summaryrefslogtreecommitdiff
path: root/Documentation/filesystems/nfs/nfsd-io-modes.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems/nfs/nfsd-io-modes.rst')
-rw-r--r--Documentation/filesystems/nfs/nfsd-io-modes.rst153
1 files changed, 153 insertions, 0 deletions
diff --git a/Documentation/filesystems/nfs/nfsd-io-modes.rst b/Documentation/filesystems/nfs/nfsd-io-modes.rst
new file mode 100644
index 000000000000..0fd6e82478fe
--- /dev/null
+++ b/Documentation/filesystems/nfs/nfsd-io-modes.rst
@@ -0,0 +1,153 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============
+NFSD IO MODES
+=============
+
+Overview
+========
+
+NFSD has historically always used buffered IO when servicing READ and
+WRITE operations. BUFFERED is NFSD's default IO mode, but it is possible
+to override that default to use either DONTCACHE or DIRECT IO modes.
+
+Experimental NFSD debugfs interfaces are available to allow the NFSD IO
+mode used for READ and WRITE to be configured independently. See both:
+
+- /sys/kernel/debug/nfsd/io_cache_read
+- /sys/kernel/debug/nfsd/io_cache_write
+
+The default value for both io_cache_read and io_cache_write reflects
+NFSD's default IO mode (which is NFSD_IO_BUFFERED=0).
+
+Based on the configured settings, NFSD's IO will either be:
+
+- cached using page cache (NFSD_IO_BUFFERED=0)
+- cached but removed from page cache on completion (NFSD_IO_DONTCACHE=1)
+- not cached stable_how=NFS_UNSTABLE (NFSD_IO_DIRECT=2)
+
+To set an NFSD IO mode, write a supported value (0 - 2) to the
+corresponding IO operation's debugfs interface, e.g.::
+
+ echo 2 > /sys/kernel/debug/nfsd/io_cache_read
+ echo 2 > /sys/kernel/debug/nfsd/io_cache_write
+
+To check which IO mode NFSD is using for READ or WRITE, simply read the
+corresponding IO operation's debugfs interface, e.g.::
+
+ cat /sys/kernel/debug/nfsd/io_cache_read
+ cat /sys/kernel/debug/nfsd/io_cache_write
+
+If you experiment with NFSD's IO modes on a recent kernel and have
+interesting results, please report them to linux-nfs@vger.kernel.org
+
+NFSD DONTCACHE
+==============
+
+DONTCACHE offers a hybrid approach to servicing IO that aims to offer
+the benefits of using DIRECT IO without any of the strict alignment
+requirements that DIRECT IO imposes. To achieve this buffered IO is used
+but the IO is flagged to "drop behind" (meaning associated pages are
+dropped from the page cache) when IO completes.
+
+DONTCACHE aims to avoid what has proven to be a fairly significant
+limition of Linux's memory management subsystem if/when large amounts of
+data is infrequently accessed (e.g. read once _or_ written once but not
+read until much later). Such use-cases are particularly problematic
+because the page cache will eventually become a bottleneck to servicing
+new IO requests.
+
+For more context on DONTCACHE, please see these Linux commit headers:
+
+- Overview: 9ad6344568cc3 ("mm/filemap: change filemap_create_folio()
+ to take a struct kiocb")
+- for READ: 8026e49bff9b1 ("mm/filemap: add read support for
+ RWF_DONTCACHE")
+- for WRITE: 974c5e6139db3 ("xfs: flag as supporting FOP_DONTCACHE")
+
+NFSD_IO_DONTCACHE will fall back to NFSD_IO_BUFFERED if the underlying
+filesystem doesn't indicate support by setting FOP_DONTCACHE.
+
+NFSD DIRECT
+===========
+
+DIRECT IO doesn't make use of the page cache, as such it is able to
+avoid the Linux memory management's page reclaim scalability problems
+without resorting to the hybrid use of page cache that DONTCACHE does.
