summaryrefslogtreecommitdiff
path: root/samples/bpf
diff options
context:
space:
mode:
authorCristian Dumitrescu <cristian.dumitrescu@intel.com>2020-08-28 11:26:28 +0300
committerDaniel Borkmann <daniel@iogearbox.net>2020-08-31 22:17:55 +0300
commit35149b2c048e43562a598fd8ff91467d429bc666 (patch)
tree6e471740d2a7060b7eb95c3df771597817136a4c /samples/bpf
parent2f6324a3937f8517967d94daef2ba0bdceceece1 (diff)
downloadlinux-35149b2c048e43562a598fd8ff91467d429bc666.tar.xz
samples/bpf: Add new sample xsk_fwd.c
This sample code illustrates the packet forwarding between multiple AF_XDP sockets in multi-threading environment. All the threads and sockets are sharing a common buffer pool, with each socket having its own private buffer cache. The sockets are created with the xsk_socket__create_shared() function, which allows multiple AF_XDP sockets to share the same UMEM object. Example 1: Single thread handling two sockets. Packets received from socket A (on top of interface IFA, queue QA) are forwarded to socket B (on top of interface IFB, queue QB) and vice-versa. The thread is affinitized to CPU core C: ./xsk_fwd -i IFA -q QA -i IFB -q QB -c C Example 2: Two threads, each handling two sockets. Packets from socket A are sent to socket B (by thread X), packets from socket B are sent to socket A (by thread X); packets from socket C are sent to socket D (by thread Y), packets from socket D are sent to socket C (by thread Y). The two threads are bound to CPU cores CX and CY: ./xdp_fwd -i IFA -q QA -i IFB -q QB -i IFC -q QC -i IFD -q QD -c CX -c CY Signed-off-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Björn Töpel <bjorn.topel@intel.com> Link: https://lore.kernel.org/bpf/1598603189-32145-15-git-send-email-magnus.karlsson@intel.com
Diffstat (limited to 'samples/bpf')
-rw-r--r--samples/bpf/Makefile3
-rw-r--r--samples/bpf/xsk_fwd.c1085
2 files changed, 1088 insertions, 0 deletions
diff --git a/samples/bpf/Makefile b/samples/bpf/Makefile
index a6d3646b3818..4f1ed0e3cf9f 100644
--- a/samples/bpf/Makefile
+++ b/samples/bpf/Makefile
@@ -48,6 +48,7 @@ tprogs-y += syscall_tp
tprogs-y += cpustat
tprogs-y += xdp_adjust_tail
tprogs-y += xdpsock
+tprogs-y += xsk_fwd
tprogs-y += xdp_fwd
tprogs-y += task_fd_query
tprogs-y += xdp_sample_pkts
@@ -104,6 +105,7 @@ syscall_tp-objs := syscall_tp_user.o
cpustat-objs := cpustat_user.o
xdp_adjust_tail-objs := xdp_adjust_tail_user.o
xdpsock-objs := xdpsock_user.o
+xsk_fwd-objs := xsk_fwd.o
xdp_fwd-objs := xdp_fwd_user.o
task_fd_query-objs := bpf_load.o task_fd_query_user.o $(TRACE_HELPERS)
xdp_sample_pkts-objs := xdp_sample_pkts_user.o $(TRACE_HELPERS)
@@ -203,6 +205,7 @@ TPROGLDLIBS_trace_output += -lrt
TPROGLDLIBS_map_perf_test += -lrt
TPROGLDLIBS_test_overhead += -lrt
TPROGLDLIBS_xdpsock += -pthread
+TPROGLDLIBS_xsk_fwd += -pthread
# Allows pointing LLC/CLANG to a LLVM backend with bpf support, redefine on cmdline:
# make M=samples/bpf/ LLC=~/git/llvm/build/bin/llc CLANG=~/git/llvm/build/bin/clang
diff --git a/samples/bpf/xsk_fwd.c b/samples/bpf/xsk_fwd.c
new file mode 100644
index 000000000000..1cd97c84c337
--- /dev/null
+++ b/samples/bpf/xsk_fwd.c
@@ -0,0 +1,1085 @@
+// SPDX-License-Identifier: GPL-2.0
+/* Copyright(c) 2020 Intel Corporation. */
+
+#define _GNU_SOURCE
+#include <poll.h>
+#include <pthread.h>
+#include <signal.h>
+#include <sched.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/mman.h>
+#include <sys/resource.h>
+#include <sys/socket.h>
+#include <sys/types.h>
+#include <time.h>
+#include <unistd.h>
+#include <getopt.h>
+#include <netinet/ether.h>
+#include <net/if.h>
+
+#include <linux/bpf.h>
+#include <linux/if_link.h>
+#include <linux/if_xdp.h>
+
+#include <bpf/libbpf.h>
+#include <bpf/xsk.h>
+#include <bpf/bpf.h>
+
+#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
+
+typedef __u64 u64;
+typedef __u32 u32;
+typedef __u16 u16;
+typedef __u8 u8;
+
+/* This program illustrates the packet forwarding between multiple AF_XDP
+ * sockets in multi-threaded environment. All threads are sharing a common
+ * buffer pool, with each socket having its own private buffer cache.
