diff options
Diffstat (limited to 'arch/arm64/kvm/sys_regs.c')
-rw-r--r-- | arch/arm64/kvm/sys_regs.c | 1220 |
1 files changed, 730 insertions, 490 deletions
diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c index 634ff18a59a1..76c2f0da821f 100644 --- a/arch/arm64/kvm/sys_regs.c +++ b/arch/arm64/kvm/sys_regs.c @@ -17,6 +17,7 @@ #include <linux/mm.h> #include <linux/printk.h> #include <linux/uaccess.h> +#include <linux/irqchip/arm-gic-v3.h> #include <asm/arm_pmuv3.h> #include <asm/cacheflush.h> @@ -227,7 +228,7 @@ void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) * to reverse-translate virtual EL2 system registers for a * non-VHE guest hypervisor. */ - __vcpu_sys_reg(vcpu, reg) = val; + __vcpu_assign_sys_reg(vcpu, reg, val); switch (reg) { case CNTHCTL_EL2: @@ -262,7 +263,7 @@ void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) return; memory_write: - __vcpu_sys_reg(vcpu, reg) = val; + __vcpu_assign_sys_reg(vcpu, reg, val); } /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ @@ -531,7 +532,13 @@ static bool access_gic_sre(struct kvm_vcpu *vcpu, if (p->is_write) return ignore_write(vcpu, p); - p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; + if (p->Op1 == 4) { /* ICC_SRE_EL2 */ + p->regval = (ICC_SRE_EL2_ENABLE | ICC_SRE_EL2_SRE | + ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB); + } else { /* ICC_SRE_EL1 */ + p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; + } + return true; } @@ -570,17 +577,10 @@ static bool trap_oslar_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { - u64 oslsr; - if (!p->is_write) return read_from_write_only(vcpu, p, r); - /* Forward the OSLK bit to OSLSR */ - oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK; - if (p->regval & OSLAR_EL1_OSLK) - oslsr |= OSLSR_EL1_OSLK; - - __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; + kvm_debug_handle_oslar(vcpu, p->regval); return true; } @@ -605,7 +605,7 @@ static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, if ((val ^ rd->val) & ~OSLSR_EL1_OSLK) return -EINVAL; - __vcpu_sys_reg(vcpu, rd->reg) = val; + __vcpu_assign_sys_reg(vcpu, rd->reg, val); return 0; } @@ -621,43 +621,13 @@ static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, } } -/* - * We want to avoid world-switching all the DBG registers all the - * time: - * - * - If we've touched any debug register, it is likely that we're - * going to touch more of them. It then makes sense to disable the - * traps and start doing the save/restore dance - * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is - * then mandatory to save/restore the registers, as the guest - * depends on them. - * - * For this, we use a DIRTY bit, indicating the guest has modified the - * debug registers, used as follow: - * - * On guest entry: - * - If the dirty bit is set (because we're coming back from trapping), - * disable the traps, save host registers, restore guest registers. - * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), - * set the dirty bit, disable the traps, save host registers, - * restore guest registers. - * - Otherwise, enable the traps - * - * On guest exit: - * - If the dirty bit is set, save guest registers, restore host - * registers and clear the dirty bit. This ensure that the host can - * now use the debug registers. - */ static bool trap_debug_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { access_rw(vcpu, p, r); - if (p->is_write) - vcpu_set_flag(vcpu, DEBUG_DIRTY); - - trace_trap_reg(__func__, r->reg, p->is_write, p->regval); + kvm_debug_set_guest_ownership(vcpu); return true; } @@ -666,9 +636,6 @@ static bool trap_debug_regs(struct kvm_vcpu *vcpu, * * A 32 bit write to a debug register leave top bits alone * A 32 bit read from a debug register only returns the bottom bits - * - * All writes will set the DEBUG_DIRTY flag to ensure the hyp code - * switches between host and guest values in future. */ static void reg_to_dbg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, @@ -683,8 +650,6 @@ static void reg_to_dbg(struct kvm_vcpu *vcpu, val &= ~mask; val |= (p->regval & (mask >> shift)) << shift; *dbg_reg = val; - - vcpu_set_flag(vcpu, DEBUG_DIRTY); } static void dbg_to_reg(struct kvm_vcpu *vcpu, @@ -698,152 +663,79 @@ static void dbg_to_reg(struct kvm_vcpu *vcpu, p->regval = (*dbg_reg & mask) >> shift; } -static bool trap_bvr(struct kvm_vcpu *vcpu, - struct sys_reg_params *p, - const struct sys_reg_desc *rd) +static u64 *demux_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { - u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; + struct kvm_guest_debug_arch *dbg = &vcpu->arch.vcpu_debug_state; - if (p->is_write) - reg_to_dbg(vcpu, p, rd, dbg_reg); - else - dbg_to_reg(vcpu, p, rd, dbg_reg); - - trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); - - return true; -} - -static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, - u64 val) -{ - vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; - return 0; -} - -static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, - u64 *val) -{ - *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; - return 0; + switch (rd->Op2) { + case 0b100: + return &dbg->dbg_bvr[rd->CRm]; + case 0b101: + return &dbg->dbg_bcr[rd->CRm]; + case 0b110: + return &dbg->dbg_wvr[rd->CRm]; + case 0b111: + return &dbg->dbg_wcr[rd->CRm]; + default: + KVM_BUG_ON(1, vcpu->kvm); + return NULL; + } } -static u64 reset_bvr(struct kvm_vcpu *vcpu, - const struct sys_reg_desc *rd) +static bool trap_dbg_wb_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *rd) { - vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; - return rd->val; -} + u64 *reg = demux_wb_reg(vcpu, rd); -static bool trap_bcr(struct kvm_vcpu *vcpu, - struct sys_reg_params *p, - const struct sys_reg_desc *rd) -{ - u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; + if (!reg) + return false; if (p->is_write) - reg_to_dbg(vcpu, p, rd, dbg_reg); + reg_to_dbg(vcpu, p, rd, reg); else - dbg_to_reg(vcpu, p, rd, dbg_reg); - - trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); + dbg_to_reg(vcpu, p, rd, reg); + kvm_debug_set_guest_ownership(vcpu); return true; } -static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, - u64 val) +static int set_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) { - vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; - return 0; -} + u64 *reg = demux_wb_reg(vcpu, rd); -static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, - u64 *val) -{ - *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; - return 0; -} - -static u64 reset_bcr(struct kvm_vcpu *vcpu, - const struct sys_reg_desc *rd) -{ - vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; - return rd->val; -} - -static bool trap_wvr(struct kvm_vcpu *vcpu, - struct sys_reg_params *p, - const struct sys_reg_desc *rd) -{ - u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; - - if (p->is_write) - reg_to_dbg(vcpu, p, rd, dbg_reg); - else - dbg_to_reg(vcpu, p, rd, dbg_reg); - - trace_trap_reg(__func__, rd->CRm, p->is_write, - vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); - - return true; -} - -static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, - u64 val) -{ - vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; - return 0; -} + if (!reg) + return -EINVAL; -static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, - u64 *val) -{ - *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; + *reg = val; return 0; } -static u64 reset_wvr(struct kvm_vcpu *vcpu, - const struct sys_reg_desc *rd) -{ - vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; - return rd->val; -} - -static bool trap_wcr(struct kvm_vcpu *vcpu, - struct sys_reg_params *p, - const struct sys_reg_desc *rd) +static int get_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) { - u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; + u64 *reg = demux_wb_reg(vcpu, rd); - if (p->is_write) - reg_to_dbg(vcpu, p, rd, dbg_reg); - else - dbg_to_reg(vcpu, p, rd, dbg_reg); - - trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); - - return true; -} + if (!reg) + return -EINVAL; -static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, - u64 val) -{ - vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; + *val = *reg; return 0; } -static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, - u64 *val) +static u64 reset_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { - *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; - return 0; -} + u64 *reg = demux_wb_reg(vcpu, rd); -static u64 reset_wcr(struct kvm_vcpu *vcpu, - const struct sys_reg_desc *rd) -{ - vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; + /* + * Bail early if we couldn't find storage for the register, the + * KVM_BUG_ON() in demux_wb_reg() will prevent this VM from ever + * being run. + */ + if (!reg) + return 0; + + *reg = rd->val; return rd->val; } @@ -893,13 +785,13 @@ static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { u64 mask = BIT(ARMV8_PMU_CYCLE_IDX); - u8 n = vcpu->kvm->arch.pmcr_n; + u8 n = vcpu->kvm->arch.nr_pmu_counters; if (n) mask |= GENMASK(n - 1, 0); reset_unknown(vcpu, r); - __vcpu_sys_reg(vcpu, r->reg) &= mask; + __vcpu_rmw_sys_reg(vcpu, r->reg, &=, mask); return __vcpu_sys_reg(vcpu, r->reg); } @@ -907,7 +799,7 @@ static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { reset_unknown(vcpu, r); - __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); + __vcpu_rmw_sys_reg(vcpu, r->reg, &=, GENMASK(31, 0)); return __vcpu_sys_reg(vcpu, r->reg); } @@ -919,7 +811,7 @@ static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) return 0; reset_unknown(vcpu, r); - __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm); + __vcpu_rmw_sys_reg(vcpu, r->reg, &=, kvm_pmu_evtyper_mask(vcpu->kvm)); return __vcpu_sys_reg(vcpu, r->reg); } @@ -927,7 +819,7 @@ static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { reset_unknown(vcpu, r); - __vcpu_sys_reg(vcpu, r->reg) &= PMSELR_EL0_SEL_MASK; + __vcpu_rmw_sys_reg(vcpu, r->reg, &=, PMSELR_EL0_SEL_MASK); return __vcpu_sys_reg(vcpu, r->reg); } @@ -943,7 +835,7 @@ static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) * The value of PMCR.N field is included when the * vCPU register is read via kvm_vcpu_read_pmcr(). */ - __vcpu_sys_reg(vcpu, r->reg) = pmcr; + __vcpu_assign_sys_reg(vcpu, r->reg, pmcr); return __vcpu_sys_reg(vcpu, r->reg); } @@ -1015,7 +907,7 @@ static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, return false; if (p->is_write) - __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; + __vcpu_assign_sys_reg(vcpu, PMSELR_EL0, p->regval); else /* return PMSELR.SEL field */ p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) @@ -1075,6 +967,22 @@ static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, return 0; } +static int set_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) +{ + u64 idx; + + if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) + /* PMCCNTR_EL0 */ + idx = ARMV8_PMU_CYCLE_IDX; + else + /* PMEVCNTRn_EL0 */ + idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); + + kvm_pmu_set_counter_value_user(vcpu, idx, val); + return 0; +} + static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) @@ -1166,25 +1074,10 @@ static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val) { - bool set; - - val &= kvm_pmu_accessible_counter_mask(vcpu); - - switch (r->reg) { - case PMOVSSET_EL0: - /* CRm[1] being set indicates a SET register, and CLR otherwise */ - set = r->CRm & 2; - break; - default: - /* Op2[0] being set indicates a SET register, and CLR otherwise */ - set = r->Op2 & 1; - break; - } + u64 mask = kvm_pmu_accessible_counter_mask(vcpu); - if (set) - __vcpu_sys_reg(vcpu, r->reg) |= val; - else - __vcpu_sys_reg(vcpu, r->reg) &= ~val; + __vcpu_assign_sys_reg(vcpu, r->reg, val & mask); + kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); return 0; } @@ -1210,10 +1103,10 @@ static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, val = p->regval & mask; if (r->Op2 & 0x1) /* accessing PMCNTENSET_EL0 */ - __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; + __vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, |=, val); else /* accessing PMCNTENCLR_EL0 */ - __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; + __vcpu_rmw_sys_reg(vcpu, PMCNTENSET_EL0, &=, ~val); kvm_pmu_reprogram_counter_mask(vcpu, val); } else { @@ -1236,10 +1129,10 @@ static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, if (r->Op2 & 0x1) /* accessing PMINTENSET_EL1 */ - __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; + __vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, |=, val); else /* accessing PMINTENCLR_EL1 */ - __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; + __vcpu_rmw_sys_reg(vcpu, PMINTENSET_EL1, &=, ~val); } else { p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); } @@ -1258,10 +1151,10 @@ static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, if (p->is_write) { if (r->CRm & 0x2) /* accessing PMOVSSET_EL0 */ - __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); + __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, |=, (p->regval & mask)); else /* accessing PMOVSCLR_EL0 */ - __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); + __vcpu_rmw_sys_reg(vcpu, PMOVSSET_EL0, &=, ~(p->regval & mask)); } else { p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); } @@ -1292,8 +1185,8 @@ static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, if (!vcpu_mode_priv(vcpu)) return undef_access(vcpu, p, r); - __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = - p->regval & ARMV8_PMU_USERENR_MASK; + __vcpu_assign_sys_reg(vcpu, PMUSERENR_EL0, + (p->regval & ARMV8_PMU_USERENR_MASK)); } else { p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) & ARMV8_PMU_USERENR_MASK; @@ -1323,8 +1216,9 @@ static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, * with the existing KVM behavior. */ if (!kvm_vm_has_ran_once(kvm) && + !vcpu_has_nv(vcpu) && new_n <= kvm_arm_pmu_get_max_counters(kvm)) - kvm->arch.pmcr_n = new_n; + kvm->arch.nr_pmu_counters = new_n; mutex_unlock(&kvm->arch.config_lock); @@ -1343,20 +1237,26 @@ static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, if (!kvm_supports_32bit_el0()) val |= ARMV8_PMU_PMCR_LC; - __vcpu_sys_reg(vcpu, r->reg) = val; + __vcpu_assign_sys_reg(vcpu, r->reg, val); + kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); + return 0; } /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ - trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ + trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \ + get_dbg_wb_reg, set_dbg_wb_reg }, \ { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ - trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ + trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \ + get_dbg_wb_reg, set_dbg_wb_reg }, \ { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ - trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ + trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \ + get_dbg_wb_reg, set_dbg_wb_reg }, \ { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ - trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } + trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0, \ + get_dbg_wb_reg, set_dbg_wb_reg } #define PMU_SYS_REG(name) \ SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \ @@ -1366,6 +1266,7 @@ static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, #define PMU_PMEVCNTR_EL0(n) \ { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \ .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \ + .set_user = set_pmu_evcntr, \ .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } /* Macro to expand the PMEVTYPERn_EL0 register */ @@ -1410,26 +1311,146 @@ static bool access_arch_timer(struct kvm_vcpu *vcpu, switch (reg) { case SYS_CNTP_TVAL_EL0: + if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) + tmr = TIMER_HPTIMER; + else + tmr = TIMER_PTIMER; + treg = TIMER_REG_TVAL; + break; + + case SYS_CNTV_TVAL_EL0: + if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) + tmr = TIMER_HVTIMER; + else + tmr = TIMER_VTIMER; + treg = TIMER_REG_TVAL; + break; + case SYS_AARCH32_CNTP_TVAL: + case SYS_CNTP_TVAL_EL02: tmr = TIMER_PTIMER; treg = TIMER_REG_TVAL; break; + + case SYS_CNTV_TVAL_EL02: + tmr = TIMER_VTIMER; + treg = TIMER_REG_TVAL; + break; + + case SYS_CNTHP_TVAL_EL2: + tmr = TIMER_HPTIMER; + treg = TIMER_REG_TVAL; + break; + + case SYS_CNTHV_TVAL_EL2: + tmr = TIMER_HVTIMER; + treg = TIMER_REG_TVAL; + break; + case SYS_CNTP_CTL_EL0: + if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) + tmr = TIMER_HPTIMER; + else + tmr = TIMER_PTIMER; + treg = TIMER_REG_CTL; + break; + + case SYS_CNTV_CTL_EL0: + if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) + tmr = TIMER_HVTIMER; + else + tmr = TIMER_VTIMER; + treg = TIMER_REG_CTL; + break; + case SYS_AARCH32_CNTP_CTL: + case SYS_CNTP_CTL_EL02: tmr = TIMER_PTIMER; treg = TIMER_REG_CTL; break; + + case SYS_CNTV_CTL_EL02: + tmr = TIMER_VTIMER; + treg = TIMER_REG_CTL; + break; + + case SYS_CNTHP_CTL_EL2: + tmr = TIMER_HPTIMER; + treg = TIMER_REG_CTL; + break; + + case SYS_CNTHV_CTL_EL2: + tmr = TIMER_HVTIMER; + treg = TIMER_REG_CTL; + break; + case SYS_CNTP_CVAL_EL0: + if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) + tmr = TIMER_HPTIMER; + else + tmr = TIMER_PTIMER; + treg = TIMER_REG_CVAL; + break; + + case SYS_CNTV_CVAL_EL0: + if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu)) + tmr = TIMER_HVTIMER; + else + tmr = TIMER_VTIMER; + treg = TIMER_REG_CVAL; + break; + case SYS_AARCH32_CNTP_CVAL: + case SYS_CNTP_CVAL_EL02: tmr = TIMER_PTIMER; treg = TIMER_REG_CVAL; break; + + case SYS_CNTV_CVAL_EL02: + tmr = TIMER_VTIMER; + treg = TIMER_REG_CVAL; + break; + + case SYS_CNTHP_CVAL_EL2: + tmr = TIMER_HPTIMER; + treg = TIMER_REG_CVAL; + break; + + case SYS_CNTHV_CVAL_EL2: + tmr = TIMER_HVTIMER; + treg = TIMER_REG_CVAL; + break; + case SYS_CNTPCT_EL0: case SYS_CNTPCTSS_EL0: + if (is_hyp_ctxt(vcpu)) + tmr = TIMER_HPTIMER; + else + tmr = TIMER_PTIMER; + treg = TIMER_REG_CNT; + break; + case SYS_AARCH32_CNTPCT: + case SYS_AARCH32_CNTPCTSS: tmr = TIMER_PTIMER; treg = TIMER_REG_CNT; break; + + case SYS_CNTVCT_EL0: + case SYS_CNTVCTSS_EL0: + if (is_hyp_ctxt(vcpu)) + tmr = TIMER_HVTIMER; + else + tmr = TIMER_VTIMER; + treg = TIMER_REG_CNT; + break; + + case SYS_AARCH32_CNTVCT: + case SYS_AARCH32_CNTVCTSS: + tmr = TIMER_VTIMER; + treg = TIMER_REG_CNT; + break; + default: print_sys_reg_msg(p, "%s", "Unhandled trapped timer register"); return undef_access(vcpu, p, r); @@ -1443,6 +1464,16 @@ static bool access_arch_timer(struct kvm_vcpu *vcpu, return true; } +static bool access_hv_timer(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (!vcpu_el2_e2h_is_set(vcpu)) + return undef_access(vcpu, p, r); + + return access_arch_timer(vcpu, p, r); +} + static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp, s64 new, s64 cur) { @@ -1570,13 +1601,14 @@ static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, val = sanitise_id_aa64pfr0_el1(vcpu, val); break; case SYS_ID_AA64PFR1_EL1: - if (!kvm_has_mte(vcpu->kvm)) + if (!kvm_has_mte(vcpu->kvm)) { val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); + val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac); + } val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI); - val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE); val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX); @@ -1599,11 +1631,16 @@ static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, if (!vcpu_has_ptrauth(vcpu)) val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); - if (!cpus_have_final_cap(ARM64_HAS_WFXT)) + if (!cpus_have_final_cap(ARM64_HAS_WFXT) || + has_broken_cntvoff()) val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); break; + case SYS_ID_AA64ISAR3_EL1: + val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_FAMINMAX; + break; case SYS_ID_AA64MMFR2_EL1: val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK; + val &= ~ID_AA64MMFR2_EL1_NV; break; case SYS_ID_AA64MMFR3_EL1: val &= ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1POE | @@ -1614,6 +1651,9 @@ static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, break; } + if (vcpu_has_nv(vcpu)) + val = limit_nv_id_reg(vcpu->kvm, id, val); + return val; } @@ -1640,15 +1680,24 @@ static bool is_feature_id_reg(u32 encoding) * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID * registers KVM maintains on a per-VM basis. + * + * Additionally, the implementation ID registers and CTR_EL0 are handled as + * per-VM registers. */ static inline bool is_vm_ftr_id_reg(u32 id) { - if (id == SYS_CTR_EL0) + switch (id) { + case SYS_CTR_EL0: + case SYS_MIDR_EL1: + case SYS_REVIDR_EL1: + case SYS_AIDR_EL1: return true; + default: + return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && + sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && + sys_reg_CRm(id) < 8); - return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && - sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && - sys_reg_CRm(id) < 8); + } } static inline bool is_vcpu_ftr_id_reg(u32 id) @@ -1779,16 +1828,6 @@ static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val) return val; } -#define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit) \ -({ \ - u64 __f_val = FIELD_GET(reg##_##field##_MASK, val); \ - (val) &= ~reg##_##field##_MASK; \ - (val) |= FIELD_PREP(reg##_##field##_MASK, \ - min(__f_val, \ - (u64)SYS_FIELD_VALUE(reg, field, limit))); \ - (val); \ -}) - static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val) { val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8); @@ -1804,6 +1843,9 @@ static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val) /* Hide SPE from guests */ val &= ~ID_AA64DFR0_EL1_PMSVer_MASK; + /* Hide BRBE from guests */ + val &= ~ID_AA64DFR0_EL1_BRBE_MASK; + return val; } @@ -1844,12 +1886,14 @@ static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd) { - u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); + u8 perfmon; u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1); val &= ~ID_DFR0_EL1_PerfMon_MASK; - if (kvm_vcpu_has_pmu(vcpu)) + if (kvm_vcpu_has_pmu(vcpu)) { + perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon); + } val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8); @@ -1903,6 +1947,12 @@ static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, if ((hw_val & mpam_mask) == (user_val & mpam_mask)) user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK; + /* Fail the guest's request to disable the AA64 ISA at EL{0,1,2} */ + if (!FIELD_GET(ID_AA64PFR0_EL1_EL0, user_val) || + !FIELD_GET(ID_AA64PFR0_EL1_EL1, user_val) || + (vcpu_has_nv(vcpu) && !FIELD_GET(ID_AA64PFR0_EL1_EL2, user_val))) + return -EINVAL; + return set_id_reg(vcpu, rd, user_val); } @@ -1911,11 +1961,65 @@ static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu, { u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1); u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK; + u8 mte = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE, hw_val); + u8 user_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, user_val); + u8 hw_mte_frac = SYS_FIELD_GET(ID_AA64PFR1_EL1, MTE_frac, hw_val); /* See set_id_aa64pfr0_el1 for comment about MPAM */ if ((hw_val & mpam_mask) == (user_val & mpam_mask)) user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK; + /* + * Previously MTE_frac was hidden from guest. However, if the + * hardware supports MTE2 but not MTE_ASYM_FAULT then a value + * of 0 for this field indicates that the hardware supports + * MTE_ASYNC. Whereas, 0xf indicates MTE_ASYNC is not supported. + * + * As KVM must accept values from KVM provided by user-space, + * when ID_AA64PFR1_EL1.MTE is 2 allow user-space to set + * ID_AA64PFR1_EL1.MTE_frac to 0. However, ignore it to avoid + * incorrectly claiming hardware support for MTE_ASYNC in the + * guest. + */ + + if (mte == ID_AA64PFR1_EL1_MTE_MTE2 && + hw_mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI && + user_mte_frac == ID_AA64PFR1_EL1_MTE_frac_ASYNC) { + user_val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK; + user_val |= hw_val & ID_AA64PFR1_EL1_MTE_frac_MASK; + } + + return set_id_reg(vcpu, rd, user_val); +} + +static int set_id_aa64mmfr0_el1(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd, u64 user_val) +{ + u64 sanitized_val = kvm_read_sanitised_id_reg(vcpu, rd); + u64 tgran2_mask = ID_AA64MMFR0_EL1_TGRAN4_2_MASK | + ID_AA64MMFR0_EL1_TGRAN16_2_MASK | + ID_AA64MMFR0_EL1_TGRAN64_2_MASK; + + if (vcpu_has_nv(vcpu) && + ((sanitized_val & tgran2_mask) != (user_val & tgran2_mask))) + return -EINVAL; + + return set_id_reg(vcpu, rd, user_val); +} + +static int set_id_aa64mmfr2_el1(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd, u64 user_val) +{ + u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1); + u64 nv_mask = ID_AA64MMFR2_EL1_NV_MASK; + + /* + * We made the mistake to expose the now deprecated NV field, + * so allow userspace to write it, but silently ignore it. + */ + if ((hw_val & nv_mask) == (user_val & nv_mask)) + user_val &= ~nv_mask; + return set_id_reg(vcpu, rd, user_val); } @@ -2109,7 +2213,7 @@ static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) if (kvm_has_mte(vcpu->kvm)) clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc); - __vcpu_sys_reg(vcpu, r->reg) = clidr; + __vcpu_assign_sys_reg(vcpu, r->reg, clidr); return __vcpu_sys_reg(vcpu, r->reg); } @@ -2123,7 +2227,7 @@ static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc)) return -EINVAL; - __vcpu_sys_reg(vcpu, rd->reg) = val; + __vcpu_assign_sys_reg(vcpu, rd->reg, val); return 0; } @@ -2208,15 +2312,6 @@ static bool bad_redir_trap(struct kvm_vcpu *vcpu, "trap of EL2 register redirected to EL1"); } -#define EL2_REG(name, acc, rst, v) { \ - SYS_DESC(SYS_##name), \ - .access = acc, \ - .reset = rst, \ - .reg = name, \ - .visibility = el2_visibility, \ - .val = v, \ -} - #define EL2_REG_FILTERED(name, acc, rst, v, filter) { \ SYS_DESC(SYS_##name), \ .access = acc, \ @@ -2226,6 +2321,9 @@ static bool bad_redir_trap(struct kvm_vcpu *vcpu, .val = v, \ } +#define EL2_REG(name, acc, rst, v) \ + EL2_REG_FILTERED(name, acc, rst, v, el2_visibility) + #define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v) #define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v) @@ -2240,35 +2338,33 @@ static bool bad_redir_trap(struct kvm_vcpu *vcpu, * from userspace. */ +#define ID_DESC_DEFAULT_CALLBACKS \ + .access = access_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_id_reg, \ + .visibility = id_visibility, \ + .reset = kvm_read_sanitised_id_reg + #define ID_DESC(name) \ SYS_DESC(SYS_##name), \ - .access = access_id_reg, \ - .get_user = get_id_reg \ + ID_DESC_DEFAULT_CALLBACKS /* sys_reg_desc initialiser for known cpufeature ID registers */ #define ID_SANITISED(name) { \ ID_DESC(name), \ - .set_user = set_id_reg, \ - .visibility = id_visibility, \ - .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } /* sys_reg_desc initialiser for known cpufeature ID registers */ #define AA32_ID_SANITISED(name) { \ ID_DESC(name), \ - .set_user = set_id_reg, \ .visibility = aa32_id_visibility, \ - .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } /* sys_reg_desc initialiser for writable ID registers */ #define ID_WRITABLE(name, mask) { \ ID_DESC(name), \ - .set_user = set_id_reg, \ - .visibility = id_visibility, \ - .reset = kvm_read_sanitised_id_reg, \ .val = mask, \ } @@ -2276,8 +2372,6 @@ static bool bad_redir_trap(struct kvm_vcpu *vcpu, #define ID_FILTERED(sysreg, name, mask) { \ ID_DESC(sysreg), \ .set_user = set_##name, \ - .visibility = id_visibility, \ - .reset = kvm_read_sanitised_id_reg, \ .val = (mask), \ } @@ -2287,12 +2381,10 @@ static bool bad_redir_trap(struct kvm_vcpu *vcpu, * (1 <= crm < 8, 0 <= Op2 < 8). */ #define ID_UNALLOCATED(crm, op2) { \ + .name = "S3_0_0_" #crm "_" #op2, \ Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ - .access = access_id_reg, \ - .get_user = get_id_reg, \ - .set_user = set_id_reg, \ + ID_DESC_DEFAULT_CALLBACKS, \ .visibility = raz_visibility, \ - .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } @@ -2303,9 +2395,7 @@ static bool bad_redir_trap(struct kvm_vcpu *vcpu, */ #define ID_HIDDEN(name) { \ ID_DESC(name), \ - .set_user = set_id_reg, \ .visibility = raz_visibility, \ - .reset = kvm_read_sanitised_id_reg, \ .val = 0, \ } @@ -2314,7 +2404,7 @@ static bool access_sp_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { if (p->is_write) - __vcpu_sys_reg(vcpu, SP_EL1) = p->regval; + __vcpu_assign_sys_reg(vcpu, SP_EL1, p->regval); else p->regval = __vcpu_sys_reg(vcpu, SP_EL1); @@ -2338,7 +2428,7 @@ static bool access_spsr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { if (p->is_write) - __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval; + __vcpu_assign_sys_reg(vcpu, SPSR_EL1, p->regval); else p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1); @@ -2350,7 +2440,7 @@ static bool access_cntkctl_el12(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) { if (p->is_write) - __vcpu_sys_reg(vcpu, CNTKCTL_EL1) = p->regval; + __vcpu_assign_sys_reg(vcpu, CNTKCTL_EL1, p->regval); else p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1); @@ -2364,7 +2454,9 @@ static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) val |= HCR_E2H; - return __vcpu_sys_reg(vcpu, r->reg) = val; + __vcpu_assign_sys_reg(vcpu, r->reg, val); + + return __vcpu_sys_reg(vcpu, r->reg); } static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu, @@ -2381,6 +2473,16 @@ static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu, return __el2_visibility(vcpu, rd, sve_visibility); } +static unsigned int vncr_el2_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + if (el2_visibility(vcpu, rd) == 0 && + kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)) + return 0; + + return REG_HIDDEN; +} + static bool access_zcr_el2(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) @@ -2400,6 +2502,59 @@ static bool access_zcr_el2(struct kvm_vcpu *vcpu, vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1; vq = min(vq, vcpu_sve_max_vq(vcpu)); vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2); + + return true; +} + +static bool access_gic_vtr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = kvm_vgic_global_state.ich_vtr_el2; + p->regval &= ~(ICH_VTR_EL2_DVIM | + ICH_VTR_EL2_A3V | + ICH_VTR_EL2_IDbits); + p->regval |= ICH_VTR_EL2_nV4; + + return true; +} + +static bool access_gic_misr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = vgic_v3_get_misr(vcpu); + + return true; +} + +static bool access_gic_eisr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = vgic_v3_get_eisr(vcpu); + + return true; +} + +static bool access_gic_elrsr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = vgic_v3_get_elrsr(vcpu); + return true; } @@ -2452,21 +2607,158 @@ static bool access_mdcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { - u64 old = __vcpu_sys_reg(vcpu, MDCR_EL2); + u64 hpmn, val, old = __vcpu_sys_reg(vcpu, MDCR_EL2); - if (!access_rw(vcpu, p, r)) - return false; + if (!p->is_write) { + p->regval = old; + return true; + } + + val = p->regval; + hpmn = FIELD_GET(MDCR_EL2_HPMN, val); /* - * Request a reload of the PMU to enable/disable the counters affected - * by HPME. + * If HPMN is out of bounds, limit it to what we actually + * support. This matches the UNKNOWN definition of the field + * in that case, and keeps the emulation simple. Sort of. */ - if ((old ^ __vcpu_sys_reg(vcpu, MDCR_EL2)) & MDCR_EL2_HPME) + if (hpmn > vcpu->kvm->arch.nr_pmu_counters) { + hpmn = vcpu->kvm->arch.nr_pmu_counters; + u64_replace_bits(val, hpmn, MDCR_EL2_HPMN); + } + + __vcpu_assign_sys_reg(vcpu, MDCR_EL2, val); + + /* + * Request a reload of the PMU to enable/disable the counters + * affected by HPME. + */ + if ((old ^ val) & MDCR_EL2_HPME) kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); return true; } +/* + * For historical (ahem ABI) reasons, KVM treated MIDR_EL1, REVIDR_EL1, and + * AIDR_EL1 as "invariant" registers, meaning userspace cannot change them. + * The values made visible to userspace were the register values of the boot + * CPU. + * + * At the same time, reads from these registers at EL1 previously were not + * trapped, allowing the guest to read the actual hardware value. On big-little + * machines, this means the VM can see different values depending on where a + * given vCPU got scheduled. + * + * These registers are now trapped as collateral damage from SME, and what + * follows attempts to give a user / guest view consistent with the existing + * ABI. + */ +static bool access_imp_id_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + /* + * Return the VM-scoped implementation ID register values if userspace + * has made them writable. + */ + if (test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &vcpu->kvm->arch.flags)) + return access_id_reg(vcpu, p, r); + + /* + * Otherwise, fall back to the old behavior of returning the value of + * the current CPU. + */ + switch (reg_to_encoding(r)) { + case SYS_REVIDR_EL1: + p->regval = read_sysreg(revidr_el1); + break; + case SYS_AIDR_EL1: + p->regval = read_sysreg(aidr_el1); + break; + default: + WARN_ON_ONCE(1); + } + + return true; +} + +static u64 __ro_after_init boot_cpu_midr_val; +static u64 __ro_after_init boot_cpu_revidr_val; +static u64 __ro_after_init boot_cpu_aidr_val; + +static void init_imp_id_regs(void) +{ + boot_cpu_midr_val = read_sysreg(midr_el1); + boot_cpu_revidr_val = read_sysreg(revidr_el1); + boot_cpu_aidr_val = read_sysreg(aidr_el1); +} + +static u64 reset_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + switch (reg_to_encoding(r)) { + case SYS_MIDR_EL1: + return boot_cpu_midr_val; + case SYS_REVIDR_EL1: + return boot_cpu_revidr_val; + case SYS_AIDR_EL1: + return boot_cpu_aidr_val; + default: + KVM_BUG_ON(1, vcpu->kvm); + return 0; + } +} + +static int set_imp_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 val) +{ + struct kvm *kvm = vcpu->kvm; + u64 expected; + + guard(mutex)(&kvm->arch.config_lock); + + expected = read_id_reg(vcpu, r); + if (expected == val) + return 0; + + if (!test_bit(KVM_ARCH_FLAG_WRITABLE_IMP_ID_REGS, &kvm->arch.flags)) + return -EINVAL; + + /* + * Once the VM has started the ID registers are immutable. Reject the + * write if userspace tries to change it. + */ + if (kvm_vm_has_ran_once(kvm)) + return -EBUSY; + + /* + * Any value is allowed for the implementation ID registers so long as + * it is within the writable mask. + */ + if ((val & r->val) != val) + return -EINVAL; + + kvm_set_vm_id_reg(kvm, reg_to_encoding(r), val); + return 0; +} + +#define IMPLEMENTATION_ID(reg, mask) { \ + SYS_DESC(SYS_##reg), \ + .access = access_imp_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_imp_id_reg, \ + .reset = reset_imp_id_reg, \ + .val = mask, \ + } + +static u64 reset_mdcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + __vcpu_assign_sys_reg(vcpu, r->reg, vcpu->kvm->arch.nr_pmu_counters); + return vcpu->kvm->arch.nr_pmu_counters; +} /* * Architected system registers. @@ -2516,7 +2808,9 @@ static const struct sys_reg_desc sys_reg_descs[] = { { SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 }, + IMPLEMENTATION_ID(MIDR_EL1, GENMASK_ULL(31, 0)), { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, + IMPLEMENTATION_ID(REVIDR_EL1, GENMASK_ULL(63, 0)), /* * ID regs: all ID_SANITISED() entries here must have corresponding @@ -2626,17 +2920,16 @@ static const struct sys_reg_desc sys_reg_descs[] = { ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 | ID_AA64ISAR2_EL1_APA3 | ID_AA64ISAR2_EL1_GPA3)), - ID_UNALLOCATED(6,3), + ID_WRITABLE(ID_AA64ISAR3_EL1, (ID_AA64ISAR3_EL1_FPRCVT | + ID_AA64ISAR3_EL1_FAMINMAX)), ID_UNALLOCATED(6,4), ID_UNALLOCATED(6,5), ID_UNALLOCATED(6,6), ID_UNALLOCATED(6,7), /* CRm=7 */ - ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 | - ID_AA64MMFR0_EL1_TGRAN4_2 | - ID_AA64MMFR0_EL1_TGRAN64_2 | - ID_AA64MMFR0_EL1_TGRAN16_2 | + ID_FILTERED(ID_AA64MMFR0_EL1, id_aa64mmfr0_el1, + ~(ID_AA64MMFR0_EL1_RES0 | ID_AA64MMFR0_EL1_ASIDBITS)), ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 | ID_AA64MMFR1_EL1_HCX | @@ -2644,7 +2937,8 @@ static const struct sys_reg_desc sys_reg_descs[] = { ID_AA64MMFR1_EL1_XNX | ID_AA64MMFR1_EL1_VH | ID_AA64MMFR1_EL1_VMIDBits)), - ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 | + ID_FILTERED(ID_AA64MMFR2_EL1, + id_aa64mmfr2_el1, ~(ID_AA64MMFR2_EL1_RES0 | ID_AA64MMFR2_EL1_EVT | ID_AA64MMFR2_EL1_FWB | ID_AA64MMFR2_EL1_IDS | @@ -2653,7 +2947,7 @@ static const struct sys_reg_desc sys_reg_descs[] = { ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1PIE | ID_AA64MMFR3_EL1_S1POE)), - ID_SANITISED(ID_AA64MMFR4_EL1), + ID_WRITABLE(ID_AA64MMFR4_EL1, ID_AA64MMFR4_EL1_NV_frac), ID_UNALLOCATED(7,5), ID_UNALLOCATED(7,6), ID_UNALLOCATED(7,7), @@ -2787,6 +3081,7 @@ static const struct sys_reg_desc sys_reg_descs[] = { .