summaryrefslogtreecommitdiff
path: root/Documentation/s390
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/s390')
-rw-r--r--Documentation/s390/3270.txt4
-rw-r--r--Documentation/s390/Debugging390.txt93
-rw-r--r--Documentation/s390/cds.txt14
-rw-r--r--Documentation/s390/crypto/crypto-API.txt4
-rw-r--r--Documentation/s390/driver-model.txt4
-rw-r--r--Documentation/s390/monreader.txt2
-rw-r--r--Documentation/s390/s390dbf.txt12
7 files changed, 65 insertions, 68 deletions
diff --git a/Documentation/s390/3270.txt b/Documentation/s390/3270.txt
index 0a044e647d2d..7a5c73a7ed7f 100644
--- a/Documentation/s390/3270.txt
+++ b/Documentation/s390/3270.txt
@@ -111,9 +111,7 @@ Here are the installation steps in detail:
config3270.sh. Inspect the output script it produces,
/tmp/mkdev3270, and then run that script. This will create the
necessary character special device files and make the necessary
- changes to /etc/inittab. If you have selected DEVFS, the driver
- itself creates the device files, and /tmp/mkdev3270 only changes
- /etc/inittab.
+ changes to /etc/inittab.
Then notify /sbin/init that /etc/inittab has changed, by issuing
the telinit command with the q operand:
diff --git a/Documentation/s390/Debugging390.txt b/Documentation/s390/Debugging390.txt
index 844c03fe7921..4dd25ee549e9 100644
--- a/Documentation/s390/Debugging390.txt
+++ b/Documentation/s390/Debugging390.txt
@@ -8,8 +8,8 @@
Overview of Document:
=====================
This document is intended to give an good overview of how to debug
-Linux for s/390 & z/Architecture it isn't intended as a complete reference & not a
-tutorial on the fundamentals of C & assembly, it dosen't go into
+Linux for s/390 & z/Architecture. It isn't intended as a complete reference & not a
+tutorial on the fundamentals of C & assembly. It doesn't go into
390 IO in any detail. It is intended to complement the documents in the
reference section below & any other worthwhile references you get.
@@ -88,7 +88,7 @@ s/390 z/Architecture
0 0 Reserved ( must be 0 ) otherwise specification exception occurs.
1 1 Program Event Recording 1 PER enabled,
- PER is used to facilititate debugging e.g. single stepping.
+ PER is used to facilitate debugging e.g. single stepping.
2-4 2-4 Reserved ( must be 0 ).
@@ -163,7 +163,7 @@ s/390 z/Architecture
1 1 64 bit
32 1=31 bit addressing mode 0=24 bit addressing mode (for backward
- compatibility ), linux always runs with this bit set to 1
+ compatibility), linux always runs with this bit set to 1
33-64 Instruction address.
33-63 Reserved must be 0
@@ -188,7 +188,7 @@ Bytes 0-512 ( 200 hex ) on s/390 & 0-512,4096-4544,4604-5119 currently on z/Arch
are used by the processor itself for holding such information as exception indications &
entry points for exceptions.
Bytes after 0xc00 hex are used by linux for per processor globals on s/390 & z/Architecture
-( there is a gap on z/Architecure too currently between 0xc00 & 1000 which linux uses ).
+( there is a gap on z/Architecture too currently between 0xc00 & 1000 which linux uses ).
The closest thing to this on traditional architectures is the interrupt
vector table. This is a good thing & does simplify some of the kernel coding
however it means that we now cannot catch stray NULL pointers in the
@@ -239,7 +239,7 @@ they go to 64 Bit.
On 390 our limitations & strengths make us slightly different.
For backward compatibility we are only allowed use 31 bits (2GB)
-of our 32 bit addresses,however, we use entirely separate address
+of our 32 bit addresses, however, we use entirely separate address
spaces for the user & kernel.
This means we can support 2GB of non Extended RAM on s/390, & more
@@ -317,9 +317,9 @@ Each process/thread under Linux for S390 has its own kernel task_struct
defined in linux/include/linux/sched.h
The S390 on initialisation & resuming of a process on a cpu sets
the __LC_KERNEL_STACK variable in the spare prefix area for this cpu
-( which we use for per processor globals).
