpu_addr = cpu_to_le32(seq); +} + +/** + * amdgpu_fence_read - read a fence value + * + * @ring: ring the fence is associated with + * + * Reads a fence value from memory (all asics). + * Returns the value of the fence read from memory. + */ +static u32 amdgpu_fence_read(struct amdgpu_ring *ring) +{ + struct amdgpu_fence_driver *drv = &ring->fence_drv; + u32 seq = 0; + + if (drv->cpu_addr) + seq = le32_to_cpu(*drv->cpu_addr); + else + seq = lower_32_bits(atomic64_read(&drv->last_seq)); + + return seq; +} + +/** + * amdgpu_fence_schedule_check - schedule lockup check + * + * @ring: pointer to struct amdgpu_ring + * + * Queues a delayed work item to check for lockups. + */ +static void amdgpu_fence_schedule_check(struct amdgpu_ring *ring) +{ + /* + * Do not reset the timer here with mod_delayed_work, + * this can livelock in an interaction with TTM delayed destroy. + */ + queue_delayed_work(system_power_efficient_wq, + &ring->fence_drv.lockup_work, + AMDGPU_FENCE_JIFFIES_TIMEOUT); +} + +/** + * amdgpu_fence_emit - emit a fence on the requested ring + * + * @ring: ring the fence is associated with + * @owner: creator of the fence + * @fence: amdgpu fence object + * + * Emits a fence command on the requested ring (all asics). + * Returns 0 on success, -ENOMEM on failure. + */ +int amdgpu_fence_emit(struct amdgpu_ring *ring, void *owner, + struct amdgpu_fence **fence) +{ + struct amdgpu_device *adev = ring->adev; + + /* we are protected by the ring emission mutex */ + *fence = kmalloc(sizeof(struct amdgpu_fence), GFP_KERNEL); + if ((*fence) == NULL) { + return -ENOMEM; + } + (*fence)->seq = ++ring->fence_drv.sync_seq[ring->idx]; + (*fence)->ring = ring; + (*fence)->owner = owner; + fence_init(&(*fence)->base, &amdgpu_fence_ops, + &adev->fence_queue.lock, adev->fence_context + ring->idx, + (*fence)->seq); + amdgpu_ring_emit_fence(ring, ring->fence_drv.gpu_addr, (*fence)->seq, false); + trace_amdgpu_fence_emit(ring->adev->ddev, ring->idx, (*fence)->seq); + return 0; +} + +/** + * amdgpu_fence_check_signaled - callback from fence_queue + * + * this function is called with fence_queue lock held, which is also used + * for the fence locking itself, so unlocked variants are used for + * fence_signal, and remove_wait_queue. + */ +static int amdgpu_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key) +{ + struct amdgpu_fence *fence; + struct amdgpu_device *adev; + u64 seq; + int ret; + + fence = container_of(wait, struct amdgpu_fence, fence_wake); + adev = fence->ring->adev; + + /* + * We cannot use amdgpu_fence_process here because we're already + * in the waitqueue, in a call from wake_up_all. + */ + seq = atomic64_read(&fence->ring->fence_drv.last_seq); + if (seq >= fence->seq) { + ret = fence_signal_locked(&fence->base); + if (!ret) + FENCE_TRACE(&fence->base, "signaled from irq context\n"); + else + FENCE_TRACE(&fence->base, "was already signaled\n"); + + amdgpu_irq_put(adev, fence->ring->fence_drv.irq_src, + fence->ring->fence_drv.irq_type); + __remove_wait_queue(&adev->fence_queue, &fence->fence_wake); + fence_put(&fence->base); + } else + FENCE_TRACE(&fence->base, "pending\n"); + return 0; +} + +/** + * amdgpu_fence_activity - check for fence activity + * + * @ring: pointer to struct amdgpu_ring + * + * Checks the current fence value and calculates the last + * signalled fence value. Returns true if activity occured + * on the ring, and the fence_queue should be waken up. + */ +static bool amdgpu_fence_activity(struct amdgpu_ring *ring) +{ + uint64_t seq, last_seq, last_emitted; + unsigned count_loop = 0; + bool wake = false; + + /* Note there is a scenario here for an infinite loop but it's + * very unlikely to happen. For it to happen, the current polling + * process need to be interrupted by another process and another + * process needs to update the last_seq btw the atomic read and + * xchg of the current process. + * + * More over for this to go in infinite loop there need to be + * continuously new fence signaled ie radeon_fence_read needs + * to return a different value each time for both the currently + * polling process and the other process that xchg the last_seq + * btw atomic read and xchg of the current process. And the + * value the other process set as last seq must be higher than + * the seq value we just read. Which means that current process + * need to be interrupted after radeon_fence_read and before + * atomic xchg. + * + * To be even more safe we count the number of time we loop and + * we bail after 10 loop just accepting the fact that we might + * have temporarly set the last_seq not to the true real last + * seq but to an older one. + */ + last_seq = atomic64_read(&ring->fence_drv.last_seq); + do { + last_emitted = ring->fence_drv.sync_seq[ring->idx]; + seq = amdgpu_fence_read(ring); + seq |= last_seq & 0xffffffff00000000LL; + if (seq < last_seq) { + seq &= 0xffffffff; + seq |= last_emitted & 0xffffffff00000000LL; + } + + if (seq <= last_seq || seq > last_emitted) { + break; + } + /* If we loop over we don't want to return without + * checking if a fence is signaled as it means that the + * seq we just read is different from the previous on. + */ + wake = true; + last_seq = seq; + if ((count_loop++) > 10) { + /* We looped over too many time leave with the + * fact that we might have set an older fence + * seq then the current real last seq as signaled + * by the hw. + */ + break; + } + } while (atomic64_xchg(&ring->fence_drv.last_seq, seq) > seq); + + if (seq < last_emitted) + amdgpu_fence_schedule_check(ring); + + return wake; +} + +/** + * amdgpu_fence_check_lockup - check for hardware lockup + * + * @work: delayed work item + * + * Checks for fence activity and if there is none probe + * the hardware if a lockup occured. + */ +static void amdgpu_fence_check_lockup(struct work_struct *work) +{ + struct amdgpu_fence_driver *fence_drv; + struct amdgpu_ring *ring; + + fence_drv = container_of(work, struct amdgpu_fence_driver, + lockup_work.work); + ring = fence_drv->ring; + + if (!down_read_trylock(&ring->adev->exclusive_lock)) { + /* just reschedule the check if a reset is going on */ + amdgpu_fence_schedule_check(ring); + return; + } + + if (fence_drv->delayed_irq && ring->adev->ddev->irq_enabled) { + fence_drv->delayed_irq = false; + amdgpu_irq_update(ring->adev, fence_drv->irq_src, + fence_drv->irq_type); + } + + if (amdgpu_fence_activity(ring)) + wake_up_all(&ring->adev->fence_queue); + else if (amdgpu_ring_is_lockup(ring)) { + /* good news we believe it's a lockup */ + dev_warn(ring->adev->dev, "GPU lockup (current fence id " + "0x%016llx last fence id 0x%016llx on ring %d)\n", + (uint64_t)atomic64_read(&fence_drv->last_seq), + fence_drv->sync_seq[ring->idx], ring->idx); + + /* remember that we need an reset */ + ring->adev->needs_reset = true; + wake_up_all(&ring->adev->fence_queue); + } + up_read(&ring->adev->exclusive_lock); +} + +/** + * amdgpu_fence_process - process a fence + * + * @adev: amdgpu_device pointer + * @ring: ring index the fence is associated with + * + * Checks the current fence value and wakes the fence queue + * if the sequence number has increased (all asics). + */ +void amdgpu_fence_process(struct amdgpu_ring *ring) +{ + uint64_t seq, last_seq, last_emitted; + unsigned count_loop = 0; + bool wake = false; + + /* Note there is a scenario here for an infinite loop but it's + * very unlikely to happen. For it to happen, the current polling + * process need to be interrupted by another process and another + * process needs to update the last_seq btw the atomic read and + * xchg of the current