summaryrefslogtreecommitdiff
path: root/arch/x86/mm
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/mm')
-rw-r--r--arch/x86/mm/Makefile10
-rw-r--r--arch/x86/mm/amdtopology.c2
-rw-r--r--arch/x86/mm/extable.c2
-rw-r--r--arch/x86/mm/fault.c8
-rw-r--r--arch/x86/mm/init.c23
-rw-r--r--arch/x86/mm/init_32.c12
-rw-r--r--arch/x86/mm/init_64.c19
-rw-r--r--arch/x86/mm/mem_encrypt_amd.c2
-rw-r--r--arch/x86/mm/mem_encrypt_identity.c569
-rw-r--r--arch/x86/mm/mm_internal.h4
-rw-r--r--arch/x86/mm/numa.c5
-rw-r--r--arch/x86/mm/numa_32.c61
-rw-r--r--arch/x86/mm/numa_64.c13
-rw-r--r--arch/x86/mm/numa_internal.h10
-rw-r--r--arch/x86/mm/pat/memtype.c36
-rw-r--r--arch/x86/mm/pat/set_memory.c4
-rw-r--r--arch/x86/mm/pgtable.c158
-rw-r--r--arch/x86/mm/pti.c4
-rw-r--r--arch/x86/mm/tlb.c176
19 files changed, 230 insertions, 888 deletions
diff --git a/arch/x86/mm/Makefile b/arch/x86/mm/Makefile
index 32035d5be5a0..5b9908f13dcf 100644
--- a/arch/x86/mm/Makefile
+++ b/arch/x86/mm/Makefile
@@ -3,12 +3,10 @@
KCOV_INSTRUMENT_tlb.o := n
KCOV_INSTRUMENT_mem_encrypt.o := n
KCOV_INSTRUMENT_mem_encrypt_amd.o := n
-KCOV_INSTRUMENT_mem_encrypt_identity.o := n
KCOV_INSTRUMENT_pgprot.o := n
KASAN_SANITIZE_mem_encrypt.o := n
KASAN_SANITIZE_mem_encrypt_amd.o := n
-KASAN_SANITIZE_mem_encrypt_identity.o := n
KASAN_SANITIZE_pgprot.o := n
# Disable KCSAN entirely, because otherwise we get warnings that some functions
@@ -16,12 +14,10 @@ KASAN_SANITIZE_pgprot.o := n
KCSAN_SANITIZE := n
# Avoid recursion by not calling KMSAN hooks for CEA code.
KMSAN_SANITIZE_cpu_entry_area.o := n
-KMSAN_SANITIZE_mem_encrypt_identity.o := n
ifdef CONFIG_FUNCTION_TRACER
CFLAGS_REMOVE_mem_encrypt.o = -pg
CFLAGS_REMOVE_mem_encrypt_amd.o = -pg
-CFLAGS_REMOVE_mem_encrypt_identity.o = -pg
CFLAGS_REMOVE_pgprot.o = -pg
endif
@@ -32,9 +28,6 @@ obj-y += pat/
# Make sure __phys_addr has no stackprotector
CFLAGS_physaddr.o := -fno-stack-protector
-CFLAGS_mem_encrypt_identity.o := -fno-stack-protector
-
-CFLAGS_fault.o := -I $(src)/../include/asm/trace
obj-$(CONFIG_X86_32) += pgtable_32.o iomap_32.o
@@ -52,7 +45,7 @@ obj-$(CONFIG_MMIOTRACE) += mmiotrace.o
mmiotrace-y := kmmio.o pf_in.o mmio-mod.o
obj-$(CONFIG_MMIOTRACE_TEST) += testmmiotrace.o
-obj-$(CONFIG_NUMA) += numa.o numa_$(BITS).o
+obj-$(CONFIG_NUMA) += numa.o
obj-$(CONFIG_AMD_NUMA) += amdtopology.o
obj-$(CONFIG_ACPI_NUMA) += srat.o
@@ -63,5 +56,4 @@ obj-$(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION) += pti.o
obj-$(CONFIG_X86_MEM_ENCRYPT) += mem_encrypt.o
obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_amd.o
-obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_identity.o
obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_boot.o
diff --git a/arch/x86/mm/amdtopology.c b/arch/x86/mm/amdtopology.c
index 628833afee37..f980b0eb0105 100644
--- a/arch/x86/mm/amdtopology.c
+++ b/arch/x86/mm/amdtopology.c
@@ -25,7 +25,7 @@
#include <asm/numa.h>
#include <asm/mpspec.h>
#include <asm/apic.h>
-#include <asm/amd_nb.h>
+#include <asm/amd/nb.h>
static unsigned char __initdata nodeids[8];
diff --git a/arch/x86/mm/extable.c b/arch/x86/mm/extable.c
index 51986e8a9d35..bf8dab18be97 100644
--- a/arch/x86/mm/extable.c
+++ b/arch/x86/mm/extable.c
@@ -111,7 +111,7 @@ static bool ex_handler_sgx(const struct exception_table_entry *fixup,
/*
* Handler for when we fail to restore a task's FPU state. We should never get
- * here because the FPU state of a task using the FPU (task->thread.fpu.state)
+ * here because the FPU state of a task using the FPU (struct fpu::fpstate)
* should always be valid. However, past bugs have allowed userspace to set
* reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
* These caused XRSTOR to fail when switching to the task, leaking the FPU
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
index 296d294142c8..998bd807fc7b 100644
--- a/arch/x86/mm/fault.c
+++ b/arch/x86/mm/fault.c
@@ -13,7 +13,6 @@
#include <linux/mmiotrace.h> /* kmmio_handler, ... */
#include <linux/perf_event.h> /* perf_sw_event */
#include <linux/hugetlb.h> /* hstate_index_to_shift */
-#include <linux/prefetch.h> /* prefetchw */
#include <linux/context_tracking.h> /* exception_enter(), ... */
#include <linux/uaccess.h> /* faulthandler_disabled() */
#include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
@@ -38,7 +37,7 @@
#include <asm/sev.h> /* snp_dump_hva_rmpentry() */
#define CREATE_TRACE_POINTS
-#include <asm/trace/exceptions.h>
+#include <trace/events/exceptions.h>
/*
* Returns 0 if mmiotrace is disabled, or if the fault is not
@@ -1455,9 +1454,6 @@ static __always_inline void
trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
- if (!trace_pagefault_enabled())
- return;
-
if (user_mode(regs))
trace_page_fault_user(address, regs, error_code);
else
@@ -1496,8 +1492,6 @@ DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
- prefetchw(&current->mm->mmap_lock);
-
/*
* KVM uses #PF vector to deliver 'page not present' events to guests
* (asynchronous page fault mechanism). The event happens when a
diff --git a/arch/x86/mm/init.c b/arch/x86/mm/init.c
index bfa444a7dbb0..7456df985d96 100644
--- a/arch/x86/mm/init.c
+++ b/arch/x86/mm/init.c
@@ -28,6 +28,7 @@
#include <asm/text-patching.h>
#include <asm/memtype.h>
#include <asm/paravirt.h>
+#include <asm/mmu_context.h>
/*
* We need to define the tracepoints somewhere, and tlb.c
@@ -173,11 +174,7 @@ __ref void *alloc_low_pages(unsigned int num)
* randomization is enabled.