+(which we use for per-processor globals).
-The kernel stack pointer is intimately tied with the task stucture for
+The kernel stack pointer is intimately tied with the task structure for
each processor as follows.
s/390
@@ -354,7 +354,7 @@ static inline struct task_struct * get_current(void)
}
i.e. just anding the current kernel stack pointer with the mask -8192.
-Thankfully because Linux dosen't have support for nested IO interrupts
+Thankfully because Linux doesn't have support for nested IO interrupts
& our devices have large buffers can survive interrupts being shut for
short amounts of time we don't need a separate stack for interrupts.
@@ -366,8 +366,8 @@ Register Usage & Stackframes on Linux for s/390 & z/Architecture
Overview:
---------
This is the code that gcc produces at the top & the bottom of
-each function, it usually is fairly consistent & similar from
-function to function & if you know its layout you can probalby
+each function. It usually is fairly consistent & similar from
+function to function & if you know its layout you can probably
make some headway in finding the ultimate cause of a problem
after a crash without a source level debugger.
@@ -394,7 +394,7 @@ i.e they aren't in registers & they aren't static.
back-chain:
This is a pointer to the stack pointer before entering a
framed functions ( see frameless function ) prologue got by
-deferencing the address of the current stack pointer,
+dereferencing the address of the current stack pointer,
i.e. got by accessing the 32 bit value at the stack pointers
current location.
@@ -724,7 +724,7 @@ This is useful for debugging because
1) You can double check whether the files you expect to be included are the ones
that are being included ( e.g. double check that you aren't going to the i386 asm directory ).
2) Check that macro definitions aren't clashing with typedefs,
-3) Check that definitons aren't being used before they are being included.
+3) Check that definitions aren't being used before they are being included.
4) Helps put the line emitting the error under the microscope if it contains macros.
For convenience the Linux kernel's makefile will do preprocessing automatically for you
@@ -840,12 +840,11 @@ using the strip command to make it a more reasonable size to boot it.
A source/assembly mixed dump of the kernel can be done with the line
objdump --source vmlinux > vmlinux.lst
-Also if the file isn't compiled -g this will output as much debugging information
-as it can ( e.g. function names ), however, this is very slow as it spends lots
-of time searching for debugging info, the following self explanitory line should be used
-instead if the code isn't compiled -g.
+Also, if the file isn't compiled -g, this will output as much debugging information
+as it can (e.g. function names). This is very slow as it spends lots
+of time searching for debugging info. The following self explanatory line should be used
+instead if the code isn't compiled -g, as it is much faster:
objdump --disassemble-all --syms vmlinux > vmlinux.lst
-as it is much faster
As hard drive space is valuble most of us use the following approach.
1) Look at the emitted psw on the console to find the crash address in the kernel.
@@ -861,7 +860,7 @@ Linux source tree.
6) rm /arch/s390/kernel/signal.o
7) make /arch/s390/kernel/signal.o
8) watch the gcc command line emitted
-9) type it in again or alernatively cut & paste it on the console adding the -g option.
+9) type it in again or alternatively cut & paste it on the console adding the -g option.
10) objdump --source arch/s390/kernel/signal.o > signal.lst
This will output the source & the assembly intermixed, as the snippet below shows
This will unfortunately output addresses which aren't the same
@@ -913,8 +912,8 @@ If you wanted to know does ping work but didn't have the source
strace ping -c 1 127.0.0.1
& then look at the man pages for each of the syscalls below,
( In fact this is sometimes easier than looking at some spagetti
-source which conditionally compiles for several architectures )
-Not everything that it throws out needs to make sense immeadiately
+source which conditionally compiles for several architectures ).
+Not everything that it throws out needs to make sense immediately.
Just looking quickly you can see that it is making up a RAW socket
for the ICMP protocol.
@@ -974,8 +973,9 @@ through the pipe for each line containing the string open.