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 }, { SYS_DESC(SYS_CCSIDR2_EL1), undef_access }, { SYS_DESC(SYS_SMIDR_EL1), undef_access }, + IMPLEMENTATION_ID(AIDR_EL1, GENMASK_ULL(63, 0)), { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, ID_FILTERED(CTR_EL0, ctr_el0, CTR_EL0_DIC_MASK | @@ -2823,7 +3118,8 @@ static const struct sys_reg_desc sys_reg_descs[] = { .access = access_pmceid, .reset = NULL }, { PMU_SYS_REG(PMCCNTR_EL0), .access = access_pmu_evcntr, .reset = reset_unknown, - .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr}, + .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr, + .set_user = set_pmu_evcntr }, { PMU_SYS_REG(PMXEVTYPER_EL0), .access = access_pmu_evtyper, .reset = NULL }, { PMU_SYS_REG(PMXEVCNTR_EL0), @@ -2920,11 +3216,17 @@ static const struct sys_reg_desc sys_reg_descs[] = { AMU_AMEVTYPER1_EL0(15), { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTVCT_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTVCTSS_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTV_TVAL_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTV_CTL_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTV_CVAL_EL0), access_arch_timer }, + /* PMEVCNTRn_EL0 */ PMU_PMEVCNTR_EL0(0), PMU_PMEVCNTR_EL0(1), @@ -3001,7 +3303,7 @@ static const struct sys_reg_desc sys_reg_descs[] = { EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1), EL2_REG(ACTLR_EL2, access_rw, reset_val, 0), EL2_REG_VNCR(HCR_EL2, reset_hcr, 0), - EL2_REG(MDCR_EL2, access_mdcr, reset_val, 0), + EL2_REG(MDCR_EL2, access_mdcr, reset_mdcr, 0), EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1), EL2_REG_VNCR(HSTR_EL2, reset_val, 0), EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0), @@ -3021,6 +3323,8 @@ static const struct sys_reg_desc sys_reg_descs[] = { tcr2_el2_visibility), EL2_REG_VNCR(VTTBR_EL2, reset_val, 0), EL2_REG_VNCR(VTCR_EL2, reset_val, 0), + EL2_REG_FILTERED(VNCR_EL2, bad_vncr_trap, reset_val, 0, + vncr_el2_visibility), { SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 }, EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0), @@ -3069,16 +3373,64 @@ static const struct sys_reg_desc sys_reg_descs[] = { EL2_REG(RVBAR_EL2, access_rw, reset_val, 0), { SYS_DESC(SYS_RMR_EL2), undef_access }, + EL2_REG_VNCR(ICH_AP0R0_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_AP0R1_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_AP0R2_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_AP0R3_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_AP1R0_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_AP1R1_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_AP1R2_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_AP1R3_EL2, reset_val, 0), + + { SYS_DESC(SYS_ICC_SRE_EL2), access_gic_sre }, + EL2_REG_VNCR(ICH_HCR_EL2, reset_val, 0), + { SYS_DESC(SYS_ICH_VTR_EL2), access_gic_vtr }, + { SYS_DESC(SYS_ICH_MISR_EL2), access_gic_misr }, + { SYS_DESC(SYS_ICH_EISR_EL2), access_gic_eisr }, + { SYS_DESC(SYS_ICH_ELRSR_EL2), access_gic_elrsr }, + EL2_REG_VNCR(ICH_VMCR_EL2, reset_val, 0), + + EL2_REG_VNCR(ICH_LR0_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR1_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR2_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR3_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR4_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR5_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR6_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR7_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR8_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR9_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR10_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR11_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR12_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR13_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR14_EL2, reset_val, 0), + EL2_REG_VNCR(ICH_LR15_EL2, reset_val, 0), EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0), EL2_REG(TPIDR_EL2, access_rw, reset_val, 0), EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0), EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0), + { SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer }, + EL2_REG(CNTHP_CTL_EL2, access_arch_timer, reset_val, 0), + EL2_REG(CNTHP_CVAL_EL2, access_arch_timer, reset_val, 0), + + { SYS_DESC(SYS_CNTHV_TVAL_EL2), access_hv_timer }, + EL2_REG(CNTHV_CTL_EL2, access_hv_timer, reset_val, 0), + EL2_REG(CNTHV_CVAL_EL2, access_hv_timer, reset_val, 0), { SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 }, + { SYS_DESC(SYS_CNTP_TVAL_EL02), access_arch_timer }, + { SYS_DESC(SYS_CNTP_CTL_EL02), access_arch_timer }, + { SYS_DESC(SYS_CNTP_CVAL_EL02), access_arch_timer }, + + { SYS_DESC(SYS_CNTV_TVAL_EL02), access_arch_timer }, + { SYS_DESC(SYS_CNTV_CTL_EL02), access_arch_timer }, + { SYS_DESC(SYS_CNTV_CVAL_EL02), access_arch_timer }, + EL2_REG(SP_EL2, NULL, reset_unknown, 0), }; @@ -3256,8 +3608,7 @@ static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, { u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); - u64 base, range, tg, num, scale; - int shift; + u64 base, range; if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) return undef_access(vcpu, p, r); @@ -3267,26 +3618,7 @@ static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p, * of the guest's S2 (different base granule size, for example), we * decide to ignore TTL and only use the described range. */ - tg = FIELD_GET(GENMASK(47, 46), p->regval); - scale = FIELD_GET(GENMASK(45, 44), p->regval); - num = FIELD_GET(GENMASK(43, 39), p->regval); - base = p->regval & GENMASK(36, 0); - - switch(tg) { - case 1: - shift = 12; - break; - case 2: - shift = 14; - break; - case 3: - default: /* IMPDEF: handle tg==0 as 64k */ - shift = 16; - break; - } - - base <<= shift; - range = __TLBI_RANGE_PAGES(num, scale) << shift; + base = decode_range_tlbi(p->regval, &range, NULL); kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), &(union tlbi_info) { @@ -3352,11 +3684,22 @@ static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu, WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding)); } +static bool handle_tlbi_el2(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); + + if (!kvm_supported_tlbi_s1e2_op(vcpu, sys_encoding)) + return undef_access(vcpu, p, r); + + kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval); + return true; +} + static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, const struct sys_reg_desc *r) { u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2); - u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); /* * If we're here, this is because we've trapped on a EL1 TLBI @@ -3367,6 +3710,13 @@ static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, * - HCR_EL2.E2H == 0 : a non-VHE guest * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode * + * Another possibility is that we are invalidating the EL2 context + * using EL1 instructions, but that we landed here because we need + * additional invalidation for structures that are not held in the + * CPU TLBs (such as the VNCR pseudo-TLB and its EL2 mapping). In + * that case, we are guaranteed that HCR_EL2.