*/
-#ifndef CONFIG_X86_5LEVEL
-#define INIT_PGD_PAGE_TABLES 3
-#else
#define INIT_PGD_PAGE_TABLES 4
-#endif
#ifndef CONFIG_RANDOMIZE_MEMORY
#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
@@ -824,31 +821,33 @@ void __init poking_init(void)
spinlock_t *ptl;
pte_t *ptep;
- poking_mm = mm_alloc();
- BUG_ON(!poking_mm);
+ text_poke_mm = mm_alloc();
+ BUG_ON(!text_poke_mm);
/* Xen PV guests need the PGD to be pinned. */
- paravirt_enter_mmap(poking_mm);
+ paravirt_enter_mmap(text_poke_mm);
+
+ set_notrack_mm(text_poke_mm);
/*
* Randomize the poking address, but make sure that the following page
* will be mapped at the same PMD. We need 2 pages, so find space for 3,
* and adjust the address if the PMD ends after the first one.
*/
- poking_addr = TASK_UNMAPPED_BASE;
+ text_poke_mm_addr = TASK_UNMAPPED_BASE;
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
- poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
+ text_poke_mm_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
- if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
- poking_addr += PAGE_SIZE;
+ if (((text_poke_mm_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
+ text_poke_mm_addr += PAGE_SIZE;
/*
* We need to trigger the allocation of the page-tables that will be
* needed for poking now. Later, poking may be performed in an atomic
* section, which might cause allocation to fail.
*/
- ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
+ ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
BUG_ON(!ptep);
pte_unmap_unlock(ptep, ptl);
}
diff --git a/arch/x86/mm/init_32.c b/arch/x86/mm/init_32.c
index ad662cc4605c..607d6a2e66e2 100644
--- a/arch/x86/mm/init_32.c
+++ b/arch/x86/mm/init_32.c
@@ -30,6 +30,7 @@
#include <linux/initrd.h>
#include <linux/cpumask.h>
#include <linux/gfp.h>
+#include <linux/execmem.h>
#include <asm/asm.h>
#include <asm/bios_ebda.h>
@@ -565,7 +566,7 @@ static void __init lowmem_pfn_init(void)
"only %luMB highmem pages available, ignoring highmem size of %luMB!\n"
#define MSG_HIGHMEM_TRIMMED \
- "Warning: only 4GB will be used. Support for for CONFIG_HIGHMEM64G was removed!\n"
+ "Warning: only 4GB will be used. Support for CONFIG_HIGHMEM64G was removed!\n"
/*
* We have more RAM than fits into lowmem - we try to put it into
* highmem, also taking the highmem=x boot parameter into account:
@@ -612,7 +613,6 @@ void __init find_low_pfn_range(void)
highmem_pfn_init();
}
-#ifndef CONFIG_NUMA
void __init initmem_init(void)
{
#ifdef CONFIG_HIGHMEM
@@ -633,12 +633,6 @@ void __init initmem_init(void)
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
pages_to_mb(max_low_pfn));
- setup_bootmem_allocator();
-}
-#endif /* !CONFIG_NUMA */
-
-void __init setup_bootmem_allocator(void)
-{
printk(KERN_INFO " mapped low ram: 0 - %08lx\n",
max_pfn_mapped<<PAGE_SHIFT);
printk(KERN_INFO " low ram: 0 - %08lx\n", max_low_pfn<<PAGE_SHIFT);
@@ -755,6 +749,8 @@ void mark_rodata_ro(void)
pr_info("Write protecting kernel text and read-only data: %luk\n",
size >> 10);
+ execmem_cache_make_ro();
+
kernel_set_to_readonly = 1;
#ifdef CONFIG_CPA_DEBUG
diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c
index 7c4f6f591f2b..66330fe4e18c 100644
--- a/arch/x86/mm/init_64.c
+++ b/arch/x86/mm/init_64.c
@@ -34,6 +34,7 @@
#include <linux/gfp.h>
#include <linux/kcore.h>
#include <linux/bootmem_info.h>
+#include <linux/execmem.h>
#include <asm/processor.h>
#include <asm/bios_ebda.h>
@@ -805,12 +806,17 @@ kernel_physical_mapping_change(unsigned long paddr_start,
}
#ifndef CONFIG_NUMA
-void __init initmem_init(void)
+static inline void x86_numa_init(void)
{
memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
}
#endif
+void __init initmem_init(void)
+{
+ x86_numa_init();
+}
+
void __init paging_init(void)
{
sparse_init();
@@ -827,7 +833,6 @@ void __init paging_init(void)
zone_sizes_init();
}
-#ifdef CONFIG_SPARSEMEM_VMEMMAP
#define PAGE_UNUSED 0xFD
/*
@@ -926,7 +931,6 @@ static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long
if (!IS_ALIGNED(end, PMD_SIZE))
unused_pmd_start = end;
}
-#endif
/*
* Memory hotplug specific functions
@@ -1146,16 +1150,13 @@ remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
pmd_clear(pmd);
spin_unlock(&init_mm.page_table_lock);
pages++;
- }
-#ifdef CONFIG_SPARSEMEM_VMEMMAP
- else if (vmemmap_pmd_is_unused(addr, next)) {
+ } else if (vmemmap_pmd_is_unused(addr, next)) {
free_hugepage_table(pmd_page(*pmd),
altmap);
spin_lock(&init_mm.page_table_lock);
pmd_clear(pmd);
spin_unlock(&init_mm.page_table_lock);
}
-#endif
continue;
}
@@ -1391,6 +1392,8 @@ void mark_rodata_ro(void)
(end - start) >> 10);
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
+ execmem_cache_make_ro();
+
kernel_set_to_readonly = 1;
/*
@@ -1492,7 +1495,6 @@ unsigned long memory_block_size_bytes(void)
return memory_block_size_probed;
}
-#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
*/
@@ -1639,4 +1641,3 @@ void __meminit vmemmap_populate_print_last(void)
node_start = 0;
}
}
-#endif
diff --git a/arch/x86/mm/mem_encrypt_amd.c b/arch/x86/mm/mem_encrypt_amd.c
index 7490ff6d83b1..faf3a13fb6ba 100644
--- a/arch/x86/mm/mem_encrypt_amd.c
+++ b/arch/x86/mm/mem_encrypt_amd.c
@@ -40,7 +40,9 @@
* section is later cleared.
*/
u64 sme_me_mask __section(".data") = 0;
+SYM_PIC_ALIAS(sme_me_mask);
u64 sev_status __section(".data") = 0;
+SYM_PIC_ALIAS(sev_status);
u64 sev_check_data __section(".data") = 0;
EXPORT_SYMBOL(sme_me_mask);
diff --git a/arch/x86/mm/mem_encrypt_identity.c b/arch/x86/mm/mem_encrypt_identity.c
deleted file mode 100644
index 5eecdd92da10..000000000000
--- a/arch/x86/mm/mem_encrypt_identity.c
+++ /dev/null
@@ -1,569 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * AMD Memory Encryption Support
- *
- * Copyright (C) 2016 Advanced Micro Devices, Inc.
- *
- * Author: Tom Lendacky <thomas.lendacky@amd.com>
- */
-
-/*
- * Since we're dealing with identity mappings, physical and virtual
- * addresses are the same, so override these defines which are ultimately
- * used by the headers in misc.h.
- */
-#define __pa(x) ((unsigned long)(x))
-#define __va(x) ((void *)((unsigned long)(x)))
-
-/*
- * Special hack: we have to be careful, because no indirections are
- * allowed here, and paravirt_ops is a kind of one. As it will only run in
- * baremetal anyway, we just keep it from happening. (This list needs to
- * be extended when new paravirt and debugging variants are added.)