Example 3
---------
-Getting sophistocated
-telnetd crashes on & I don't know why
+Getting sophisticated
+telnetd crashes & I don't know why
+
Steps
-----
1) Replace the following line in /etc/inetd.conf
@@ -1085,8 +1085,7 @@ Notes
-----
Addresses & values in the VM debugger are always hex never decimal
Address ranges are of the format <HexValue1>-<HexValue2> or <HexValue1>.<HexValue2>
-e.g. The address range 0x2000 to 0x3000 can be described described as
-2000-3000 or 2000.1000
+e.g. The address range 0x2000 to 0x3000 can be described as 2000-3000 or 2000.1000
The VM Debugger is case insensitive.
@@ -1311,7 +1310,7 @@ for finding out when a particular variable changes.
An alternative way of finding the STD of a currently running process
is to do the following, ( this method is more complex but
-could be quite convient if you aren't updating the kernel much &
+could be quite convenient if you aren't updating the kernel much &
so your kernel structures will stay constant for a reasonable period of
time ).
@@ -1413,7 +1412,7 @@ SMP Specific commands
To find out how many cpus you have
Q CPUS displays all the CPU's available to your virtual machine
To find the cpu that the current cpu VM debugger commands are being directed at do
-Q CPU to change the current cpu cpu VM debugger commands are being directed at do
+Q CPU to change the current cpu VM debugger commands are being directed at do
CPU <desired cpu no>
On a SMP guest issue a command to all CPUs try prefixing the command with cpu all.
@@ -1674,8 +1673,8 @@ channel is idle & the second for device end ( secondary status ) sometimes you g
concurrently, you check how the IO went on by issuing a TEST SUBCHANNEL at each interrupt,
from which you receive an Interruption response block (IRB). If you get channel & device end
status in the IRB without channel checks etc. your IO probably went okay. If you didn't you
-probably need a doctorto examine the IRB & extended status word etc.
-If an error occurs more sophistocated control units have a facitity known as
+probably need a doctor to examine the IRB & extended status word etc.
+If an error occurs, more sophistocated control units have a facitity known as
concurrent sense this means that if an error occurs Extended sense information will
be presented in the Extended status word in the IRB if not you have to issue a
subsequent SENSE CCW command after the test subchannel.
@@ -1704,7 +1703,7 @@ concentrate on data processing.
IOP's can use one or more links ( known as channel paths ) to talk to each
IO device. It first checks for path availability & chooses an available one,
then starts ( & sometimes terminates IO ).
-There are two types of channel path ESCON & the Paralell IO interface.
+There are two types of channel path: ESCON & the Parallel IO interface.
IO devices are attached to control units, control units provide the
logic to interface the channel paths & channel path IO protocols to
@@ -1743,11 +1742,11 @@ controllers or a control unit which connects to 1000 3270 terminals ).
The 390 IO systems come in 2 flavours the current 390 machines support both
-The Older 360 & 370 Interface,sometimes called the paralell I/O interface,
+The Older 360 & 370 Interface,sometimes called the Parallel I/O interface,
sometimes called Bus-and Tag & sometimes Original Equipment Manufacturers
Interface (OEMI).
-This byte wide paralell channel path/bus has parity & data on the "Bus" cable
+This byte wide Parallel channel path/bus has parity & data on the "Bus" cable
& control lines on the "Tag" cable. These can operate in byte multiplex mode for
sharing between several slow devices or burst mode & monopolize the channel for the
whole burst. Upto 256 devices can be addressed on one of these cables. These cables are
@@ -1777,7 +1776,7 @@ Consoles 3270 & 3215 ( a teletype emulated under linux for a line mode console )
DASD's direct access storage devices ( otherwise known as hard disks ).
Tape Drives.
CTC ( Channel to Channel Adapters ),
-ESCON or Paralell Cables used as a very high speed serial link
+ESCON or Parallel Cables used as a very high speed serial link
between 2 machines. We use 2 cables under linux to do a bi-directional serial link.
@@ -1803,8 +1802,8 @@ OSA 7C09 ON OSA 7C09 SUBCHANNEL = 0001
OSA 7C14 ON OSA 7C14 SUBCHANNEL = 0002
OSA 7C15 ON OSA 7C15 SUBCHANNEL = 0003
-If you have a guest with certain priviliges you may be able to see devices
-which don't belong to you to avoid this do add the option V.