{E2H,TGE} == { 1, 1 } + * as we don't allow an NV-capable L1 in a nVHE configuration. + * * We don't expect these helpers to ever be called when running * in a vEL1 context. */ @@ -3376,7 +3726,13 @@ static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p, if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding)) return undef_access(vcpu, p, r); - kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr), + if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)) { + kvm_handle_s1e2_tlbi(vcpu, sys_encoding, p->regval); + return true; + } + + kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, + get_vmid(__vcpu_sys_reg(vcpu, VTTBR_EL2)), &(union tlbi_info) { .va = { .addr = p->regval, @@ -3498,16 +3854,21 @@ static struct sys_reg_desc sys_insn_descs[] = { SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is), - SYS_INSN(TLBI_ALLE2OS, undef_access), - SYS_INSN(TLBI_VAE2OS, undef_access), + SYS_INSN(TLBI_ALLE2OS, handle_tlbi_el2), + SYS_INSN(TLBI_VAE2OS, handle_tlbi_el2), SYS_INSN(TLBI_ALLE1OS, handle_alle1is), - SYS_INSN(TLBI_VALE2OS, undef_access), + SYS_INSN(TLBI_VALE2OS, handle_tlbi_el2), SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is), - SYS_INSN(TLBI_RVAE2IS, undef_access), - SYS_INSN(TLBI_RVALE2IS, undef_access), + SYS_INSN(TLBI_RVAE2IS, handle_tlbi_el2), + SYS_INSN(TLBI_RVALE2IS, handle_tlbi_el2), + SYS_INSN(TLBI_ALLE2IS, handle_tlbi_el2), + SYS_INSN(TLBI_VAE2IS, handle_tlbi_el2), SYS_INSN(TLBI_ALLE1IS, handle_alle1is), + + SYS_INSN(TLBI_VALE2IS, handle_tlbi_el2), + SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is), SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is), SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is), @@ -3517,11 +3878,17 @@ static struct sys_reg_desc sys_insn_descs[] = { SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is), SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is), - SYS_INSN(TLBI_RVAE2OS, undef_access), - SYS_INSN(TLBI_RVALE2OS, undef_access), - SYS_INSN(TLBI_RVAE2, undef_access), - SYS_INSN(TLBI_RVALE2, undef_access), + SYS_INSN(TLBI_RVAE2OS, handle_tlbi_el2), + SYS_INSN(TLBI_RVALE2OS, handle_tlbi_el2), + SYS_INSN(TLBI_RVAE2, handle_tlbi_el2), + SYS_INSN(TLBI_RVALE2, handle_tlbi_el2), + SYS_INSN(TLBI_ALLE2, handle_tlbi_el2), + SYS_INSN(TLBI_VAE2, handle_tlbi_el2), + SYS_INSN(TLBI_ALLE1, handle_alle1is), + + SYS_INSN(TLBI_VALE2, handle_tlbi_el2), + SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is), SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is), @@ -3529,19 +3896,19 @@ static struct sys_reg_desc sys_insn_descs[] = { SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is), - SYS_INSN(TLBI_ALLE2OSNXS, undef_access), - SYS_INSN(TLBI_VAE2OSNXS, undef_access), + SYS_INSN(TLBI_ALLE2OSNXS, handle_tlbi_el2), + SYS_INSN(TLBI_VAE2OSNXS, handle_tlbi_el2), SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is), - SYS_INSN(TLBI_VALE2OSNXS, undef_access), + SYS_INSN(TLBI_VALE2OSNXS, handle_tlbi_el2), SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is), - SYS_INSN(TLBI_RVAE2ISNXS, undef_access), - SYS_INSN(TLBI_RVALE2ISNXS, undef_access), - SYS_INSN(TLBI_ALLE2ISNXS, undef_access), - SYS_INSN(TLBI_VAE2ISNXS, undef_access), + SYS_INSN(TLBI_RVAE2ISNXS, handle_tlbi_el2), + SYS_INSN(TLBI_RVALE2ISNXS, handle_tlbi_el2), + SYS_INSN(TLBI_ALLE2ISNXS, handle_tlbi_el2), + SYS_INSN(TLBI_VAE2ISNXS, handle_tlbi_el2), SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is), - SYS_INSN(TLBI_VALE2ISNXS, undef_access), + SYS_INSN(TLBI_VALE2ISNXS, handle_tlbi_el2), SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is), SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is), SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is), @@ -3551,14 +3918,14 @@ static struct sys_reg_desc sys_insn_descs[] = { SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is), SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is), SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is), - SYS_INSN(TLBI_RVAE2OSNXS, undef_access), - SYS_INSN(TLBI_RVALE2OSNXS, undef_access), - SYS_INSN(TLBI_RVAE2NXS, undef_access), - SYS_INSN(TLBI_RVALE2NXS, undef_access), - SYS_INSN(TLBI_ALLE2NXS, undef_access), - SYS_INSN(TLBI_VAE2NXS, undef_access), + SYS_INSN(TLBI_RVAE2OSNXS, handle_tlbi_el2), + SYS_INSN(TLBI_RVALE2OSNXS, handle_tlbi_el2), + SYS_INSN(TLBI_RVAE2NXS, handle_tlbi_el2), + SYS_INSN(TLBI_RVALE2NXS, handle_tlbi_el2), + SYS_INSN(TLBI_ALLE2NXS, handle_tlbi_el2), + SYS_INSN(TLBI_VAE2NXS, handle_tlbi_el2), SYS_INSN(TLBI_ALLE1NXS, handle_alle1is), - SYS_INSN(TLBI_VALE2NXS, undef_access), + SYS_INSN(TLBI_VALE2NXS, handle_tlbi_el2), SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is), }; @@ -3590,18 +3957,20 @@ static bool trap_dbgdidr(struct kvm_vcpu *vcpu, * None of the other registers share their location, so treat them as * if they were 64bit. */ -#define DBG_BCR_BVR_WCR_WVR(n) \ - /* DBGBVRn */ \ - { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ - /* DBGBCRn */ \ - { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ - /* DBGWVRn */ \ - { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ - /* DBGWCRn */ \ - { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } - -#define DBGBXVR(n) \ - { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } +#define DBG_BCR_BVR_WCR_WVR(n) \ + /* DBGBVRn */ \ + { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), \ + trap_dbg_wb_reg, NULL, n }, \ + /* DBGBCRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_dbg_wb_reg, NULL, n }, \ + /* DBGWVRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_dbg_wb_reg, NULL, n }, \ + /* DBGWCRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_dbg_wb_reg, NULL, n } + +#define DBGBXVR(n) \ + { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), \ + trap_dbg_wb_reg, NULL, n } /* * Trapped cp14 registers. We generally ignore most of the external @@ -3898,9 +4267,11 @@ static const struct sys_reg_desc cp15_64_regs[] = { { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer }, { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ + { SYS_DESC(SYS_AARCH32_CNTVCT), access_arch_timer }, { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer }, + { SYS_DESC(SYS_AARCH32_CNTVCTSS), access_arch_timer }, }; static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, @@ -4220,9 +4591,13 @@ int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) * Certain AArch32 ID registers are handled by rerouting to the AArch64 * system register table. Registers in the ID range where CRm=0 are * excluded from this scheme as they do not trivially map into AArch64 - * system register encodings. + * system register encodings, except for AIDR/REVIDR. */ - if (params.Op1 == 0 && params.CRn == 0 && params.CRm) + if (params.Op1 == 0 && params.CRn == 0 && + (params.CRm || params.Op2 == 6 /* REVIDR */)) + return kvm_emulate_cp15_id_reg(vcpu, ¶ms); + if (params.Op1 == 1 && params.CRn == 0 && + params.CRm == 0 && params.Op2 == 7 /* AIDR */) return