process. + * + * More over for this to go in infinite loop there need to be + * continuously new fence signaled ie amdgpu_fence_read needs + * to return a different value each time for both the currently + * polling process and the other process that xchg the last_seq + * btw atomic read and xchg of the current process. And the + * value the other process set as last seq must be higher than + * the seq value we just read. Which means that current process + * need to be interrupted after amdgpu_fence_read and before + * atomic xchg. + * + * To be even more safe we count the number of time we loop and + * we bail after 10 loop just accepting the fact that we might + * have temporarly set the last_seq not to the true real last + * seq but to an older one. + */ + last_seq = atomic64_read(&ring->fence_drv.last_seq); + do { + last_emitted = ring->fence_drv.sync_seq[ring->idx]; + seq = amdgpu_fence_read(ring); + seq |= last_seq & 0xffffffff00000000LL; + if (seq < last_seq) { + seq &= 0xffffffff; + seq |= last_emitted & 0xffffffff00000000LL; + } + + if (seq <= last_seq || seq > last_emitted) { + break; + } + /* If we loop over we don't want to return without + * checking if a fence is signaled as it means that the + * seq we just read is different from the previous on. + */ + wake = true; + last_seq = seq; + if ((count_loop++) > 10) { + /* We looped over too many time leave with the + * fact that we might have set an older fence + * seq then the current real last seq as signaled + * by the hw. + */ + break; + } + } while (atomic64_xchg(&ring->fence_drv.last_seq, seq) > seq); + + if (wake) + wake_up_all(&ring->adev->fence_queue); +} + +/** + * amdgpu_fence_seq_signaled - check if a fence sequence number has signaled + * + * @ring: ring the fence is associated with + * @seq: sequence number + * + * Check if the last signaled fence sequnce number is >= the requested + * sequence number (all asics). + * Returns true if the fence has signaled (current fence value + * is >= requested value) or false if it has not (current fence + * value is < the requested value. Helper function for + * amdgpu_fence_signaled(). + */ +static bool amdgpu_fence_seq_signaled(struct amdgpu_ring *ring, u64 seq) +{ + if (atomic64_read(&ring->fence_drv.last_seq) >= seq) + return true; + + /* poll new last sequence at least once */ + amdgpu_fence_process(ring); + if (atomic64_read(&ring->fence_drv.last_seq) >= seq) + return true; + + return false; +} + +static bool amdgpu_fence_is_signaled(struct fence *f) +{ + struct amdgpu_fence *fence = to_amdgpu_fence(f); + struct amdgpu_ring *ring = fence->ring; + struct amdgpu_device *adev = ring->adev; + + if (atomic64_read(&ring->fence_drv.last_seq) >= fence->seq) + return true; + + if (down_read_trylock(&adev->exclusive_lock)) { + amdgpu_fence_process(ring); + up_read(&adev->exclusive_lock); + + if (atomic64_read(&ring->fence_drv.last_seq) >= fence->seq) + return true; + } + return false; +} + +/** + * amdgpu_fence_enable_signaling - enable signalling on fence + * @fence: fence + * + * This function is called with fence_queue lock held, and adds a callback + * to fence_queue that checks if this fence is signaled, and if so it + * signals the fence and removes itself. + */ +static bool amdgpu_fence_enable_signaling(struct fence *f) +{ + struct amdgpu_fence *fence = to_amdgpu_fence(f); + struct amdgpu_ring *ring = fence->ring; + struct amdgpu_device *adev = ring->adev; + + if (atomic64_read(&ring->fence_drv.last_seq) >= fence->seq) + return false; + + if (down_read_trylock(&adev->exclusive_lock)) { + amdgpu_irq_get(adev, ring->fence_drv.irq_src, + ring->fence_drv.irq_type); + if (amdgpu_fence_activity(ring)) + wake_up_all_locked(&adev->fence_queue); + + /* did fence get signaled after we enabled the sw irq? */ + if (atomic64_read(&ring->fence_drv.last_seq) >= fence->seq) { + amdgpu_irq_put(adev, ring->fence_drv.irq_src, + ring->fence_drv.irq_type); + up_read(&adev->exclusive_lock); + return false; + } + + up_read(&adev->exclusive_lock); + } else { + /* we're probably in a lockup, lets not fiddle too much */ + if (amdgpu_irq_get_delayed(adev, ring->fence_drv.irq_src, + ring->fence_drv.irq_type)) + ring->fence_drv.delayed_irq = true; + amdgpu_fence_schedule_check(ring); + } + + fence->fence_wake.flags = 0; + fence->fence_wake.private = NULL; + fence->fence_wake.func = amdgpu_fence_check_signaled; + __add_wait_queue(&adev->fence_queue, &fence->fence_wake); + fence_get(f); + FENCE_TRACE(&fence->base, "armed on ring %i!\n", ring->idx); + return true; +} + +/** + * amdgpu_fence_signaled - check if a fence has signaled + * + * @fence: amdgpu fence object + * + * Check if the requested fence has signaled (all asics). + * Returns true if the fence has signaled or false if it has not. + */ +bool amdgpu_fence_signaled(struct amdgpu_fence *fence) +{ + if (!fence) + return true; + + if (fence->seq == AMDGPU_FENCE_SIGNALED_SEQ) + return true; + + if (amdgpu_fence_seq_signaled(fence->ring, fence->seq)) { + fence->seq = AMDGPU_FENCE_SIGNALED_SEQ; + if (!fence_signal(&fence->base)) + FENCE_TRACE(&fence->base, "signaled from amdgpu_fence_signaled\n"); + return true; + } + + return false; +} + +/** + * amdgpu_fence_any_seq_signaled - check if any sequence number is signaled + * + * @adev: amdgpu device pointer + * @seq: sequence numbers + * + * Check if the last signaled fence sequnce number is >= the requested + * sequence number (all asics). + * Returns true if any has signaled (current value is >= requested value) + * or false if it has not. Helper function for amdgpu_fence_wait_seq. + */ +static bool amdgpu_fence_any_seq_signaled(struct amdgpu_device *adev, u64 *seq) +{ + unsigned i; + + for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { + if (!adev->rings[i] || !seq[i]) + continue; + + if (amdgpu_fence_seq_signaled(adev->rings[i], seq[i])) + return true; + } + + return false; +} + +/** + * amdgpu_fence_wait_seq_timeout - wait for a specific sequence numbers + * + * @adev: amdgpu device pointer + * @target_seq: sequence number(s) we want to wait for + * @intr: use interruptable sleep + * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait + * + * Wait for the requested sequence number(s) to be written by any ring + * (all asics). Sequnce number array is indexed by ring id. + * @intr selects whether to use interruptable (true) or non-interruptable + * (false) sleep when waiting for the sequence number. Helper function + * for amdgpu_fence_wait_*(). + * Returns remaining time if the sequence number has passed, 0 when + * the wait timeout, or an error for all other cases. + * -EDEADLK is returned when a GPU lockup has been detected. + */ +long amdgpu_fence_wait_seq_timeout(struct amdgpu_device *adev, u64 *target_seq, + bool intr, long timeout) +{ + uint64_t last_seq[AMDGPU_MAX_RINGS]; + bool signaled; + int i, r; + + while (!amdgpu_fence_any_seq_signaled(adev, target_seq)) { + + /* Save current sequence values, used to check for GPU lockups */ + for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { + struct amdgpu_ring *ring = adev->rings[i]; + + if (!ring || !target_seq[i]) + continue; + + last_seq[i] = atomic64_read(&ring->fence_drv.last_seq); + trace_amdgpu_fence_wait_begin(adev->ddev, i, target_seq[i]); + amdgpu_irq_get(adev, ring->fence_drv.irq_src, + ring->fence_drv.irq_type); + } + + if (intr) { + r = wait_event_interruptible_timeout(adev->fence_queue, ( + (signaled = amdgpu_fence_any_seq_signaled(adev, target_seq)) + || adev->needs_reset), AMDGPU_FENCE_JIFFIES_TIMEOUT); + } else { + r = wait_event_timeout(adev->fence_queue, ( + (signaled = amdgpu_fence_any_seq_signaled(adev, target_seq)) + || adev->needs_reset), AMDGPU_FENCE_JIFFIES_TIMEOUT); + } + + for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { + struct amdgpu_ring *ring = adev->rings[i]; + + if (!ring || !target_seq[i]) + continue; + + amdgpu_irq_put(adev, ring->fence_drv.irq_src, + ring->fence_drv.irq_type); + trace_amdgpu_fence_wait_end(adev->ddev, i, target_seq[i]); + } + + if (unlikely(r < 0)) + return r; + + if (unlikely(!signaled)) { + + if (adev->needs_reset) + return -EDEADLK; + + /* we were interrupted for some reason and fence + * isn't signaled yet, resume waiting */ + if (r) + continue; + + for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { + struct amdgpu_ring *ring = adev->rings[i]; + + if (!ring || !target_seq[i]) + continue; + + if (last_seq[i] != atomic64_read(&ring->fence_drv.last_seq)) + break; + } + + if (i != AMDGPU_MAX_RINGS) + continue; + + for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { + if (!adev->rings[i] || !target_seq[i]) + continue; + + if (amdgpu_ring_is_lockup(adev->rings[i])) + break; + } + + if (i < AMDGPU_MAX_RINGS) { + /* good news we believe it's a lockup */ + dev_warn(adev->dev, "GPU lockup (waiting for " + "0x%016llx last fence id 0x%016llx on" + " ring %d)\n", + target_seq[i], last_seq[i], i); + + /* remember that we need an reset */ + adev->needs_reset = true; + wake_up_all(&adev->fence_queue); + return -EDEADLK; + } + + if (timeout < MAX_SCHEDULE_TIMEOUT) { + timeout -= AMDGPU_FENCE_JIFFIES_TIMEOUT; + if (timeout <= 0) { + return 0; + } + } + } + } + return timeout; +} + +/** + * amdgpu_fence_wait - wait for a fence to signal + * + * @fence: amdgpu fence object + * @intr: use interruptable sleep + * + * Wait for the requested fence to signal (all asics). + * @intr selects whether to use interruptable (true) or non-interruptable + * (false) sleep when waiting for the fence. + * Returns 0 if the fence has passed, error for all other cases. + */ +int amdgpu_fence_wait(struct amdgpu_fence *fence, bool intr) +{ + uint64_t seq[AMDGPU_MAX_RINGS] = {}; + long r; + + seq[fence->ring->idx] = fence->seq; + if (seq[fence->ring->idx] == AMDGPU_FENCE_SIGNALED_SEQ) + return 0; + + r = amdgpu_fence_wait_seq_timeout(fence->ring->adev, seq, intr, MAX_SCHEDULE_TIMEOUT); + if (r < 0) { + return r; + } + + fence->seq = AMDGPU_FENCE_SIGNALED_SEQ; + r = fence_signal(&fence->base); + if (!r) + FENCE_TRACE(&fence->base, "signaled from fence_wait\n"); + return 0; +} + +/** + * amdgpu_fence_wait_any - wait for a fence to signal on any ring + * + * @adev: amdgpu device pointer + * @fences: amdgpu fence object(s) + * @intr: use interruptable sleep + * + * Wait for any requested fence to signal (all asics). Fence + * array is indexed by ring id. @intr selects whether to use + * interruptable (true) or non-interruptable (false) sleep when + * waiting for the fences. Used by the suballocator. + * Returns 0 if any fence has passed, error for all other cases. + */ +int amdgpu_fence_wait_any(struct amdgpu_device *adev, + struct amdgpu_fence **fences, + bool intr) +{ + uint64_t seq[AMDGPU_MAX_RINGS]; + unsigned i, num_rings = 0; + long r; + + for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { + seq[i] = 0; + + if (!fences[i]) { + continue; + } + + seq[i] = fences[i]->seq; + ++num_rings; + + /* test if something was allready signaled */ + if (seq[i] == AMDGPU_FENCE_SIGNALED_SEQ) + return 0; + } + + /* nothing to wait for ? */ + if (num_rings == 0) + return -ENOENT; + + r = amdgpu_fence_wait_seq_timeout(adev, seq, intr, MAX_SCHEDULE_TIMEOUT); + if (r < 0) { + return r; + } + return 0; +} + +/** + * amdgpu_fence_wait_next - wait for the next fence to signal + * + * @adev: amdgpu device pointer + * @ring: ring index the fence is associated with + * + * Wait for the next