- */
-#undef CONFIG_PARAVIRT
-#undef CONFIG_PARAVIRT_XXL
-#undef CONFIG_PARAVIRT_SPINLOCKS
-
-/*
- * This code runs before CPU feature bits are set. By default, the
- * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
- * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
- * is provided to handle this situation and, instead, use a variable that
- * has been set by the early boot code.
- */
-#define USE_EARLY_PGTABLE_L5
-
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/mem_encrypt.h>
-#include <linux/cc_platform.h>
-
-#include <asm/init.h>
-#include <asm/setup.h>
-#include <asm/sections.h>
-#include <asm/coco.h>
-#include <asm/sev.h>
-
-#include "mm_internal.h"
-
-#define PGD_FLAGS _KERNPG_TABLE_NOENC
-#define P4D_FLAGS _KERNPG_TABLE_NOENC
-#define PUD_FLAGS _KERNPG_TABLE_NOENC
-#define PMD_FLAGS _KERNPG_TABLE_NOENC
-
-#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
-
-#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
-#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
- (_PAGE_PAT_LARGE | _PAGE_PWT))
-
-#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
-
-#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
-
-#define PTE_FLAGS_DEC PTE_FLAGS
-#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
- (_PAGE_PAT | _PAGE_PWT))
-
-#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
-
-struct sme_populate_pgd_data {
- void *pgtable_area;
- pgd_t *pgd;
-
- pmdval_t pmd_flags;
- pteval_t pte_flags;
- unsigned long paddr;
-
- unsigned long vaddr;
- unsigned long vaddr_end;
-};
-
-/*
- * This work area lives in the .init.scratch section, which lives outside of
- * the kernel proper. It is sized to hold the intermediate copy buffer and
- * more than enough pagetable pages.
- *
- * By using this section, the kernel can be encrypted in place and it
- * avoids any possibility of boot parameters or initramfs images being
- * placed such that the in-place encryption logic overwrites them. This
- * section is 2MB aligned to allow for simple pagetable setup using only
- * PMD entries (see vmlinux.lds.S).
- */
-static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
-
-static void __head sme_clear_pgd(struct sme_populate_pgd_data *ppd)
-{
- unsigned long pgd_start, pgd_end, pgd_size;
- pgd_t *pgd_p;
-
- pgd_start = ppd->vaddr & PGDIR_MASK;
- pgd_end = ppd->vaddr_end & PGDIR_MASK;
-
- pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
-
- pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
-
- memset(pgd_p, 0, pgd_size);
-}
-
-static pud_t __head *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
-{
- pgd_t *pgd;
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
-
- pgd = ppd->pgd + pgd_index(ppd->vaddr);
- if (pgd_none(*pgd)) {
- p4d = ppd->pgtable_area;
- memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
- ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
- set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
- }
-
- p4d = p4d_offset(pgd, ppd->vaddr);
- if (p4d_none(*p4d)) {
- pud = ppd->pgtable_area;
- memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
- ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
- set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
- }
-
- pud = pud_offset(p4d, ppd->vaddr);
- if (pud_none(*pud)) {
- pmd = ppd->pgtable_area;
- memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
- ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
- set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
- }
-
- if (pud_leaf(*pud))
- return NULL;
-
- return pud;
-}
-
-static void __head sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
-{
- pud_t *pud;
- pmd_t *pmd;
-
- pud = sme_prepare_pgd(ppd);
- if (!pud)
- return;
-
- pmd = pmd_offset(pud, ppd->vaddr);
- if (pmd_leaf(*pmd))
- return;
-
- set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
-}
-
-static void __head sme_populate_pgd(struct sme_populate_pgd_data *ppd)
-{
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
-
- pud = sme_prepare_pgd(ppd);
- if (!pud)
- return;
-
- pmd = pmd_offset(pud, ppd->vaddr);
- if (pmd_none(*pmd)) {
- pte = ppd->pgtable_area;
- memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
- ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
- set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
- }
-
- if (pmd_leaf(*pmd))
- return;
-
- pte = pte_offset_kernel(pmd, ppd->vaddr);
- if (pte_none(*pte))
- set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
-}
-
-static void __head __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
-{
- while (ppd->vaddr < ppd->vaddr_end) {
- sme_populate_pgd_large(ppd);
-
- ppd->vaddr += PMD_SIZE;
- ppd->paddr += PMD_SIZE;
- }
-}
-
-static void __head __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
-{
- while (ppd->vaddr < ppd->vaddr_end) {
- sme_populate_pgd(ppd);
-
- ppd->vaddr += PAGE_SIZE;
- ppd->paddr += PAGE_SIZE;
- }
-}
-
-static void __head __sme_map_range(struct sme_populate_pgd_data *ppd,
- pmdval_t pmd_flags, pteval_t pte_flags)
-{
- unsigned long vaddr_end;
-
- ppd->pmd_flags = pmd_flags;
- ppd->pte_flags = pte_flags;
-
- /* Save original end value since we modify the struct value */
- vaddr_end = ppd->vaddr_end;
-
- /* If start is not 2MB aligned, create PTE entries */
- ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
- __sme_map_range_pte(ppd);
-
- /* Create PMD entries */
- ppd->vaddr_end = vaddr_end & PMD_MASK;
- __sme_map_range_pmd(ppd);
-
- /* If end is not 2MB aligned, create PTE entries */
- ppd->vaddr_end = vaddr_end;
- __sme_map_range_pte(ppd);
-}
-
-static void __head sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
-{
- __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
-}
-
-static void __head sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
-{
- __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
-}
-
-static void __head sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
-{
- __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
-}
-
-static unsigned long __head sme_pgtable_calc(unsigned long len)
-{
- unsigned long entries = 0, tables = 0;
-
- /*
- * Perform a relatively simplistic calculation of the pagetable
- * entries that are needed. Those mappings will be covered mostly
- * by 2MB PMD entries so we can conservatively calculate the required
- * number of P4D, PUD and PMD structures needed to perform the
- * mappings. For mappings that are not 2MB aligned, PTE mappings
- * would be needed for the start and end portion of the address range
- * that fall outside of the 2MB alignment. This results in, at most,
- * two extra pages to hold PTE entries for each range that is mapped.
- * Incrementing the count for each covers the case where the addresses
- * cross entries.
- */
-
- /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
- if (PTRS_PER_P4D > 1)
- entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
- entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
- entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
- entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
-
- /*
- * Now calculate the added pagetable structures needed to populate
- * the new pagetables.
- */
-
- if (PTRS_PER_P4D > 1)
- tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
- tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
- tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
-
- return entries + tables;
-}
-
-void __head sme_encrypt_kernel(struct boot_params *bp)
-{
- unsigned long workarea_start, workarea_end, workarea_len;
- unsigned long execute_start, execute_end, execute_len;
- unsigned long kernel_start, kernel_end, kernel_len;
- unsigned long initrd_start, initrd_end, initrd_len;
- struct sme_populate_pgd_data ppd;
- unsigned long pgtable_area_len;
- unsigned long decrypted_base;
-
- /*
- * This is early code, use an open coded check for SME instead of
- * using cc_platform_has(). This eliminates worries about removing
- * instrumentation or checking boot_cpu_data in the cc_platform_has()
- * function.
- */
- if (!sme_get_me_mask() ||
- RIP_REL_REF(sev_status) & MSR_AMD64_SEV_ENABLED)
- return;
-
- /*
- * Prepare for encrypting the kernel and initrd by building new
- * pagetables with the necessary attributes needed to encrypt the
- * kernel in place.
- *
- * One range of virtual addresses will map the memory occupied
- * by the kernel and initrd as encrypted.