+ *
+ * Example 1: Single thread handling two sockets. The packets received by socket
+ * A (interface IFA, queue QA) are forwarded to socket B (interface IFB, queue
+ * QB), while the packets received by socket B are forwarded to socket A. The
+ * thread is running on CPU core X:
+ *
+ * ./xsk_fwd -i IFA -q QA -i IFB -q QB -c X
+ *
+ * Example 2: Two threads, each handling two sockets. The thread running on CPU
+ * core X forwards all the packets received by socket A to socket B, and all the
+ * packets received by socket B to socket A. The thread running on CPU core Y is
+ * performing the same packet forwarding between sockets C and D:
+ *
+ * ./xsk_fwd -i IFA -q QA -i IFB -q QB -i IFC -q QC -i IFD -q QD
+ * -c CX -c CY
+ */
+
+/*
+ * Buffer pool and buffer cache
+ *
+ * For packet forwarding, the packet buffers are typically allocated from the
+ * pool for packet reception and freed back to the pool for further reuse once
+ * the packet transmission is completed.
+ *
+ * The buffer pool is shared between multiple threads. In order to minimize the
+ * access latency to the shared buffer pool, each thread creates one (or
+ * several) buffer caches, which, unlike the buffer pool, are private to the
+ * thread that creates them and therefore cannot be shared with other threads.
+ * The access to the shared pool is only needed either (A) when the cache gets
+ * empty due to repeated buffer allocations and it needs to be replenished from
+ * the pool, or (B) when the cache gets full due to repeated buffer free and it
+ * needs to be flushed back to the pull.
+ *
+ * In a packet forwarding system, a packet received on any input port can
+ * potentially be transmitted on any output port, depending on the forwarding
+ * configuration. For AF_XDP sockets, for this to work with zero-copy of the
+ * packet buffers when, it is required that the buffer pool memory fits into the
+ * UMEM area shared by all the sockets.
+ */
+
+struct bpool_params {
+ u32 n_buffers;
+ u32 buffer_size;
+ int mmap_flags;
+
+ u32 n_users_max;
+ u32 n_buffers_per_slab;
+};
+
+/* This buffer pool implementation organizes the buffers into equally sized
+ * slabs of *n_buffers_per_slab*. Initially, there are *n_slabs* slabs in the
+ * pool that are completely filled with buffer pointers (full slabs).
+ *
+ * Each buffer cache has a slab for buffer allocation and a slab for buffer
+ * free, with both of these slabs initially empty. When the cache's allocation
+ * slab goes empty, it is swapped with one of the available full slabs from the
+ * pool, if any is available. When the cache's free slab goes full, it is
+ * swapped for one of the empty slabs from the pool, which is guaranteed to
+ * succeed.
+ *
+ * Partially filled slabs never get traded between the cache and the pool
+ * (except when the cache itself is destroyed), which enables fast operation
+ * through pointer swapping.
