summaryrefslogtreecommitdiff
path: root/Documentation/DocBook/kernel-api.tmpl
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/DocBook/kernel-api.tmpl')
-rw-r--r--Documentation/DocBook/kernel-api.tmpl70
1 files changed, 69 insertions, 1 deletions
diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl
index 38f88b6ae405..fd2ef4d29b6d 100644
--- a/Documentation/DocBook/kernel-api.tmpl
+++ b/Documentation/DocBook/kernel-api.tmpl
@@ -139,8 +139,10 @@ X!Ilib/string.c
!Elib/cmdline.c
</sect1>
- <sect1><title>CRC Functions</title>
+ <sect1 id="crc"><title>CRC Functions</title>
+!Elib/crc7.c
!Elib/crc16.c
+!Elib/crc-itu-t.c
!Elib/crc32.c
!Elib/crc-ccitt.c
</sect1>
@@ -643,4 +645,70 @@ X!Idrivers/video/console/fonts.c
!Edrivers/spi/spi.c
</chapter>
+ <chapter id="i2c">
+ <title>I<superscript>2</superscript>C and SMBus Subsystem</title>
+
+ <para>
+ I<superscript>2</superscript>C (or without fancy typography, "I2C")
+ is an acronym for the "Inter-IC" bus, a simple bus protocol which is
+ widely used where low data rate communications suffice.
+ Since it's also a licensed trademark, some vendors use another
+ name (such as "Two-Wire Interface", TWI) for the same bus.
+ I2C only needs two signals (SCL for clock, SDA for data), conserving
+ board real estate and minimizing signal quality issues.
+ Most I2C devices use seven bit addresses, and bus speeds of up
+ to 400 kHz; there's a high speed extension (3.4 MHz) that's not yet
+ found wide use.
+ I2C is a multi-master bus; open drain signaling is used to
+ arbitrate between masters, as well as to handshake and to
+ synchronize clocks from slower clients.
+ </para>
+
+ <para>
+ The Linux I2C programming interfaces support only the master
+ side of bus interactions, not the slave side.
+ The programming interface is structured around two kinds of driver,
+ and two kinds of device.
+ An I2C "Adapter Driver" abstracts the controller hardware; it binds
+ to a physical device (perhaps a PCI device or platform_device) and
+ exposes a <structname>struct i2c_adapter</structname> representing
+ each I2C bus segment it manages.
+ On each I2C bus segment will be I2C devices represented by a
+ <structname>struct i2c_client</structname>. Those devices will
+ be bound to a <structname>struct i2c_driver</structname>,
+ which should follow the standard Linux driver model.
+ (At this writing, a legacy model is more widely used.)
+ There are functions to perform various I2C protocol operations; at
+ this writing all such functions are usable only from task context.
+ </para>
+
+ <para>
+ The System Management Bus (SMBus) is a sibling protocol. Most SMBus
+ systems are also I2C conformant. The electrical constraints are
+ tighter for SMBus, and it standardizes particular protocol messages
+ and idioms. Controllers that support I2C can also support most
+ SMBus operations, but SMBus controllers don't support all the protocol
+ options that an I2C controller will.
+ There are functions to perform various SMBus protocol operations,
+ either using I2C primitives or by issuing SMBus commands to
+ i2c_adapter devices which don't support those I2C operations.
+ </para>
+
+!Iinclude/linux/i2c.h
+!Fdrivers/i2c/i2c-boardinfo.c i2c_register_board_info
+!Edrivers/i2c/i2c-core.c
+ </chapter>
+
+ <chapter id="splice">
+ <title>splice API</title>
+ <para>)
+ splice is a method for moving blocks of data around inside the
+ kernel, without continually transferring it between the kernel
+ and user space.
+ </para>
+!Iinclude/linux/splice.h
+!Ffs/splice.c
+ </chapter>
+
+
</book>