+If you have a guest with certain privileges you may be able to see devices
+which don't belong to you. To avoid this, add the option V.
e.g.
Q V OSA
@@ -1837,7 +1836,7 @@ RDRLIST
RECEIVE / LOG TXT A1 ( replace
8)
filel & press F11 to look at it
-You should see someting like.
+You should see something like:
00020942' SSCH B2334000 0048813C CC 0 SCH 0000 DEV 7C08
CPA 000FFDF0 PARM 00E2C9C4 KEY 0 FPI C0 LPM 80
@@ -1916,7 +1915,7 @@ Assembly
--------
info registers: displays registers other than floating point.
info all-registers: displays floating points as well.
-disassemble: dissassembles
+disassemble: disassembles
e.g.
disassemble without parameters will disassemble the current function
disassemble $pc $pc+10
@@ -1935,7 +1934,7 @@ undisplay : undo's display's
info breakpoints: shows all current breakpoints
-info stack: shows stack back trace ( if this dosent work too well, I'll show you the
+info stack: shows stack back trace ( if this doesn't work too well, I'll show you the
stacktrace by hand below ).
info locals: displays local variables.
@@ -2045,13 +2044,13 @@ what gdb does when the victim receives certain signals.
list:
e.g.
list lists current function source
-list 1,10 list first 10 lines of curret file.
+list 1,10 list first 10 lines of current file.
list test.c:1,10
directory:
Adds directories to be searched for source if gdb cannot find the source.
-(note it is a bit sensititive about slashes )
+(note it is a bit sensititive about slashes)
e.g. To add the root of the filesystem to the searchpath do
directory //
@@ -2123,9 +2122,9 @@ p/x (*(**$sp+56))&0x7fffffff
Disassembling instructions without debug info
---------------------------------------------
-gdb typically compains if there is a lack of debugging
-symbols in the disassemble command with
-"No function contains specified address." to get around
+gdb typically complains if there is a lack of debugging
+symbols in the disassemble command with
+"No function contains specified address." To get around
this do
x/<number lines to disassemble>xi <address>
e.g.
@@ -2184,7 +2183,7 @@ ps -aux | grep gdb
kill -SIGSEGV <gdb's pid>
or alternatively use killall -SIGSEGV gdb if you have the killall command.
Now look at the core dump.
-./gdb ./gdb core
+./gdb core
Displays the following
GNU gdb 4.18
Copyright 1998 Free Software Foundation, Inc.
@@ -2316,7 +2315,7 @@ Showing us the shared libraries init uses where they are in memory
/proc/1/mem is the current running processes memory which you
can read & write to like a file.
strace uses this sometimes as it is a bit faster than the
-rather inefficent ptrace interface for peeking at DATA.
+rather inefficient ptrace interface for peeking at DATA.
cat status
@@ -2446,7 +2445,7 @@ displays the following lines as it executes them.
+ RELSTATUS=release
+ MACHTYPE=i586-pc-linux-gnu
-perl -d <scriptname> runs the perlscript in a fully intercative debugger
+perl -d <scriptname> runs the perlscript in a fully interactive debugger
<like gdb>.
Type 'h' in the debugger for help.
@@ -2477,7 +2476,7 @@ Lcrash is a perfectly normal program,however, it requires 2
additional files, Kerntypes which is built using a patch to the
linux kernel sources in the linux root directory & the System.map.
-Kerntypes is an an objectfile whose sole purpose in life
+Kerntypes is an objectfile whose sole purpose in life
is to provide stabs debug info to lcrash, to do this
Kerntypes is built from kerntypes.c which just includes the most commonly
referenced header files used when debugging, lcrash can then read the
diff --git a/Documentation/s390/cds.txt b/Documentation/s390/cds.txt
index f0be389c7116..d80e5733827d 100644
--- a/Documentation/s390/cds.txt
+++ b/Documentation/s390/cds.txt
@@ -133,7 +133,7 @@ determine the device driver owning the device that raised the interrupt.
In order not to introduce a new I/O concept to the common Linux code,
Linux/390 preserves the IRQ concept and semantically maps the ESA/390
subchannels to Linux as IRQs. This allows Linux/390 to support up to 64k
-different IRQs, uniquely representig a single device each.