+ */
+struct bpool {
+ struct bpool_params params;
+ pthread_mutex_t lock;
+ void *addr;
+
+ u64 **slabs;
+ u64 **slabs_reserved;
+ u64 *buffers;
+ u64 *buffers_reserved;
+
+ u64 n_slabs;
+ u64 n_slabs_reserved;
+ u64 n_buffers;
+
+ u64 n_slabs_available;
+ u64 n_slabs_reserved_available;
+
+ struct xsk_umem_config umem_cfg;
+ struct xsk_ring_prod umem_fq;
+ struct xsk_ring_cons umem_cq;
+ struct xsk_umem *umem;
+};
+
+static struct bpool *
+bpool_init(struct bpool_params *params,
+ struct xsk_umem_config *umem_cfg)
+{
+ struct rlimit r = {RLIM_INFINITY, RLIM_INFINITY};
+ u64 n_slabs, n_slabs_reserved, n_buffers, n_buffers_reserved;
+ u64 slabs_size, slabs_reserved_size;
+ u64 buffers_size, buffers_reserved_size;
+ u64 total_size, i;
+ struct bpool *bp;
+ u8 *p;
+ int status;
+
+ /* mmap prep. */
+ if (setrlimit(RLIMIT_MEMLOCK, &r))
+ return NULL;
+
+ /* bpool internals dimensioning. */
+ n_slabs = (params->n_buffers + params->n_buffers_per_slab - 1) /
+ params->n_buffers_per_slab;
+ n_slabs_reserved = params->n_users_max * 2;
+ n_buffers = n_slabs * params->n_buffers_per_slab;
+ n_buffers_reserved = n_slabs_reserved * params->n_buffers_per_slab;
+
+ slabs_size = n_slabs * sizeof(u64 *);
+ slabs_reserved_size = n_slabs_reserved * sizeof(u64 *);
+ buffers_size = n_buffers * sizeof(u64);
+ buffers_reserved_size = n_buffers_reserved * sizeof(u64);
+
+ total_size = sizeof(struct bpool) +
+ slabs_size + slabs_reserved_size +
+ buffers_size + buffers_reserved_size;
+
+ /* bpool memory allocation. */
+ p = calloc(total_size, sizeof(u8));
+ if (!p)
+ return NULL;
+
+ /* bpool memory initialization. */
+ bp = (struct bpool *)p;
+ memcpy(&bp->params, params, sizeof(*params));
+ bp->params.n_buffers = n_buffers;
+
+ bp->slabs = (u64 **)&p[sizeof(struct bpool)];
+ bp->slabs_reserved = (u64 **)&p[sizeof(struct bpool) +
+ slabs_size];
+ bp->buffers = (u64 *)&p[sizeof(struct bpool) +
+ slabs_size + slabs_reserved_size];
+ bp->buffers_reserved = (u64 *)&p[sizeof(struct bpool) +
+ slabs_size + slabs_reserved_size + buffers_size];
+
+ bp->n_slabs = n_slabs;
+ bp->n_slabs_reserved = n_slabs_reserved;
+ bp->n_buffers = n_buffers;
+
+ for (i = 0; i < n_slabs; i++)
+ bp->slabs[i] = &bp->buffers[i * params->n_buffers_per_slab];
+ bp->n_slabs_available = n_slabs;
+
+ for (i = 0; i < n_slabs_reserved; i++)
+ bp->slabs_reserved[i] = &bp->buffers_reserved[i *
+ params->n_buffers_per_slab];
+ bp->n_slabs_reserved_available = n_slabs_reserved;
+
+ for (i = 0; i < n_buffers; i++)
+ bp->buffers[i] = i * params->buffer_size;
+
+ /* lock. */
+ status = pthread_mutex_init(&bp->lock, NULL);
+ if (status) {
+ free(p);
+ return NULL;
+ }
+
+ /* mmap. */
+ bp->addr = mmap(NULL,
+ n_buffers * params->buffer_size,
+ PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS | params->mmap_flags,
+ -1,
+ 0);
+ if (bp->addr == MAP_FAILED) {
+ pthread_mutex_destroy(&bp->lock);
+ free(p);
+ return NULL;
+ }
+
+ /* umem. */
+ status = xsk_umem__create(&bp->umem,
+ bp->addr,
+ bp->params.n_buffers * bp->params.buffer_size,
+ &bp->umem_fq,
+ &bp->umem_cq,
+ umem_cfg);
+ if (status) {
+ munmap(bp->addr, bp->params.n_buffers * bp->params.buffer_size);
+ pthread_mutex_destroy(&bp->lock);
+ free(p);
+ return NULL;
+ }
+ memcpy(&bp->umem_cfg, umem_cfg, sizeof(*umem_cfg));
+
+ return bp;
+}
+
+static void
+bpool_free(struct bpool *bp)
+{
+ if (!bp)
+ return;
+
+ xsk_umem__delete(bp->umem);