- *
- * Another range of virtual addresses will map the memory occupied
- * by the kernel and initrd as decrypted and write-protected.
- *
- * The use of write-protect attribute will prevent any of the
- * memory from being cached.
- */
-
- kernel_start = (unsigned long)RIP_REL_REF(_text);
- kernel_end = ALIGN((unsigned long)RIP_REL_REF(_end), PMD_SIZE);
- kernel_len = kernel_end - kernel_start;
-
- initrd_start = 0;
- initrd_end = 0;
- initrd_len = 0;
-#ifdef CONFIG_BLK_DEV_INITRD
- initrd_len = (unsigned long)bp->hdr.ramdisk_size |
- ((unsigned long)bp->ext_ramdisk_size << 32);
- if (initrd_len) {
- initrd_start = (unsigned long)bp->hdr.ramdisk_image |
- ((unsigned long)bp->ext_ramdisk_image << 32);
- initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
- initrd_len = initrd_end - initrd_start;
- }
-#endif
-
- /*
- * Calculate required number of workarea bytes needed:
- * executable encryption area size:
- * stack page (PAGE_SIZE)
- * encryption routine page (PAGE_SIZE)
- * intermediate copy buffer (PMD_SIZE)
- * pagetable structures for the encryption of the kernel
- * pagetable structures for workarea (in case not currently mapped)
- */
- execute_start = workarea_start = (unsigned long)RIP_REL_REF(sme_workarea);
- execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
- execute_len = execute_end - execute_start;
-
- /*
- * One PGD for both encrypted and decrypted mappings and a set of
- * PUDs and PMDs for each of the encrypted and decrypted mappings.
- */
- pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
- pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
- if (initrd_len)
- pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
-
- /* PUDs and PMDs needed in the current pagetables for the workarea */
- pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
-
- /*
- * The total workarea includes the executable encryption area and
- * the pagetable area. The start of the workarea is already 2MB
- * aligned, align the end of the workarea on a 2MB boundary so that
- * we don't try to create/allocate PTE entries from the workarea
- * before it is mapped.
- */
- workarea_len = execute_len + pgtable_area_len;
- workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
-
- /*
- * Set the address to the start of where newly created pagetable
- * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
- * structures are created when the workarea is added to the current
- * pagetables and when the new encrypted and decrypted kernel
- * mappings are populated.
- */
- ppd.pgtable_area = (void *)execute_end;
-
- /*
- * Make sure the current pagetable structure has entries for
- * addressing the workarea.
- */
- ppd.pgd = (pgd_t *)native_read_cr3_pa();
- ppd.paddr = workarea_start;
- ppd.vaddr = workarea_start;
- ppd.vaddr_end = workarea_end;
- sme_map_range_decrypted(&ppd);
-
- /* Flush the TLB - no globals so cr3 is enough */
- native_write_cr3(__native_read_cr3());
-
- /*
- * A new pagetable structure is being built to allow for the kernel
- * and initrd to be encrypted. It starts with an empty PGD that will
- * then be populated with new PUDs and PMDs as the encrypted and
- * decrypted kernel mappings are created.
- */
- ppd.pgd = ppd.pgtable_area;
- memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
- ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
-
- /*
- * A different PGD index/entry must be used to get different
- * pagetable entries for the decrypted mapping. Choose the next
- * PGD index and convert it to a virtual address to be used as
- * the base of the mapping.
- */
- decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
- if (initrd_len) {
- unsigned long check_base;
-
- check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
- decrypted_base = max(decrypted_base, check_base);
- }
- decrypted_base <<= PGDIR_SHIFT;
-
- /* Add encrypted kernel (identity) mappings */
- ppd.paddr = kernel_start;
- ppd.vaddr = kernel_start;
- ppd.vaddr_end = kernel_end;
- sme_map_range_encrypted(&ppd);
-
- /* Add decrypted, write-protected kernel (non-identity) mappings */
- ppd.paddr = kernel_start;
- ppd.vaddr = kernel_start + decrypted_base;
- ppd.vaddr_end = kernel_end + decrypted_base;
- sme_map_range_decrypted_wp(&ppd);
-
- if (initrd_len) {
- /* Add encrypted initrd (identity) mappings */
- ppd.paddr = initrd_start;
- ppd.vaddr = initrd_start;
- ppd.vaddr_end = initrd_end;
- sme_map_range_encrypted(&ppd);
- /*
- * Add decrypted, write-protected initrd (non-identity) mappings
- */
- ppd.paddr = initrd_start;
- ppd.vaddr = initrd_start + decrypted_base;
- ppd.vaddr_end = initrd_end + decrypted_base;
- sme_map_range_decrypted_wp(&ppd);
- }
-
- /* Add decrypted workarea mappings to both kernel mappings */
- ppd.paddr = workarea_start;
- ppd.vaddr = workarea_start;
- ppd.vaddr_end = workarea_end;
- sme_map_range_decrypted(&ppd);
-
- ppd.paddr = workarea_start;
- ppd.vaddr = workarea_start + decrypted_base;
- ppd.vaddr_end = workarea_end + decrypted_base;
- sme_map_range_decrypted(&ppd);
-
- /* Perform the encryption */
- sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
- kernel_len, workarea_start, (unsigned long)ppd.pgd);
-
- if (initrd_len)
- sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
- initrd_len, workarea_start,
- (unsigned long)ppd.pgd);
-
- /*
- * At this point we are running encrypted. Remove the mappings for
- * the decrypted areas - all that is needed for this is to remove
- * the PGD entry/entries.
- */
- ppd.vaddr = kernel_start + decrypted_base;
- ppd.vaddr_end = kernel_end + decrypted_base;
- sme_clear_pgd(&ppd);
-
- if (initrd_len) {
- ppd.vaddr = initrd_start + decrypted_base;
- ppd.vaddr_end = initrd_end + decrypted_base;
- sme_clear_pgd(&ppd);
- }
-
- ppd.vaddr = workarea_start + decrypted_base;
- ppd.vaddr_end = workarea_end + decrypted_base;
- sme_clear_pgd(&ppd);
-
- /* Flush the TLB - no globals so cr3 is enough */
- native_write_cr3(__native_read_cr3());
-}
-
-void __head sme_enable(struct boot_params *bp)
-{
- unsigned int eax, ebx, ecx, edx;
- unsigned long feature_mask;
- unsigned long me_mask;
- bool snp_en;
- u64 msr;
-
- snp_en = snp_init(bp);
-
- /* Check for the SME/SEV support leaf */
- eax = 0x80000000;
- ecx = 0;
- native_cpuid(&eax, &ebx, &ecx, &edx);
- if (eax < 0x8000001f)
- return;
-
-#define AMD_SME_BIT BIT(0)
-#define AMD_SEV_BIT BIT(1)
-
- /*
- * Check for the SME/SEV feature:
- * CPUID Fn8000_001F[EAX]
- * - Bit 0 - Secure Memory Encryption support
- * - Bit 1 - Secure Encrypted Virtualization support
- * CPUID Fn8000_001F[EBX]
- * - Bits 5:0 - Pagetable bit position used to indicate encryption
- */
- eax = 0x8000001f;
- ecx = 0;
- native_cpuid(&eax, &ebx, &ecx, &edx);
- /* Check whether SEV or SME is supported */
- if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
- return;
-
- me_mask = 1UL << (ebx & 0x3f);
-
- /* Check the SEV MSR whether SEV or SME is enabled */
- RIP_REL_REF(sev_status) = msr = __rdmsr(MSR_AMD64_SEV);
- feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
-
- /*
- * Any discrepancies between the presence of a CC blob and SNP
- * enablement abort the guest.
