diff options
Diffstat (limited to 'arch/s390/crypto/crc32be-vx.c')
-rw-r--r-- | arch/s390/crypto/crc32be-vx.c | 174 |
1 files changed, 0 insertions, 174 deletions
diff --git a/arch/s390/crypto/crc32be-vx.c b/arch/s390/crypto/crc32be-vx.c deleted file mode 100644 index fed7c9c70d05..000000000000 --- a/arch/s390/crypto/crc32be-vx.c +++ /dev/null @@ -1,174 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -/* - * Hardware-accelerated CRC-32 variants for Linux on z Systems - * - * Use the z/Architecture Vector Extension Facility to accelerate the - * computing of CRC-32 checksums. - * - * This CRC-32 implementation algorithm processes the most-significant - * bit first (BE). - * - * Copyright IBM Corp. 2015 - * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> - */ - -#include <linux/types.h> -#include <asm/fpu.h> -#include "crc32-vx.h" - -/* Vector register range containing CRC-32 constants */ -#define CONST_R1R2 9 -#define CONST_R3R4 10 -#define CONST_R5 11 -#define CONST_R6 12 -#define CONST_RU_POLY 13 -#define CONST_CRC_POLY 14 - -/* - * The CRC-32 constant block contains reduction constants to fold and - * process particular chunks of the input data stream in parallel. - * - * For the CRC-32 variants, the constants are precomputed according to - * these definitions: - * - * R1 = x4*128+64 mod P(x) - * R2 = x4*128 mod P(x) - * R3 = x128+64 mod P(x) - * R4 = x128 mod P(x) - * R5 = x96 mod P(x) - * R6 = x64 mod P(x) - * - * Barret reduction constant, u, is defined as floor(x**64 / P(x)). - * - * where P(x) is the polynomial in the normal domain and the P'(x) is the - * polynomial in the reversed (bitreflected) domain. - * - * Note that the constant definitions below are extended in order to compute - * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction. - * The rightmost doubleword can be 0 to prevent contribution to the result or - * can be multiplied by 1 to perform an XOR without the need for a separate - * VECTOR EXCLUSIVE OR instruction. - * - * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: - * - * P(x) = 0x04C11DB7 - * P'(x) = 0xEDB88320 - */ - -static unsigned long constants_CRC_32_BE[] = { - 0x08833794c, 0x0e6228b11, /* R1, R2 */ - 0x0c5b9cd4c, 0x0e8a45605, /* R3, R4 */ - 0x0f200aa66, 1UL << 32, /* R5, x32 */ - 0x0490d678d, 1, /* R6, 1 */ - 0x104d101df, 0, /* u */ - 0x104C11DB7, 0, /* P(x) */ -}; - -/** - * crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers - * @crc: Initial CRC value, typically ~0. - * @buf: Input buffer pointer, performance might be improved if the - * buffer is on a doubleword boundary. - * @size: Size of the buffer, must be 64 bytes or greater. - * - * Register usage: - * V0: Initial CRC value and intermediate constants and results. - * V1..V4: Data for CRC computation. - * V5..V8: Next data chunks that are fetched from the input buffer. - * V9..V14: CRC-32 constants. - */ -u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size) -{ - /* Load CRC-32 constants */ - fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE); - fpu_vzero(0); - - /* Load the initial CRC value into the leftmost word of V0. */ - fpu_vlvgf(0, crc, 0); - - /* Load a 64-byte data chunk and XOR with CRC */ - fpu_vlm(1, 4, buf); - fpu_vx(1, 0, 1); - buf += 64; - size -= 64; - - while (size >= 64) { - /* Load the next 64-byte data chunk into V5 to V8 */ - fpu_vlm(5, 8, buf); - - /* - * Perform a GF(2) multiplication of the doublewords in V1 with - * the reduction constants in V0. The intermediate result is - * then folded (accumulated) with the next data chunk in V5 and - * stored in V1. Repeat this step for the register contents - * in V2, V3, and V4 respectively. - */ - fpu_vgfmag(1, CONST_R1R2, 1, 5); - fpu_vgfmag(2, CONST_R1R2, 2, 6); - fpu_vgfmag(3, CONST_R1R2, 3, 7); - fpu_vgfmag(4, CONST_R1R2, 4, 8); - buf += 64; - size -= 64; - } - - /* Fold V1 to V4 into a single 128-bit value in V1 */ - fpu_vgfmag(1, CONST_R3R4, 1, 2); - fpu_vgfmag(1, CONST_R3R4, 1, 3); - fpu_vgfmag(1, CONST_R3R4, 1, 4); - - while (size >= 16) { - fpu_vl(2, buf); - fpu_vgfmag(1, CONST_R3R4, 1, 2); - buf += 16; - size -= 16; - } - - /* - * The R5 constant is used to fold a 128-bit value into an 96-bit value - * that is XORed with the next 96-bit input data chunk. To use a single - * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to - * form an intermediate 96-bit value (with appended zeros) which is then - * XORed with the intermediate reduction result. - */ - fpu_vgfmg(1, CONST_R5, 1); - - /* - * Further reduce the remaining 96-bit value to a 64-bit value using a - * single VGFMG, the rightmost doubleword is multiplied with 0x1. The - * intermediate result is then XORed with the product of the leftmost - * doubleword with R6. The result is a 64-bit value and is subject to - * the Barret reduction. - */ - fpu_vgfmg(1, CONST_R6, 1); - - /* - * The input values to the Barret reduction are the degree-63 polynomial - * in V1 (R(x)), degree-32 generator polynomial, and the reduction - * constant u. The Barret reduction result is the CRC value of R(x) mod - * P(x). - * - * The Barret reduction algorithm is defined as: - * - * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u - * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) - * 3. C(x) = R(x) XOR T2(x) mod x^32 - * - * Note: To compensate the division by x^32, use the vector unpack - * instruction to move the leftmost word into the leftmost doubleword - * of the vector register. The rightmost doubleword is multiplied - * with zero to not contribute to the intermediate results. - */ - - /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ - fpu_vupllf(2, 1); - fpu_vgfmg(2, CONST_RU_POLY, 2); - - /* - * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in - * V2 and XOR the intermediate result, T2(x), with the value in V1. - * The final result is in the rightmost word of V2. - */ - fpu_vupllf(2, 2); - fpu_vgfmag(2, CONST_CRC_POLY, 2, 1); - return fpu_vlgvf(2, 3); -} |