fence on the requested ring to signal (all asics). + * Returns 0 if the next fence has passed, error for all other cases. + * Caller must hold ring lock. + */ +int amdgpu_fence_wait_next(struct amdgpu_ring *ring) +{ + uint64_t seq[AMDGPU_MAX_RINGS] = {}; + long r; + + seq[ring->idx] = atomic64_read(&ring->fence_drv.last_seq) + 1ULL; + if (seq[ring->idx] >= ring->fence_drv.sync_seq[ring->idx]) { + /* nothing to wait for, last_seq is + already the last emited fence */ + return -ENOENT; + } + r = amdgpu_fence_wait_seq_timeout(ring->adev, seq, false, MAX_SCHEDULE_TIMEOUT); + if (r < 0) + return r; + return 0; +} + +/** + * amdgpu_fence_wait_empty - wait for all fences to signal + * + * @adev: amdgpu device pointer + * @ring: ring index the fence is associated with + * + * Wait for all fences on the requested ring to signal (all asics). + * Returns 0 if the fences have passed, error for all other cases. + * Caller must hold ring lock. + */ +int amdgpu_fence_wait_empty(struct amdgpu_ring *ring) +{ + struct amdgpu_device *adev = ring->adev; + uint64_t seq[AMDGPU_MAX_RINGS] = {}; + long r; + + seq[ring->idx] = ring->fence_drv.sync_seq[ring->idx]; + if (!seq[ring->idx]) + return 0; + + r = amdgpu_fence_wait_seq_timeout(adev, seq, false, MAX_SCHEDULE_TIMEOUT); + if (r < 0) { + if (r == -EDEADLK) + return -EDEADLK; + + dev_err(adev->dev, "error waiting for ring[%d] to become idle (%ld)\n", + ring->idx, r); + } + return 0; +} + +/** + * amdgpu_fence_ref - take a ref on a fence + * + * @fence: amdgpu fence object + * + * Take a reference on a fence (all asics). + * Returns the fence. + */ +struct amdgpu_fence *amdgpu_fence_ref(struct amdgpu_fence *fence) +{ + fence_get(&fence->base); + return fence; +} + +/** + * amdgpu_fence_unref - remove a ref on a fence + * + * @fence: amdgpu fence object + * + * Remove a reference on a fence (all asics). + */ +void amdgpu_fence_unref(struct amdgpu_fence **fence) +{ + struct amdgpu_fence *tmp = *fence; + + *fence = NULL; + if (tmp) + fence_put(&tmp->base); +} + +/** + * amdgpu_fence_count_emitted - get the count of emitted fences + * + * @ring: ring the fence is associated with + * + * Get the number of fences emitted on the requested ring (all asics). + * Returns the number of emitted fences on the ring. Used by the + * dynpm code to ring track activity. + */ +unsigned amdgpu_fence_count_emitted(struct amdgpu_ring *ring) +{ + uint64_t emitted; + + /* We are not protected by ring lock when reading the last sequence + * but it's ok to report slightly wrong fence count here. + */ + amdgpu_fence_process(ring); + emitted = ring->fence_drv.sync_seq[ring->idx] + - atomic64_read(&ring->fence_drv.last_seq); + /* to avoid 32bits warp around */ + if (emitted > 0x10000000) + emitted = 0x10000000; + + return (unsigned)emitted; +} + +/** + * amdgpu_fence_need_sync - do we need a semaphore + * + * @fence: amdgpu fence object + * @dst_ring: which ring to check against + * + * Check if the fence needs to be synced against another ring + * (all asics). If so, we need to emit a semaphore. + * Returns true if we need to sync with another ring, false if + * not. + */ +bool amdgpu_fence_need_sync(struct amdgpu_fence *fence, + struct amdgpu_ring *dst_ring) +{ + struct amdgpu_fence_driver *fdrv; + + if (!fence) + return false; + + if (fence->ring == dst_ring) + return false; + + /* we are protected by the ring mutex */ + fdrv = &dst_ring->fence_drv; + if (fence->seq <= fdrv->sync_seq[fence->ring->idx]) + return false; + + return true; +} + +/** + * amdgpu_fence_note_sync - record the sync point + * + * @fence: amdgpu fence object + * @dst_ring: which ring to check against + * + * Note the sequence number at which point the fence will + * be synced with the requested ring (all asics). + */ +void amdgpu_fence_note_sync(struct