+
+Some workloads benefit from NFSD avoiding the page cache, particularly
+those with a working set that is significantly larger than available
+system memory. The pathological worst-case workload that NFSD DIRECT has
+proven to help most is: NFS client issuing large sequential IO to a file
+that is 2-3 times larger than the NFS server's available system memory.
+The reason for such improvement is NFSD DIRECT eliminates a lot of work
+that the memory management subsystem would otherwise be required to
+perform (e.g. page allocation, dirty writeback, page reclaim). When
+using NFSD DIRECT, kswapd and kcompactd are no longer commanding CPU
+time trying to find adequate free pages so that forward IO progress can
+be made.
+
+The performance win associated with using NFSD DIRECT was previously
+discussed on linux-nfs, see:
+https://lore.kernel.org/linux-nfs/aEslwqa9iMeZjjlV@kernel.org/
+
+But in summary:
+
+- NFSD DIRECT can significantly reduce memory requirements
+- NFSD DIRECT can reduce CPU load by avoiding costly page reclaim work
+- NFSD DIRECT can offer more deterministic IO performance
+
+As always, your mileage may vary and so it is important to carefully
+consider if/when it is beneficial to make use of NFSD DIRECT. When
+assessing comparative performance of your workload please be sure to log
+relevant performance metrics during testing (e.g. memory usage, cpu
+usage, IO performance). Using perf to collect perf data that may be used
+to generate a "flamegraph" for work Linux must perform on behalf of your
+test is a really meaningful way to compare the relative health of the
+system and how switching NFSD's IO mode changes what is observed.
+
+If NFSD_IO_DIRECT is specified by writing 2 (or 3 and 4 for WRITE) to
+NFSD's debugfs interfaces, ideally the IO will be aligned relative to
+the underlying block device's logical_block_size. Also the memory buffer
+used to store the READ or WRITE payload must be aligned relative to the
+underlying block device's dma_alignment.
+
+But NFSD DIRECT does handle misaligned IO in terms of O_DIRECT as best
+it can:
+
+Misaligned READ:
+ If NFSD_IO_DIRECT is used, expand any misaligned READ to the next
+ DIO-aligned block (on either end of the READ). The expanded READ is
+ verified to have proper offset/len (logical_block_size) and
+ dma_alignment checking.
+
+Misaligned WRITE:
+ If NFSD_IO_DIRECT is used, split any misaligned WRITE into a start,
+ middle and end as needed. The large middle segment is DIO-aligned
+ and the start and/or end are misaligned. Buffered IO is used for the
+ misaligned segments and O_DIRECT is used for the middle DIO-aligned
+ segment. DONTCACHE buffered IO is _not_ used for the misaligned
+ segments because using normal buffered IO offers significant RMW
+ performance benefit when handling streaming misaligned WRITEs.
+
+Tracing:
+ The nfsd_read_direct trace event shows how NFSD expands any
+ misaligned READ to the next DIO-aligned block (on either end of the
+ original READ, as needed).
+
+ This combination of trace events is useful for READs::
+
+ echo 1 > /sys/kernel/tracing/events/nfsd/nfsd_read_vector/enable
+ echo 1 > /sys/kernel/tracing/events/nfsd/nfsd_read_direct/enable
+ echo 1 > /sys/kernel/tracing/events/nfsd/nfsd_read_io_done/enable
+ echo 1 > /sys/kernel/tracing/events/xfs/xfs_file_direct_read/enable
+
+ The nfsd_write_direct trace event shows how NFSD splits a given
+ misaligned WRITE into a DIO-aligned middle segment.
+
+ This combination of trace events is useful for WRITEs::
+
+ echo 1 > /sys/kernel/tracing/events/nfsd/nfsd_write_opened/enable
+ echo 1 > /sys/kernel/tracing/events/nfsd/nfsd_write_direct/enable
+ echo 1 > /sys/kernel/tracing/events/nfsd/nfsd_write_io_done/enable
+ echo 1 > /sys/kernel/tracing/events/xfs/xfs_file_direct_write/enable