+different IRQs, uniquely representing a single device each.
Up to kernel 2.4, Linux/390 used to provide interfaces via the IRQ (subchannel).
For internal use of the common I/O layer, these are still there. However,
@@ -143,7 +143,7 @@ During its startup the Linux/390 system checks for peripheral devices. Each
of those devices is uniquely defined by a so called subchannel by the ESA/390
channel subsystem. While the subchannel numbers are system generated, each
subchannel also takes a user defined attribute, the so called device number.
-Both subchannel number and device number can not exceed 65535. During driverfs
+Both subchannel number and device number cannot exceed 65535. During driverfs
initialisation, the information about control unit type and device types that
imply specific I/O commands (channel command words - CCWs) in order to operate
the device are gathered. Device drivers can retrieve this set of hardware
@@ -177,11 +177,11 @@ This routine returns the characteristics for the device specified.
The function is meant to be called with an irq handler in place; that is,
at earliest during set_online() processing.
-While the request is procesed synchronously, the device interrupt
+While the request is processed synchronously, the device interrupt
handler is called for final ending status. In case of error situations the
interrupt handler may recover appropriately. The device irq handler can
recognize the corresponding interrupts by the interruption parameter be
-0x00524443.The ccw_device must not be locked prior to calling read_dev_chars().
+0x00524443. The ccw_device must not be locked prior to calling read_dev_chars().
The function may be called enabled or disabled.
@@ -325,7 +325,7 @@ with the following CCW flags values defined :
CCW_FLAG_DC - data chaining
CCW_FLAG_CC - command chaining
-CCW_FLAG_SLI - suppress incorrct length
+CCW_FLAG_SLI - suppress incorrect length
CCW_FLAG_SKIP - skip
CCW_FLAG_PCI - PCI
CCW_FLAG_IDA - indirect addressing
@@ -348,7 +348,7 @@ The ccw_device_start() function returns :
not online.
When the I/O request completes, the CDS first level interrupt handler will
-accumalate the status in a struct irb and then call the device interrupt handler.
+accumulate the status in a struct irb and then call the device interrupt handler.
The intparm field will contain the value the device driver has associated with a
particular I/O request. If a pending device status was recognized,
intparm will be set to 0 (zero). This may happen during I/O initiation or delayed
@@ -433,7 +433,7 @@ puts the CPU into I/O disabled state by preserving the current PSW flags.
The device driver is allowed to issue the next ccw_device_start() call from
within its interrupt handler already. It is not required to schedule a
-bottom-half, unless an non deterministicly long running error recovery procedure
+bottom-half, unless an non deterministically long running error recovery procedure
or similar needs to be scheduled. During I/O processing the Linux/390 generic
I/O device driver support has already obtained the IRQ lock, i.e. the handler
must not try to obtain it again when calling ccw_device_start() or we end in a
diff --git a/Documentation/s390/crypto/crypto-API.txt b/Documentation/s390/crypto/crypto-API.txt
index 78a77624a716..29dee792c887 100644
--- a/Documentation/s390/crypto/crypto-API.txt
+++ b/Documentation/s390/crypto/crypto-API.txt
@@ -61,9 +61,9 @@ Example: z990 crypto instruction for SHA1 algorithm is available
-> when the sha1 algorithm is requested through the crypto API
(which has a module autoloader) the z990 module will be loaded.
-TBD: a userspace module probin mechanism
+TBD: a userspace module probing mechanism
something like 'probe sha1 sha1_z990 sha1' in modprobe.conf
- -> try module sha1_z990, if it fails to load load standard module sha1
+ -> try module sha1_z990, if it fails to load standard module sha1
the 'probe' statement is currently not supported in modprobe.conf
diff --git a/Documentation/s390/driver-model.txt b/Documentation/s390/driver-model.txt
index efb674eda4d4..62c082387aea 100644
--- a/Documentation/s390/driver-model.txt
+++ b/Documentation/s390/driver-model.txt
@@ -157,7 +157,7 @@ notify: This function is called by the common I/O layer for some state changes
* In online state, device detached (CIO_GONE) or last path gone
(CIO_NO_PATH). The driver must return !0 to keep the device; for
return code 0, the device will be deleted as usual (also when no
- notify function is registerd). If the driver wants to keep the
+ notify function is registered). If the driver wants to keep the
device, it is moved into disconnected state.
