diff options
author | John Stultz <jstultz@google.com> | 2025-03-20 23:03:00 +0300 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2025-03-21 21:16:18 +0300 |
commit | 757b000f7b936edf79311ab0971fe465bbda75ea (patch) | |
tree | 85817377f31e9e77070ccb06f33a81a43a7ac89e /tools/perf/scripts/python/syscall-counts.py | |
parent | d1c3a3f1c9a1dfc2b41696b7903972f4b3fbcd02 (diff) | |
download | linux-757b000f7b936edf79311ab0971fe465bbda75ea.tar.xz |
timekeeping: Fix possible inconsistencies in _COARSE clockids
Lei Chen raised an issue with CLOCK_MONOTONIC_COARSE seeing time
inconsistencies.
Lei tracked down that this was being caused by the adjustment
tk->tkr_mono.xtime_nsec -= offset;
which is made to compensate for the unaccumulated cycles in offset when the
multiplicator is adjusted forward, so that the non-_COARSE clockids don't
see inconsistencies.
However, the _COARSE clockid getter functions use the adjusted xtime_nsec
value directly and do not compensate the negative offset via the
clocksource delta multiplied with the new multiplicator. In that case the
caller can observe time going backwards in consecutive calls.
By design, this negative adjustment should be fine, because the logic run
from timekeeping_adjust() is done after it accumulated approximately
multiplicator * interval_cycles
into xtime_nsec. The accumulated value is always larger then the
mult_adj * offset
value, which is subtracted from xtime_nsec. Both operations are done
together under the tk_core.lock, so the net change to xtime_nsec is always
always be positive.
However, do_adjtimex() calls into timekeeping_advance() as well, to to
apply the NTP frequency adjustment immediately. In this case,
timekeeping_advance() does not return early when the offset is smaller then
interval_cycles. In that case there is no time accumulated into
xtime_nsec. But the subsequent call into timekeeping_adjust(), which
modifies the multiplicator, subtracts from xtime_nsec to correct
for the new multiplicator.
Here because there was no accumulation, xtime_nsec becomes smaller than
before, which opens a window up to the next accumulation, where the _COARSE
clockid getters, which don't compensate for the offset, can observe the
inconsistency.
To fix this, rework the timekeeping_advance() logic so that when invoked
from do_adjtimex(), the time is immediately forwarded to accumulate also
the sub-interval portion into xtime. That means the remaining offset
becomes zero and the subsequent multiplier adjustment therefore does not
modify xtime_nsec.
There is another related inconsistency. If xtime is forwarded due to the
instantaneous multiplier adjustment, the NTP error, which was accumulated
with the previous setting, becomes meaningless.
Therefore clear the NTP error as well, after forwarding the clock for the
instantaneous multiplier update.
Fixes: da15cfdae033 ("time: Introduce CLOCK_REALTIME_COARSE")
Reported-by: Lei Chen <lei.chen@smartx.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20250320200306.1712599-1-jstultz@google.com
Closes: https://lore.kernel.org/lkml/20250310030004.3705801-1-lei.chen@smartx.com/
Diffstat (limited to 'tools/perf/scripts/python/syscall-counts.py')
0 files changed, 0 insertions, 0 deletions