+ munmap(bp->addr, bp->params.n_buffers * bp->params.buffer_size);
+ pthread_mutex_destroy(&bp->lock);
+ free(bp);
+}
+
+struct bcache {
+ struct bpool *bp;
+
+ u64 *slab_cons;
+ u64 *slab_prod;
+
+ u64 n_buffers_cons;
+ u64 n_buffers_prod;
+};
+
+static u32
+bcache_slab_size(struct bcache *bc)
+{
+ struct bpool *bp = bc->bp;
+
+ return bp->params.n_buffers_per_slab;
+}
+
+static struct bcache *
+bcache_init(struct bpool *bp)
+{
+ struct bcache *bc;
+
+ bc = calloc(1, sizeof(struct bcache));
+ if (!bc)
+ return NULL;
+
+ bc->bp = bp;
+ bc->n_buffers_cons = 0;
+ bc->n_buffers_prod = 0;
+
+ pthread_mutex_lock(&bp->lock);
+ if (bp->n_slabs_reserved_available == 0) {
+ pthread_mutex_unlock(&bp->lock);
+ free(bc);
+ return NULL;
+ }
+
+ bc->slab_cons = bp->slabs_reserved[bp->n_slabs_reserved_available - 1];
+ bc->slab_prod = bp->slabs_reserved[bp->n_slabs_reserved_available - 2];
+ bp->n_slabs_reserved_available -= 2;
+ pthread_mutex_unlock(&bp->lock);
+
+ return bc;
+}
+
+static void
+bcache_free(struct bcache *bc)
+{
+ struct bpool *bp;
+
+ if (!bc)
+ return;
+
+ /* In order to keep this example simple, the case of freeing any
+ * existing buffers from the cache back to the pool is ignored.
+ */
+
+ bp = bc->bp;
+ pthread_mutex_lock(&bp->lock);
+ bp->slabs_reserved[bp->n_slabs_reserved_available] = bc->slab_prod;
+ bp->slabs_reserved[bp->n_slabs_reserved_available + 1] = bc->slab_cons;
+ bp->n_slabs_reserved_available += 2;
+ pthread_mutex_unlock(&bp->lock);
+
+ free(bc);
+}
+
+/* To work correctly, the implementation requires that the *n_buffers* input
+ * argument is never greater than the buffer pool's *n_buffers_per_slab*. This
+ * is typically the case, with one exception taking place when large number of
+ * buffers are allocated at init time (e.g. for the UMEM fill queue setup).
+ */
+static inline u32
+bcache_cons_check(struct bcache *bc, u32 n_buffers)
+{
+ struct bpool *bp = bc->bp;
+ u64 n_buffers_per_slab = bp->params.n_buffers_per_slab;
+ u64 n_buffers_cons = bc->n_buffers_cons;
+ u64 n_slabs_available;
+ u64 *slab_full;
+
+ /*
+ * Consumer slab is not empty: Use what's available locally. Do not
+ * look for more buffers from the pool when the ask can only be
+ * partially satisfied.
+ */
+ if (n_buffers_cons)
+ return (n_buffers_cons < n_buffers) ?
+ n_buffers_cons :
+ n_buffers;
+
+ /*
+ * Consumer slab is empty: look to trade the current consumer slab
+ * (full) for a full slab from the pool, if any is available.
+ */
+ pthread_mutex_lock(&bp->lock);
+ n_slabs_available = bp->n_slabs_available;
+ if (!n_slabs_available) {
+ pthread_mutex_unlock(&bp->lock);
+ return 0;
+ }
+
+ n_slabs_available--;
+ slab_full = bp->slabs[n_slabs_available];
+ bp->slabs[n_slabs_available] = bc->slab_cons;
+ bp->n_slabs_available = n_slabs_available;
+ pthread_mutex_unlock(&bp->lock);
+
+ bc->slab_cons = slab_full;
+ bc->n_buffers_cons = n_buffers_per_slab;
+ return n_buffers;
+}
+
+static inline u64
+bcache_cons(struct bcache *bc)
+{
+ u64 n_buffers_cons = bc->n_buffers_cons - 1;
+ u64 buffer;
+
+ buffer = bc->slab_cons[n_buffers_cons];
+ bc->n_buffers_cons = n_buffers_cons;
+ return buffer;
+}
+
+static inline void
+bcache_prod(struct bcache *bc, u64 buffer)
+{
+ struct bpool *bp = bc->bp;
+ u64 n_buffers_per_slab = bp->params.n_buffers_per_slab;
+ u64 n_buffers_prod = bc->n_buffers_prod;
+ u64 n_slabs_available;
+ u64 *slab_empty;
+
+ /*
+ * Producer slab is not yet full: store the current buffer to it.