- */
- if (snp_en ^ !!(msr & MSR_AMD64_SEV_SNP_ENABLED))
- snp_abort();
-
- /* Check if memory encryption is enabled */
- if (feature_mask == AMD_SME_BIT) {
- if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION))
- return;
-
- /*
- * No SME if Hypervisor bit is set. This check is here to
- * prevent a guest from trying to enable SME. For running as a
- * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
- * might be other hypervisors which emulate that MSR as non-zero
- * or even pass it through to the guest.
- * A malicious hypervisor can still trick a guest into this
- * path, but there is no way to protect against that.
- */
- eax = 1;
- ecx = 0;
- native_cpuid(&eax, &ebx, &ecx, &edx);
- if (ecx & BIT(31))
- return;
-
- /* For SME, check the SYSCFG MSR */
- msr = __rdmsr(MSR_AMD64_SYSCFG);
- if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
- return;
- }
-
- RIP_REL_REF(sme_me_mask) = me_mask;
- RIP_REL_REF(physical_mask) &= ~me_mask;
- RIP_REL_REF(cc_vendor) = CC_VENDOR_AMD;
- cc_set_mask(me_mask);
-}
diff --git a/arch/x86/mm/mm_internal.h b/arch/x86/mm/mm_internal.h
index 3f37b5c80bb3..097aadc250f7 100644
--- a/arch/x86/mm/mm_internal.h
+++ b/arch/x86/mm/mm_internal.h
@@ -25,4 +25,8 @@ void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache);
extern unsigned long tlb_single_page_flush_ceiling;
+#ifdef CONFIG_NUMA
+void __init x86_numa_init(void);
+#endif
+
#endif /* __X86_MM_INTERNAL_H */
diff --git a/arch/x86/mm/numa.c b/arch/x86/mm/numa.c
index 64e5cdb2460a..c24890c40138 100644
--- a/arch/x86/mm/numa.c
+++ b/arch/x86/mm/numa.c
@@ -18,9 +18,10 @@
#include <asm/e820/api.h>
#include <asm/proto.h>
#include <asm/dma.h>
-#include <asm/amd_nb.h>
+#include <asm/numa.h>
+#include <asm/amd/nb.h>
-#include "numa_internal.h"
+#include "mm_internal.h"
int numa_off;
diff --git a/arch/x86/mm/numa_32.c b/arch/x86/mm/numa_32.c
deleted file mode 100644
index 65fda406e6f2..000000000000
--- a/arch/x86/mm/numa_32.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/*
- * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
- * August 2002: added remote node KVA remap - Martin J. Bligh
- *
- * Copyright (C) 2002, IBM Corp.
- *
- * All rights reserved.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-#include <linux/memblock.h>
-#include <linux/init.h>
-#include <linux/vmalloc.h>
-#include <asm/pgtable_areas.h>
-
-#include "numa_internal.h"
-
-extern unsigned long highend_pfn, highstart_pfn;
-
-void __init initmem_init(void)
-{
- x86_numa_init();
-
-#ifdef CONFIG_HIGHMEM
- highstart_pfn = highend_pfn = max_pfn;
- if (max_pfn > max_low_pfn)
- highstart_pfn = max_low_pfn;
- printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
- pages_to_mb(highend_pfn - highstart_pfn));
- high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
-#else
- high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
-#endif
- printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
- pages_to_mb(max_low_pfn));
- printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
- max_low_pfn, highstart_pfn);
-
- printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
- (ulong) pfn_to_kaddr(max_low_pfn));
-
- printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
- (ulong) pfn_to_kaddr(highstart_pfn));
-
- __vmalloc_start_set = true;
- setup_bootmem_allocator();
-}
diff --git a/arch/x86/mm/numa_64.c b/arch/x86/mm/numa_64.c
deleted file mode 100644
index 59d80160fa5a..000000000000
--- a/arch/x86/mm/numa_64.c
+++ /dev/null
@@ -1,13 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-/*
- * Generic VM initialization for x86-64 NUMA setups.
- * Copyright 2002,2003 Andi Kleen, SuSE Labs.
- */
-#include <linux/memblock.h>
-
-#include "numa_internal.h"
-
-void __init initmem_init(void)
-{
- x86_numa_init();
-}
diff --git a/arch/x86/mm/numa_internal.h b/arch/x86/mm/numa_internal.h
deleted file mode 100644
index 11e1ff370c10..000000000000
--- a/arch/x86/mm/numa_internal.h
+++ /dev/null
@@ -1,10 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-#ifndef __X86_MM_NUMA_INTERNAL_H
-#define __X86_MM_NUMA_INTERNAL_H
-
-#include <linux/types.h>
-#include <asm/numa.h>
-
-void __init x86_numa_init(void);
-
-#endif /* __X86_MM_NUMA_INTERNAL_H */
diff --git a/arch/x86/mm/pat/memtype.c b/arch/x86/mm/pat/memtype.c
index 72d8cbc61158..c97b527c66fe 100644
--- a/arch/x86/mm/pat/memtype.c
+++ b/arch/x86/mm/pat/memtype.c
@@ -38,6 +38,7 @@
#include <linux/kernel.h>
#include <linux/pfn_t.h>
#include <linux/slab.h>
+#include <linux/io.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/fs.h>
@@ -232,7 +233,7 @@ void pat_cpu_init(void)
panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
}
- wrmsrl(MSR_IA32_CR_PAT, pat_msr_val);
+ wrmsrq(MSR_IA32_CR_PAT, pat_msr_val);
__flush_tlb_all();
}
@@ -256,7 +257,7 @@ void __init pat_bp_init(void)
if (!cpu_feature_enabled(X86_FEATURE_PAT))
pat_disable("PAT not supported by the CPU.");
else
- rdmsrl(MSR_IA32_CR_PAT, pat_msr_val);
+ rdmsrq(MSR_IA32_CR_PAT, pat_msr_val);
if (!pat_msr_val) {
pat_disable("PAT support disabled by the firmware.");
@@ -682,6 +683,7 @@ static enum page_cache_mode lookup_memtype(u64 paddr)
/**
* pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
* of @pfn cannot be overridden by UC MTRR memory type.
+ * @pfn: The page frame number to check.
*
* Only to be called when PAT is enabled.