* In disconnected state, device operational again (CIO_OPER). The
common I/O layer performs some sanity checks on device number and
@@ -262,7 +262,7 @@ attribute 'online' which can be 0 or 1.
-----------
The netiucv driver creates an attribute 'connection' under
-bus/iucv/drivers/netiucv. Piping to this attibute creates a new netiucv
+bus/iucv/drivers/netiucv. Piping to this attribute creates a new netiucv
connection to the specified host.
Netiucv connections show up under devices/iucv/ as "netiucv<ifnum>". The interface
diff --git a/Documentation/s390/monreader.txt b/Documentation/s390/monreader.txt
index d843bb04906e..beeaa4b24427 100644
--- a/Documentation/s390/monreader.txt
+++ b/Documentation/s390/monreader.txt
@@ -83,7 +83,7 @@ This loads the module and sets the DCSS name to "MYDCSS".
NOTE:
-----
-This API provides no interface to control the *MONITOR service, e.g. specifiy
+This API provides no interface to control the *MONITOR service, e.g. specify
which data should be collected. This can be done by the CP command MONITOR
(Class E privileged), see "CP Command and Utility Reference".
diff --git a/Documentation/s390/s390dbf.txt b/Documentation/s390/s390dbf.txt
index e321a8ed2a2d..000230cd26db 100644
--- a/Documentation/s390/s390dbf.txt
+++ b/Documentation/s390/s390dbf.txt
@@ -11,7 +11,7 @@ where log records can be stored efficiently in memory, where each component
(e.g. device drivers) can have one separate debug log.
One purpose of this is to inspect the debug logs after a production system crash
in order to analyze the reason for the crash.
-If the system still runs but only a subcomponent which uses dbf failes,
+If the system still runs but only a subcomponent which uses dbf fails,
it is possible to look at the debug logs on a live system via the Linux
debugfs filesystem.
The debug feature may also very useful for kernel and driver development.
@@ -65,7 +65,7 @@ Predefined views for hex/ascii, sprintf and raw binary data are provided.
It is also possible to define other views. The content of
a view can be inspected simply by reading the corresponding debugfs file.
-All debug logs have an an actual debug level (range from 0 to 6).
+All debug logs have an actual debug level (range from 0 to 6).
The default level is 3. Event and Exception functions have a 'level'
parameter. Only debug entries with a level that is lower or equal
than the actual level are written to the log. This means, when
@@ -83,8 +83,8 @@ Example:
It is also possible to deactivate the debug feature globally for every
debug log. You can change the behavior using 2 sysctl parameters in
/proc/sys/s390dbf:
-There are currently 2 possible triggers, which stop the debug feature
-globally. The first possbility is to use the "debug_active" sysctl. If
+There are currently 2 possible triggers, which stop the debug feature
+globally. The first possibility is to use the "debug_active" sysctl. If
set to 1 the debug feature is running. If "debug_active" is set to 0 the
debug feature is turned off.
The second trigger which stops the debug feature is an kernel oops.
@@ -468,7 +468,7 @@ The hex_ascii view shows the data field in hex and ascii representation
The raw view returns a bytestream as the debug areas are stored in memory.
The sprintf view formats the debug entries in the same way as the sprintf
-function would do. The sprintf event/expection functions write to the
+function would do. The sprintf event/exception functions write to the
debug entry a pointer to the format string (size = sizeof(long))
and for each vararg a long value. So e.g. for a debug entry with a format
string plus two varargs one would need to allocate a (3 * sizeof(long))
@@ -556,7 +556,7 @@ The input_proc can be used to implement functionality when it is written to
the view (e.g. like with 'echo "0" > /sys/kernel/debug/s390dbf/dasd/level).
For header_proc there can be used the default function
-debug_dflt_header_fn() which is defined in in debug.h.
+debug_dflt_header_fn() which is defined in debug.h.
and which produces the same header output as the predefined views.
E.g:
00 00964419409:440761 2 - 00 88023ec