summaryrefslogtreecommitdiff
path: root/arch/x86/kvm
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm')
-rw-r--r--arch/x86/kvm/mmu/mmu.c45
-rw-r--r--arch/x86/kvm/mmu/spte.h11
-rw-r--r--arch/x86/kvm/mmu/tdp_mmu.c2
3 files changed, 41 insertions, 17 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
index 9826c62f8e40..f36e3cdde25d 100644
--- a/arch/x86/kvm/mmu/mmu.c
+++ b/arch/x86/kvm/mmu/mmu.c
@@ -3056,19 +3056,20 @@ static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
/*
* #PF can be fast if:
- * 1. The shadow page table entry is not present, which could mean that
- * the fault is potentially caused by access tracking (if enabled).
- * 2. The shadow page table entry is present and the fault
- * is caused by write-protect, that means we just need change the W
- * bit of the spte which can be done out of mmu-lock.
*
- * However, if access tracking is disabled we know that a non-present
- * page must be a genuine page fault where we have to create a new SPTE.
- * So, if access tracking is disabled, we return true only for write
- * accesses to a present page.
+ * 1. The shadow page table entry is not present and A/D bits are
+ * disabled _by KVM_, which could mean that the fault is potentially
+ * caused by access tracking (if enabled). If A/D bits are enabled
+ * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
+ * bits for L2 and employ access tracking, but the fast page fault
+ * mechanism only supports direct MMUs.
+ * 2. The shadow page table entry is present, the access is a write,
+ * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
+ * the fault was caused by a write-protection violation. If the
+ * SPTE is MMU-writable (determined later), the fault can be fixed
+ * by setting the Writable bit, which can be done out of mmu_lock.
*/
-
- return shadow_acc_track_mask != 0 || (fault->write && fault->present);
+ return !kvm_ad_enabled() || (fault->write && fault->present);
}
/*
@@ -3183,13 +3184,25 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
new_spte = spte;
- if (is_access_track_spte(spte))
+ /*
+ * KVM only supports fixing page faults outside of MMU lock for
+ * direct MMUs, nested MMUs are always indirect, and KVM always
+ * uses A/D bits for non-nested MMUs. Thus, if A/D bits are
+ * enabled, the SPTE can't be an access-tracked SPTE.
+ */
+ if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
new_spte = restore_acc_track_spte(new_spte);
/*
- * Currently, to simplify the code, write-protection can
- * be removed in the fast path only if the SPTE was
- * write-protected for dirty-logging or access tracking.
+ * To keep things simple, only SPTEs that are MMU-writable can
+ * be made fully writable outside of mmu_lock, e.g. only SPTEs
+ * that were write-protected for dirty-logging or access
+ * tracking are handled here. Don't bother checking if the
+ * SPTE is writable to prioritize running with A/D bits enabled.
+ * The is_access_allowed() check above handles the common case
+ * of the fault being spurious, and the SPTE is known to be
+ * shadow-present, i.e. except for access tracking restoration
+ * making the new SPTE writable, the check is wasteful.
*/
if (fault->write && is_mmu_writable_spte(spte)) {
new_spte |= PT_WRITABLE_MASK;
@@ -4794,7 +4807,7 @@ kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
role.efer_nx = true;
role.smm = cpu_role.base.smm;
role.guest_mode = cpu_role.base.guest_mode;
- role.ad_disabled = (shadow_accessed_mask == 0);
+ role.ad_disabled = !kvm_ad_enabled();
role.level = kvm_mmu_get_tdp_level(vcpu);
role.direct = true;
role.has_4_byte_gpte = false;
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h
index 76f12b375b5a..43f7924bc7f0 100644
--- a/arch/x86/kvm/mmu/spte.h
+++ b/arch/x86/kvm/mmu/spte.h
@@ -214,6 +214,17 @@ static inline bool is_shadow_present_pte(u64 pte)
return !!(pte & SPTE_MMU_PRESENT_MASK);
}
+/*
+ * Returns true if A/D bits are supported in hardware and are enabled by KVM.
+ * When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can
+ * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the
+ * scenario where KVM is using A/D bits for L1, but not L2.
+ */
+static inline bool kvm_ad_enabled(void)
+{
+ return !!shadow_accessed_mask;
+}
+
static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
{
return sp->role.ad_disabled;
diff --git a/arch/x86/kvm/mmu/tdp_mmu.c b/arch/x86/kvm/mmu/tdp_mmu.c
index f84133856063..7fc4ead5ce0d 100644
--- a/arch/x86/kvm/mmu/tdp_mmu.c
+++ b/arch/x86/kvm/mmu/tdp_mmu.c
@@ -1136,7 +1136,7 @@ static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
struct kvm_mmu_page *sp, bool account_nx,
bool shared)
{
- u64 spte = make_nonleaf_spte(sp->spt, !shadow_accessed_mask);
+ u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled());
int ret = 0;
if (shared) {