*
@@ -773,38 +775,14 @@ pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
return vma_prot;
}
-#ifdef CONFIG_STRICT_DEVMEM
-/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
-static inline int range_is_allowed(unsigned long pfn, unsigned long size)
-{
- return 1;
-}
-#else
-/* This check is needed to avoid cache aliasing when PAT is enabled */
-static inline int range_is_allowed(unsigned long pfn, unsigned long size)
-{
- u64 from = ((u64)pfn) << PAGE_SHIFT;
- u64 to = from + size;
- u64 cursor = from;
-
- if (!pat_enabled())
- return 1;
-
- while (cursor < to) {
- if (!devmem_is_allowed(pfn))
- return 0;
- cursor += PAGE_SIZE;
- pfn++;
- }
- return 1;
-}
-#endif /* CONFIG_STRICT_DEVMEM */
-
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t *vma_prot)
{
enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
+ if (!pat_enabled())
+ return 1;
+
if (!range_is_allowed(pfn, size))
return 0;
diff --git a/arch/x86/mm/pat/set_memory.c b/arch/x86/mm/pat/set_memory.c
index def3d9284254..30ab4aced761 100644
--- a/arch/x86/mm/pat/set_memory.c
+++ b/arch/x86/mm/pat/set_memory.c
@@ -889,7 +889,7 @@ static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
/* change init_mm */
set_pte_atomic(kpte, pte);
#ifdef CONFIG_X86_32
- if (!SHARED_KERNEL_PMD) {
+ {
struct page *page;
list_for_each_entry(page, &pgd_list, lru) {
@@ -1293,7 +1293,7 @@ static int collapse_pmd_page(pmd_t *pmd, unsigned long addr,
/* Queue the page table to be freed after TLB flush */
list_add(&page_ptdesc(pmd_page(old_pmd))->pt_list, pgtables);
- if (IS_ENABLED(CONFIG_X86_32) && !SHARED_KERNEL_PMD) {
+ if (IS_ENABLED(CONFIG_X86_32)) {
struct page *page;
/* Update all PGD tables to use the same large page */
diff --git a/arch/x86/mm/pgtable.c b/arch/x86/mm/pgtable.c
index a05fcddfc811..62777ba4de1a 100644
--- a/arch/x86/mm/pgtable.c
+++ b/arch/x86/mm/pgtable.c
@@ -10,6 +10,7 @@
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
EXPORT_SYMBOL(physical_mask);
+SYM_PIC_ALIAS(physical_mask);
#endif
pgtable_t pte_alloc_one(struct mm_struct *mm)
@@ -68,12 +69,6 @@ static inline void pgd_list_del(pgd_t *pgd)
list_del(&ptdesc->pt_list);
}
-#define UNSHARED_PTRS_PER_PGD \
- (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
-#define MAX_UNSHARED_PTRS_PER_PGD \
- MAX_T(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
-
-
static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
{
virt_to_ptdesc(pgd)->pt_mm = mm;
@@ -86,29 +81,19 @@ struct mm_struct *pgd_page_get_mm(struct page *page)
static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
{
- /* If the pgd points to a shared pagetable level (either the
- ptes in non-PAE, or shared PMD in PAE), then just copy the
- references from swapper_pg_dir. */
- if (CONFIG_PGTABLE_LEVELS == 2 ||
- (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
- CONFIG_PGTABLE_LEVELS >= 4) {
+ /* PAE preallocates all its PMDs. No cloning needed. */
+ if (!IS_ENABLED(CONFIG_X86_PAE))
clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
swapper_pg_dir + KERNEL_PGD_BOUNDARY,
KERNEL_PGD_PTRS);
- }
- /* list required to sync kernel mapping updates */
- if (!SHARED_KERNEL_PMD) {
- pgd_set_mm(pgd, mm);
- pgd_list_add(pgd);
- }
+ /* List used to sync kernel mapping updates */
+ pgd_set_mm(pgd, mm);
+ pgd_list_add(pgd);
}
static void pgd_dtor(pgd_t *pgd)
{
- if (SHARED_KERNEL_PMD)
- return;
-
spin_lock(&pgd_lock);
pgd_list_del(pgd);
spin_unlock(&pgd_lock);
@@ -132,15 +117,15 @@ static void pgd_dtor(pgd_t *pgd)
* processor notices the update. Since this is expensive, and
* all 4 top-level entries are used almost immediately in a
* new process's life, we just pre-populate them here.
- *
- * Also, if we're in a paravirt environment where the kernel pmd is
- * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
- * and initialize the kernel pmds here.
*/
-#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
-#define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
+#define PREALLOCATED_PMDS PTRS_PER_PGD
/*
+ * "USER_PMDS" are the PMDs for the user copy of the page tables when
+ * PTI is enabled. They do not exist when PTI is disabled. Note that
+ * this is distinct from the user _portion_ of the kernel page tables
+ * which always exists.
+ *
* We allocate separate PMDs for the kernel part of the user page-table
* when PTI is enabled. We need them to map the per-process LDT into the
* user-space page-table.
@@ -169,7 +154,6 @@ void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
/* No need to prepopulate any pagetable entries in non-PAE modes. */
#define PREALLOCATED_PMDS 0
-#define MAX_PREALLOCATED_PMDS 0
#define PREALLOCATED_USER_PMDS 0
#define MAX_PREALLOCATED_USER_PMDS 0
#endif /* CONFIG_X86_PAE */
@@ -318,82 +302,28 @@ static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
{
}
#endif
-/*
- * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
- * assumes that pgd should be in one page.
- *
- * But kernel with PAE paging that is not running as a Xen domain
- * only needs to allocate 32 bytes for pgd instead of one page.
- */
-#ifdef CONFIG_X86_PAE
-
-#include <linux/slab.h>
-
-#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
-#define PGD_ALIGN 32
-
-static struct kmem_cache *pgd_cache;
-
-void __init pgtable_cache_init(void)
-{
- /*
- * When PAE kernel is running as a Xen domain, it does not use
- * shared kernel pmd. And this requires a whole page for pgd.
- */
- if (!SHARED_KERNEL_PMD)
- return;
-
- /*
- * when PAE kernel is not running as a Xen domain, it uses
- * shared kernel pmd. Shared kernel pmd does not require a whole
- * page for pgd. We are able to just allocate a 32-byte for pgd.
- * During boot time, we create a 32-byte slab for pgd table allocation.
- */
- pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
- SLAB_PANIC, NULL);
-}
static inline pgd_t *_pgd_alloc(struct mm_struct *mm)
{
/*
- * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
- * We allocate one page for pgd.
- */
- if (!SHARED_KERNEL_PMD)
- return __pgd_alloc(mm, PGD_ALLOCATION_ORDER);
-
- /*
- * Now PAE kernel is not running as a Xen domain. We can allocate
- * a 32-byte slab for pgd to save memory space.
+ * PTI and Xen need a whole page for the PAE PGD
+ * even though the hardware only needs 32 bytes.
+ *
+ * For simplicity, allocate a page for all users.
*/
- return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
-}
-
-static inline void _pgd_free(struct mm_struct *mm, pgd_t *pgd)
-{
- if (!SHARED_KERNEL_PMD)
- __pgd_free(mm, pgd);
- else
- kmem_cache_free(pgd_cache, pgd);
-}
-#else
-
-static inline pgd_t *_pgd_alloc(struct mm_struct *mm)
-{
- return __pgd_alloc(mm, PGD_ALLOCATION_ORDER);
+ return __pgd_alloc(mm, pgd_allocation_order());
}
static inline void _pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
__pgd_free(mm, pgd);
}
-#endif /* CONFIG_X86_PAE */
pgd_t *pgd_alloc(struct mm_struct *mm)
{
pgd_t *pgd;
pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
- pmd_t *pmds[MAX_PREALLOCATED_PMDS];
+ pmd_t *pmds[PREALLOCATED_PMDS];
pgd = _pgd_alloc(mm);
@@ -613,11 +543,11 @@ pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
#endif
/**
- * reserve_top_address - reserves a hole in the top of kernel address space
- * @reserve - size of hole to reserve
+ * reserve_top_address - Reserve a hole in the top of the kernel address space
+ * @reserve: Size of hole to reserve
*
* Can be used to relocate the fixmap area and poke a hole in the top
- * of kernel address space to make room for a hypervisor.
+ * of the kernel address space to make room for a hypervisor.