kvm_emulate_cp15_id_reg(vcpu, ¶ms); return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); @@ -4415,9 +4790,15 @@ void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) reset_vcpu_ftr_id_reg(vcpu, r); else r->reset(vcpu, r); + + if (r->reg >= __SANITISED_REG_START__ && r->reg < NR_SYS_REGS) + __vcpu_rmw_sys_reg(vcpu, r->reg, |=, 0); } set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags); + + if (kvm_vcpu_has_pmu(vcpu)) + kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); } /** @@ -4523,65 +4904,6 @@ id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, return r; } -/* - * These are the invariant sys_reg registers: we let the guest see the - * host versions of these, so they're part of the guest state. - * - * A future CPU may provide a mechanism to present different values to - * the guest, or a future kvm may trap them. - */ - -#define FUNCTION_INVARIANT(reg) \ - static u64 reset_##reg(struct kvm_vcpu *v, \ - const struct sys_reg_desc *r) \ - { \ - ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ - return ((struct sys_reg_desc *)r)->val; \ - } - -FUNCTION_INVARIANT(midr_el1) -FUNCTION_INVARIANT(revidr_el1) -FUNCTION_INVARIANT(aidr_el1) - -/* ->val is filled in by kvm_sys_reg_table_init() */ -static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = { - { SYS_DESC(SYS_MIDR_EL1), NULL, reset_midr_el1 }, - { SYS_DESC(SYS_REVIDR_EL1), NULL, reset_revidr_el1 }, - { SYS_DESC(SYS_AIDR_EL1), NULL, reset_aidr_el1 }, -}; - -static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) -{ - const struct sys_reg_desc *r; - - r = get_reg_by_id(id, invariant_sys_regs, - ARRAY_SIZE(invariant_sys_regs)); - if (!r) - return -ENOENT; - - return put_user(r->val, uaddr); -} - -static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) -{ - const struct sys_reg_desc *r; - u64 val; - - r = get_reg_by_id(id, invariant_sys_regs, - ARRAY_SIZE(invariant_sys_regs)); - if (!r) - return -ENOENT; - - if (get_user(val, uaddr)) - return -EFAULT; - - /* This is what we mean by invariant: you can't change it. */ - if (r->val != val) - return -EINVAL; - - return 0; -} - static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) { u32 val; @@ -4663,15 +4985,10 @@ int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(unsigned long)reg->addr; - int err; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_get(vcpu, reg->id, uaddr); - err = get_invariant_sys_reg(reg->id, uaddr); - if (err != -ENOENT) - return err; - return kvm_sys_reg_get_user(vcpu, reg, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); } @@ -4697,7 +5014,7 @@ int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, if (r->set_user) { ret = (r->set_user)(vcpu, r, val); } else { - __vcpu_sys_reg(vcpu, r->reg) = val; + __vcpu_assign_sys_reg(vcpu, r->reg, val); ret = 0; } @@ -4707,15 +5024,10 @@ int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(unsigned long)reg->addr; - int err; if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) return demux_c15_set(vcpu, reg->id, uaddr); - err = set_invariant_sys_reg(reg->id, uaddr); - if (err != -ENOENT) - return err; - return kvm_sys_reg_set_user(vcpu, reg, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); } @@ -4804,23 +5116,14 @@ static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) { - return ARRAY_SIZE(invariant_sys_regs) - + num_demux_regs() + return num_demux_regs() + walk_sys_regs(vcpu, (u64 __user *)NULL); } int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { - unsigned int i; int err; - /* Then give them all the invariant registers' indices. */ - for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { - if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) - return -EFAULT; - uindices++; - } - err = walk_sys_regs(vcpu, uindices); if (err < 0) return err; @@ -4916,80 +5219,18 @@ void kvm_calculate_traps(struct kvm_vcpu *vcpu) mutex_lock(&kvm->arch.config_lock); vcpu_set_hcr(vcpu); vcpu_set_ich_hcr(vcpu); - - if (cpus_have_final_cap(ARM64_HAS_HCX)) { - /* - * In general, all HCRX_EL2 bits are gated by a feature. - * The only reason we can set SMPME without checking any - * feature is that its effects are not directly observable - * from the guest. - */ - vcpu->arch.hcrx_el2 = HCRX_EL2_SMPME; - - if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) - vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); - - if (kvm_has_tcr2(kvm)) - vcpu->arch.hcrx_el2 |= HCRX_EL2_TCR2En; - - if (kvm_has_fpmr(kvm)) - vcpu->arch.hcrx_el2 |= HCRX_EL2_EnFPM; - } + vcpu_set_hcrx(vcpu); if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags)) goto out; - kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1 | - HFGxTR_EL2_nMAIR2_EL1 | - HFGxTR_EL2_nS2POR_EL1 | - HFGxTR_EL2_nACCDATA_EL1 | - HFGxTR_EL2_nSMPRI_EL1_MASK | - HFGxTR_EL2_nTPIDR2_EL0_MASK); - - if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) - kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS| - HFGITR_EL2_TLBIRVALE1OS | - HFGITR_EL2_TLBIRVAAE1OS | - HFGITR_EL2_TLBIRVAE1OS | - HFGITR_EL2_TLBIVAALE1OS | - HFGITR_EL2_TLBIVALE1OS | - HFGITR_EL2_TLBIVAAE1OS | - HFGITR_EL2_TLBIASIDE1OS | - HFGITR_EL2_TLBIVAE1OS | - HFGITR_EL2_TLBIVMALLE1OS); - - if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) - kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1 | - HFGITR_EL2_TLBIRVALE1 | - HFGITR_EL2_TLBIRVAAE1 | - HFGITR_EL2_TLBIRVAE1 | - HFGITR_EL2_TLBIRVAALE1IS| - HFGITR_EL2_TLBIRVALE1IS | - HFGITR_EL2_TLBIRVAAE1IS | - HFGITR_EL2_TLBIRVAE1IS | - HFGITR_EL2_TLBIRVAALE1OS| - HFGITR_EL2_TLBIRVALE1OS | - HFGITR_EL2_TLBIRVAAE1OS | - HFGITR_EL2_TLBIRVAE1OS); - - if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) - kvm->arch.fgu[HFGITR_GROUP] |= HFGITR_EL2_ATS1E1A; - - if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2)) - kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_ATS1E1RP | - HFGITR_EL2_ATS1E1WP); - - if (!kvm_has_s1pie(kvm)) - kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 | - HFGxTR_EL2_nPIR_EL1); - - if (!kvm_has_s1poe(kvm)) - kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPOR_EL1 | - HFGxTR_EL2_nPOR_EL0); - - if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP)) - kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 | - HAFGRTR_EL2_RES1); + compute_fgu(kvm, HFGRTR_GROUP); + compute_fgu(kvm, HFGITR_GROUP); + compute_fgu(kvm, HDFGRTR_GROUP); + compute_fgu(kvm, HAFGRTR_GROUP); + compute_fgu(kvm, HFGRTR2_GROUP); + compute_fgu(kvm, HFGITR2_GROUP); + compute_fgu(kvm, HDFGRTR2_GROUP); set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags); out: @@ -5018,7 +5259,7 @@ int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu) } if (vcpu_has_nv(vcpu)) { - int ret = kvm_init_nv_sysregs(kvm); + int ret = kvm_init_nv_sysregs(vcpu); if (ret) return ret; } @@ -5038,18 +5279,17 @@ int __init kvm_sys_reg_table_init(void) valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); - valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false); if (!valid) return -EINVAL; - /* We abuse the reset function to overwrite the table itself. */ - for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) - invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); + init_imp_id_regs(); ret = populate_nv_trap_config(); + check_feature_map(); + for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++) ret = populate_sysreg_config(sys_reg_descs + i, i); |