amdgpu_fence *fence, + struct amdgpu_ring *dst_ring) +{ + struct amdgpu_fence_driver *dst, *src; + unsigned i; + + if (!fence) + return; + + if (fence->ring == dst_ring) + return; + + /* we are protected by the ring mutex */ + src = &fence->ring->fence_drv; + dst = &dst_ring->fence_drv; + for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { + if (i == dst_ring->idx) + continue; + + dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]); + } +} + +/** + * amdgpu_fence_driver_start_ring - make the fence driver + * ready for use on the requested ring. + * + * @ring: ring to start the fence driver on + * @irq_src: interrupt source to use for this ring + * @irq_type: interrupt type to use for this ring + * + * Make the fence driver ready for processing (all asics). + * Not all asics have all rings, so each asic will only + * start the fence driver on the rings it has. + * Returns 0 for success, errors for failure. + */ +int amdgpu_fence_driver_start_ring(struct amdgpu_ring *ring, + struct amdgpu_irq_src *irq_src, + unsigned irq_type) +{ + struct amdgpu_device *adev = ring->adev; + uint64_t index; + + if (ring != &adev->uvd.ring) { + ring->fence_drv.cpu_addr = &adev->wb.wb[ring->fence_offs]; + ring->fence_drv.gpu_addr = adev->wb.gpu_addr + (ring->fence_offs * 4); + } else { + /* put fence directly behind firmware */ + index = ALIGN(adev->uvd.fw->size, 8); + ring->fence_drv.cpu_addr = adev->uvd.cpu_addr + index; + ring->fence_drv.gpu_addr = adev->uvd.gpu_addr + index; + } + amdgpu_fence_write(ring, atomic64_read(&ring->fence_drv.last_seq)); + ring->fence_drv.initialized = true; + ring->fence_drv.irq_src = irq_src; + ring->fence_drv.irq_type = irq_type; + dev_info(adev->dev, "fence driver on ring %d use gpu addr 0x%016llx, " + "cpu addr 0x%p\n", ring->idx, + ring->fence_drv.gpu_addr, ring->fence_drv.cpu_addr); + return 0; +} + +/** + * amdgpu_fence_driver_init_ring - init the fence driver + * for the requested ring. + * + * @ring: ring to init the fence driver on + * + * Init the fence driver for the requested ring (all asics). + * Helper function for amdgpu_fence_driver_init(). + */ +void amdgpu_fence_driver_init_ring(struct amdgpu_ring *ring) +{ + int i; + + ring->fence_drv.cpu_addr = NULL; + ring->fence_drv.gpu_addr = 0; + for (i = 0; i < AMDGPU_MAX_RINGS; ++i) + ring->fence_drv.sync_seq[i] = 0; + + atomic64_set(&ring->fence_drv.last_seq, 0); + ring->fence_drv.initialized = false; + + INIT_DELAYED_WORK(&ring->fence_drv.lockup_work, + amdgpu_fence_check_lockup); + ring->fence_drv.ring = ring; +} + +/** + * amdgpu_fence_driver_init - init the fence driver + * for all possible rings. + * + * @adev: amdgpu device pointer + * + * Init the fence driver for all possible rings (all asics). + * Not all asics have all rings, so each asic will only + * start the fence driver on the rings it has using + * amdgpu_fence_driver_start_ring(). + * Returns 0 for success. + */ +int amdgpu_fence_driver_init(struct amdgpu_device *adev) +{ + init_waitqueue_head(&adev->fence_queue); + if (amdgpu_debugfs_fence_init(adev)) + dev_err(adev->dev, "fence debugfs file creation failed\n"); + + return 0; +} + +/** + * amdgpu_fence_driver_fini - tear down the fence driver + * for all possible rings. + * + * @adev: amdgpu device pointer + * + * Tear down the fence driver for all possible rings (all asics). + */ +void amdgpu_fence_driver_fini(struct amdgpu_device *adev) +{ + int i, r; + + mutex_lock(&adev->ring_lock); + for (i = 0; i < AMDGPU_MAX_RINGS; i++) { + struct amdgpu_ring *ring = adev->rings[i]; + if (!ring || !ring->fence_drv.initialized) + continue; + r = amdgpu_fence_wait_empty(ring); + if (r) { + /* no need to trigger GPU reset as we are unloading */ + amdgpu_fence_driver_force_completion(adev); + } + wake_up_all(&adev->fence_queue); + ring->fence_drv.initialized = false; + } + mutex_unlock(&adev->ring_lock); +} + +/** + * amdgpu_fence_driver_force_completion - force all fence waiter to complete + * + * @adev: amdgpu device pointer + * + * In case of GPU reset failure make sure no process keep waiting on fence + * that will never complete. + */ +void amdgpu_fence_driver_force_completion(struct amdgpu_device *adev) +{ + int i; + + for (i = 0; i < AMDGPU_MAX_RINGS; i++) { + struct amdgpu_ring *ring = adev->rings[i]; + if (!ring || !ring->fence_drv.initialized) + continue; + + amdgpu_fence_write(ring, ring->fence_drv.sync_seq[i]); + } +} + + +/* + * Fence debugfs + */ +#if defined(CONFIG_DEBUG_FS) +static int amdgpu_debugfs_fence_info(struct seq_file *m, void *data) +{ + struct drm_info_node *node = (struct drm_info_node *)m->private; + struct drm_device *dev = node->minor->dev; + struct amdgpu_device *adev = dev->dev_private; + int i, j; + + for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { + struct amdgpu_ring *ring = adev->rings[i]; + if (!ring || !ring->fence_drv.initialized) + continue; + + amdgpu_fence_process(ring); + + seq_printf(m, "--- ring %d ---\n", i); + seq_printf(m, "Last signaled fence 0x%016llx\n", + (unsigned long long)atomic64_read(&ring->fence_drv.last_seq)); + seq_printf(m, "Last emitted 0x%016llx\n", + ring->fence_drv.sync_seq[i]); + + for (j = 0; j < AMDGPU_MAX_RINGS; ++j) { + struct amdgpu_ring *other = adev->rings[j]; + if (i != j && other && other->fence_drv.initialized) + seq_printf(m, "Last sync to ring %d 0x%016llx\n", + j, ring->fence_drv.sync_seq[j]); + } + } + return 0; +} + +static struct drm_info_list amdgpu_debugfs_fence_list[] = { + {"amdgpu_fence_info", &amdgpu_debugfs_fence_info, 0, NULL}, +}; +#endif + +int amdgpu_debugfs_fence_init(struct amdgpu_device *adev) +{ +#if defined(CONFIG_DEBUG_FS) + return amdgpu_debugfs_add_files(adev, amdgpu_debugfs_fence_list, 1); +#else + return 0; +#endif +} + +static const char *amdgpu_fence_get_driver_name(struct fence *fence) +{ + return "amdgpu"; +} + +static const char *amdgpu_fence_get_timeline_name(struct fence *f) +{ + struct amdgpu_fence *fence = to_amdgpu_fence(f); + return (const char *)fence->ring->name; +} + +static inline bool amdgpu_test_signaled(struct amdgpu_fence *fence) +{ + return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags); +} + +struct amdgpu_wait_cb { + struct fence_cb base; + struct task_struct *task; +}; + +static void amdgpu_fence_wait_cb(struct fence *fence, struct fence_cb *cb) +{ + struct amdgpu_wait_cb *wait = + container_of(cb, struct amdgpu_wait_cb, base); + wake_up_process(wait->task); +} + +static signed long amdgpu_fence_default_wait(struct fence *f, bool intr, + signed long t) +{ + struct amdgpu_fence *fence = to_amdgpu_fence(f); + struct amdgpu_device *adev = fence->ring->adev; + struct amdgpu_wait_cb cb; + + cb.task = current; + + if (fence_add_callback(f, &cb.base, amdgpu_fence_wait_cb)) + return t; + + while (t > 0) { + if (intr) + set_current_state(TASK_INTERRUPTIBLE); + else + set_current_state(TASK_UNINTERRUPTIBLE); + + /* + * amdgpu_test_signaled must be called after + * set_current_state to prevent a race with wake_up_process + */ + if (amdgpu_test_signaled(fence)) + break; + + if (adev->needs_reset) { + t = -EDEADLK; + break; + } + + t = schedule_timeout(t); + + if (t > 0 && intr && signal_pending(current)) + t = -ERESTARTSYS; + } + + __set_current_state(TASK_RUNNING); + fence_remove_callback(f, &cb.base); + + return t; +} + +const struct fence_ops amdgpu_fence_ops = { + .get_driver_name = amdgpu_fence_get_driver_name, + .get_timeline_name = amdgpu_fence_get_timeline_name, + .enable_signaling = amdgpu_fence_enable_signaling, + .signaled = amdgpu_fence_is_signaled, + .wait = amdgpu_fence_default_wait, + .release = NULL, +}; |