*/
void __init reserve_top_address(unsigned long reserve)
{
@@ -662,9 +592,12 @@ void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
}
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
-#ifdef CONFIG_X86_5LEVEL
+#if CONFIG_PGTABLE_LEVELS > 4
/**
- * p4d_set_huge - setup kernel P4D mapping
+ * p4d_set_huge - Set up kernel P4D mapping
+ * @p4d: Pointer to the P4D entry
+ * @addr: Virtual address associated with the P4D entry
+ * @prot: Protection bits to use
*
* No 512GB pages yet -- always return 0
*/
@@ -674,9 +607,10 @@ int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
}
/**
- * p4d_clear_huge - clear kernel P4D mapping when it is set
+ * p4d_clear_huge - Clear kernel P4D mapping when it is set
+ * @p4d: Pointer to the P4D entry to clear
*
- * No 512GB pages yet -- always return 0
+ * No 512GB pages yet -- do nothing
*/
void p4d_clear_huge(p4d_t *p4d)
{
@@ -684,7 +618,10 @@ void p4d_clear_huge(p4d_t *p4d)
#endif
/**
- * pud_set_huge - setup kernel PUD mapping
+ * pud_set_huge - Set up kernel PUD mapping
+ * @pud: Pointer to the PUD entry
+ * @addr: Virtual address associated with the PUD entry
+ * @prot: Protection bits to use
*
* MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
* function sets up a huge page only if the complete range has the same MTRR
@@ -715,7 +652,10 @@ int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
}
/**
- * pmd_set_huge - setup kernel PMD mapping
+ * pmd_set_huge - Set up kernel PMD mapping
+ * @pmd: Pointer to the PMD entry
+ * @addr: Virtual address associated with the PMD entry
+ * @prot: Protection bits to use
*
* See text over pud_set_huge() above.
*
@@ -744,7 +684,8 @@ int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
}
/**
- * pud_clear_huge - clear kernel PUD mapping when it is set
+ * pud_clear_huge - Clear kernel PUD mapping when it is set
+ * @pud: Pointer to the PUD entry to clear.
*
* Returns 1 on success and 0 on failure (no PUD map is found).
*/
@@ -759,7 +700,8 @@ int pud_clear_huge(pud_t *pud)
}
/**
- * pmd_clear_huge - clear kernel PMD mapping when it is set
+ * pmd_clear_huge - Clear kernel PMD mapping when it is set
+ * @pmd: Pointer to the PMD entry to clear.
*
* Returns 1 on success and 0 on failure (no PMD map is found).
*/
@@ -775,11 +717,11 @@ int pmd_clear_huge(pmd_t *pmd)
#ifdef CONFIG_X86_64
/**
- * pud_free_pmd_page - Clear pud entry and free pmd page.
- * @pud: Pointer to a PUD.
- * @addr: Virtual address associated with pud.
+ * pud_free_pmd_page - Clear PUD entry and free PMD page
+ * @pud: Pointer to a PUD
+ * @addr: Virtual address associated with PUD
*
- * Context: The pud range has been unmapped and TLB purged.
+ * Context: The PUD range has been unmapped and TLB purged.
* Return: 1 if clearing the entry succeeded. 0 otherwise.
*
* NOTE: Callers must allow a single page allocation.
@@ -822,11 +764,11 @@ int pud_free_pmd_page(pud_t *pud, unsigned long addr)
}
/**
- * pmd_free_pte_page - Clear pmd entry and free pte page.
- * @pmd: Pointer to a PMD.
- * @addr: Virtual address associated with pmd.
+ * pmd_free_pte_page - Clear PMD entry and free PTE page.
+ * @pmd: Pointer to the PMD
+ * @addr: Virtual address associated with PMD
*
- * Context: The pmd range has been unmapped and TLB purged.
+ * Context: The PMD range has been unmapped and TLB purged.
* Return: 1 if clearing the entry succeeded. 0 otherwise.
*/
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
@@ -848,7 +790,7 @@ int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
/*
* Disable free page handling on x86-PAE. This assures that ioremap()
- * does not update sync'd pmd entries. See vmalloc_sync_one().
+ * does not update sync'd PMD entries. See vmalloc_sync_one().
*/
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
{
diff --git a/arch/x86/mm/pti.c b/arch/x86/mm/pti.c
index 5f0d579932c6..190299834011 100644
--- a/arch/x86/mm/pti.c
+++ b/arch/x86/mm/pti.c
@@ -185,7 +185,7 @@ static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address)
set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page)));
}
- BUILD_BUG_ON(pgd_leaf(*pgd) != 0);
+ BUILD_BUG_ON(pgd_leaf(*pgd));
return p4d_offset(pgd, address);
}
@@ -206,7 +206,7 @@ static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address)
if (!p4d)
return NULL;
- BUILD_BUG_ON(p4d_leaf(*p4d) != 0);
+ BUILD_BUG_ON(p4d_leaf(*p4d));
if (p4d_none(*p4d)) {
unsigned long new_pud_page = __get_free_page(gfp);
if (WARN_ON_ONCE(!new_pud_page))
diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
index e459d97ef397..39f80111e6f1 100644
--- a/arch/x86/mm/tlb.c
+++ b/arch/x86/mm/tlb.c
@@ -19,6 +19,7 @@
#include <asm/cache.h>
#include <asm/cacheflush.h>
#include <asm/apic.h>
+#include <asm/msr.h>
#include <asm/perf_event.h>
#include <asm/tlb.h>
@@ -215,16 +216,20 @@ static void clear_asid_other(void)
atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
+struct new_asid {
+ unsigned int asid : 16;
+ unsigned int need_flush : 1;
+};
-static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
- u16 *new_asid, bool *need_flush)
+static struct new_asid choose_new_asid(struct mm_struct *next, u64 next_tlb_gen)
{
+ struct new_asid ns;
u16 asid;
if (!static_cpu_has(X86_FEATURE_PCID)) {
- *new_asid = 0;
- *need_flush = true;
- return;
+ ns.asid = 0;
+ ns.need_flush = 1;
+ return ns;
}
/*
@@ -235,9 +240,9 @@ static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
u16 global_asid = mm_global_asid(next);
if (global_asid) {
- *new_asid = global_asid;
- *need_flush = false;
- return;
+ ns.asid = global_asid;
+ ns.need_flush = 0;
+ return ns;
}
}
@@ -249,22 +254,23 @@ static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
next->context.ctx_id)
continue;
- *new_asid = asid;
- *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
- next_tlb_gen);
- return;
+ ns.asid = asid;
+ ns.need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < next_tlb_gen);
+ return ns;
}
/*
* We don't currently own an ASID slot on this CPU.
* Allocate a slot.
*/
- *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
- if (*new_asid >= TLB_NR_DYN_ASIDS) {
- *new_asid = 0;
+ ns.asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
+ if (ns.asid >= TLB_NR_DYN_ASIDS) {
+ ns.asid = 0;
this_cpu_write(cpu_tlbstate.next_asid, 1);
}
- *need_flush = true;
+ ns.need_flush = true;
+
+ return ns;
}
/*
@@ -623,7 +629,7 @@ static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
{
/* Flush L1D if the outgoing task requests it */
if (prev_mm & LAST_USER_MM_L1D_FLUSH)
- wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
+ wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
/* Check whether the incoming task opted in for L1D flush */
if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
@@ -667,9 +673,9 @@ static void cond_mitigation(struct task_struct *next)
prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
/*
- * Avoid user/user BTB poisoning by flushing the branch predictor
- * when switching between processes. This stops one process from
- * doing Spectre-v2 attacks on another.
+ * Avoid user->user BTB/RSB poisoning by flushing them when switching
+ * between processes. This stops one process from doing Spectre-v2
+ * attacks on another.
*
* Both, the conditional and the always IBPB mode use the mm
* pointer to avoid the IBPB when switching between tasks of the
@@ -781,9 +787,9 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
unsigned cpu = smp_processor_id();
unsigned long new_lam;
+ struct new_asid ns;
u64 next_tlb_gen;
- bool need_flush;
- u16 new_asid;
+
/* We don't want flush_tlb_func() to run concurrently with us. */
if (IS_ENABLED(CONFIG_PROVE_LOCKING))
@@ -847,14 +853,15 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
* mm_cpumask. The TLB shootdown code can figure out from
* cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
*/
- if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ON_ONCE(prev != &init_mm &&
+ if (IS_ENABLED(CONFIG_DEBUG_VM) &&
+ WARN_ON_ONCE(prev != &init_mm && !is_notrack_mm(prev) &&
!cpumask_test_cpu(cpu, mm_cpumask(next))))
cpumask_set_cpu(cpu, mm_cpumask(next));
/* Check if the current mm is transitioning to a global ASID */
if (mm_needs_global_asid(next, prev_asid)) {
next_tlb_gen = atomic64_read(&next->context.tlb_gen);
- choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
+ ns = choose_new_asid(next, next_tlb_gen);
goto reload_tlb;
}
@@ -889,8 +896,8 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
* TLB contents went out of date while we were in lazy
* mode. Fall through to the TLB switching code below.
*/
- new_asid = prev_asid;
- need_flush = true;
+ ns.asid = prev_asid;
+ ns.need_flush = true;
} else {
/*
* Apply process to process speculation vulnerability
@@ -899,40 +906,33 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
cond_mitigation(tsk);
/*
- * Let nmi_uaccess_okay() and finish_asid_transition()
- * know that CR3 is changing.
+ * Indicate that CR3 is about to change. nmi_uaccess_okay()
+ * and others are sensitive to the window where mm_cpumask(),
+ * CR3 and cpu_tlbstate.loaded_mm are not all in sync.
*/
this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
barrier();
- /*
- * Leave this CPU in prev's mm_cpumask. Atomic writes to
- * mm_cpumask can be expensive under contention. The CPU
- * will be removed lazily at TLB flush time.
- */
- VM_WARN_ON_ONCE(prev != &init_mm && !cpumask_test_cpu(cpu,
- mm_cpumask(prev)));
-
/* Start receiving IPIs and then read tlb_gen (and LAM below) */
if (next != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next)))
cpumask_set_cpu(cpu, mm_cpumask(next));
next_tlb_gen = atomic64_read(&next->context.tlb_gen);
- choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
+ ns = choose_new_asid(next, next_tlb_gen);
}
reload_tlb:
new_lam = mm_lam_cr3_mask(next);
- if (need_flush) {
- VM_WARN_ON_ONCE(is_global_asid(new_asid));
- this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
- this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
- load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
+ if (ns.need_flush) {
+ VM_WARN_ON_ONCE(is_global_asid(ns.asid));
+ this_cpu_write(cpu_tlbstate.ctxs[ns.asid].ctx_id, next->context.ctx_id);
+ this_cpu_write(cpu_tlbstate.ctxs[ns.asid].tlb_gen, next_tlb_gen);
+ load_new_mm_cr3(next->pgd, ns.asid, new_lam, true);
trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
} else {
/* The new ASID is already up to date. */
- load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
+ load_new_mm_cr3(next->pgd, ns.asid, new_lam, false);
trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
}
@@ -941,7 +941,7 @@ reload_tlb:
barrier();
this_cpu_write(cpu_tlbstate.loaded_mm, next);
- this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
+ this_cpu_write(cpu_tlbstate.loaded_mm_asid, ns.asid);
cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
if (next != prev) {
@@ -972,6 +972,77 @@ void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
}
/*
+ * Using a temporary mm allows to set temporary mappings that are not accessible
+ * by other CPUs. Such mappings are needed to perform sensitive memory writes
+ * that override the kernel memory protections (e.g., W^X), without exposing the
+ * temporary page-table mappings that are required for these write operations to
+ * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
+ * mapping is torn down. Temporary mms can also be used for EFI runtime service
+ * calls or similar functionality.
+ *
+ * It is illegal to schedule while using a temporary mm -- the context switch
+ * code is unaware of the temporary mm and does not know how to context switch.
+ * Use a real (non-temporary) mm in a kernel thread if you need to sleep.
+ *
+ * Note: For sensitive memory writes, the temporary mm needs to be used
+ * exclusively by a single core, and IRQs should be disabled while the
+ * temporary mm is loaded, thereby preventing interrupt handler bugs from
+ * overriding the kernel memory protection.
+ */
+struct mm_struct *use_temporary_mm(struct mm_struct *temp_mm)
+{
+ struct mm_struct *prev_mm;
+
+ lockdep_assert_preemption_disabled();
+ guard(irqsave)();
+
+ /*
+ * Make sure not to be in TLB lazy mode, as otherwise we'll end up
+ * with a stale address space WITHOUT being in lazy mode after
+ * restoring the previous mm.
+ */
+ if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
+ leave_mm();
+
+ prev_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+ switch_mm_irqs_off(NULL, temp_mm, current);
+
+ /*
+ * If breakpoints are enabled, disable them while the temporary mm is
+ * used. Userspace might set up watchpoints on addresses that are used
+ * in the temporary mm, which would lead to wrong signals being sent or
+ * crashes.
+ *
+ * Note that breakpoints are not disabled selectively, which also causes
+ * kernel breakpoints (e.g., perf's) to be disabled. This might be
+ * undesirable, but still seems reasonable as the code that runs in the
+ * temporary mm should be short.
+ */
+ if (hw_breakpoint_active())
+ hw_breakpoint_disable();
+
+ return prev_mm;
+}
+
+void unuse_temporary_mm(struct mm_struct *prev_mm)
+{
+ lockdep_assert_preemption_disabled();
+ guard(irqsave)();
+
+ /* Clear the cpumask, to indicate no TLB flushing is needed anywhere */
+ cpumask_clear_cpu(smp_processor_id(), mm_cpumask(this_cpu_read(cpu_tlbstate.loaded_mm)));
+
+ switch_mm_irqs_off(NULL, prev_mm, current);
+
+ /*
+ * Restore the breakpoints if they were disabled before the temporary mm
+ * was loaded.
+ */
+ if (hw_breakpoint_active())
+ hw_breakpoint_restore();
+}
+
+/*
* Call this when reinitializing a CPU. It fixes the following potential
* problems:
*
@@ -1204,8 +1275,16 @@ done:
static bool should_flush_tlb(int cpu, void *data)
{
+ struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu);
struct flush_tlb_info *info = data;
+ /*
+ * Order the 'loaded_mm' and 'is_lazy' against their
+ * write ordering in switch_mm_irqs_off(). Ensure
+ * 'is_lazy' is at least as new as 'loaded_mm'.
+ */
+ smp_rmb();
+
/* Lazy TLB will get flushed at the next context switch. */
if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
return false;
@@ -1214,8 +1293,15 @@ static bool should_flush_tlb(int cpu, void *data)
if (!info->mm)
return true;
+ /*
+ * While switching, the remote CPU could have state from
+ * either the prev or next mm. Assume the worst and flush.
+ */
+ if (loaded_mm == LOADED_MM_SWITCHING)
+ return true;
+
/* The target mm is loaded, and the CPU is not lazy. */
- if (per_cpu(cpu_tlbstate.loaded_mm, cpu) == info->mm)
+ if (loaded_mm == info->mm)
return true;
/* In cpumask, but not the loaded mm? Periodically remove by flushing. */