+ */
+ if (n_buffers_prod < n_buffers_per_slab) {
+ bc->slab_prod[n_buffers_prod] = buffer;
+ bc->n_buffers_prod = n_buffers_prod + 1;
+ return;
+ }
+
+ /*
+ * Producer slab is full: trade the cache's current producer slab
+ * (full) for an empty slab from the pool, then store the current
+ * buffer to the new producer slab. As one full slab exists in the
+ * cache, it is guaranteed that there is at least one empty slab
+ * available in the pool.
+ */
+ pthread_mutex_lock(&bp->lock);
+ n_slabs_available = bp->n_slabs_available;
+ slab_empty = bp->slabs[n_slabs_available];
+ bp->slabs[n_slabs_available] = bc->slab_prod;
+ bp->n_slabs_available = n_slabs_available + 1;
+ pthread_mutex_unlock(&bp->lock);
+
+ slab_empty[0] = buffer;
+ bc->slab_prod = slab_empty;
+ bc->n_buffers_prod = 1;
+}
+
+/*
+ * Port
+ *
+ * Each of the forwarding ports sits on top of an AF_XDP socket. In order for
+ * packet forwarding to happen with no packet buffer copy, all the sockets need
+ * to share the same UMEM area, which is used as the buffer pool memory.
+ */
+#ifndef MAX_BURST_RX
+#define MAX_BURST_RX 64
+#endif
+
+#ifndef MAX_BURST_TX
+#define MAX_BURST_TX 64
+#endif
+
+struct burst_rx {
+ u64 addr[MAX_BURST_RX];
+ u32 len[MAX_BURST_RX];
+};
+
+struct burst_tx {
+ u64 addr[MAX_BURST_TX];
+ u32 len[MAX_BURST_TX];
+ u32 n_pkts;
+};
+
+struct port_params {
+ struct xsk_socket_config xsk_cfg;
+ struct bpool *bp;
+ const char *iface;
+ u32 iface_queue;
+};
+
+struct port {
+ struct port_params params;
+
+ struct bcache *bc;
+
+ struct xsk_ring_cons rxq;
+ struct xsk_ring_prod txq;
+ struct xsk_ring_prod umem_fq;
+ struct xsk_ring_cons umem_cq;
+ struct xsk_socket *xsk;
+ int umem_fq_initialized;
+
+ u64 n_pkts_rx;
+ u64 n_pkts_tx;
+};
+
+static void
+port_free(struct port *p)
+{
+ if (!p)
+ return;
+
+ /* To keep this example simple, the code to free the buffers from the
+ * socket's receive and transmit queues, as well as from the UMEM fill
+ * and completion queues, is not included.
+ */
+
+ if (p->xsk)
+ xsk_socket__delete(p->xsk);
+
+ bcache_free(p->bc);
+
+ free(p);
+}
+
+static struct port *
+port_init(struct port_params *params)
+{
+ struct port *p;
+ u32 umem_fq_size, pos = 0;
+ int status, i;
+
+ /* Memory allocation and initialization. */
+ p = calloc(sizeof(struct port), 1);
+ if (!p)
+ return NULL;
+
+ memcpy(&p->params, params, sizeof(p->params));
+ umem_fq_size = params->bp->umem_cfg.fill_size;
+
+ /* bcache. */
+ p->bc = bcache_init(params->bp);
+ if (!p->bc ||
+ (bcache_slab_size(p->bc) < umem_fq_size) ||
+ (bcache_cons_check(p->bc, umem_fq_size) < umem_fq_size)) {
+ port_free(p);
+ return NULL;
+ }
+
+ /* xsk socket. */
+ status = xsk_socket__create_shared(&p->xsk,
+ params->iface,
+ params->iface_queue,
+ params->bp->umem,
+ &p->rxq,
+ &p->txq,
+ &p->umem_fq,
+ &p->umem_cq,
+ &params->xsk_cfg);
+ if (status) {
+ port_free(p);
+ return NULL;
+ }
+
+ /* umem fq. */
+ xsk_ring_prod__reserve(&p->umem_fq, umem_fq_size, &pos);
+
+ for (i = 0; i < umem_fq_size; i++)
+ *xsk_ring_prod__fill_addr(&p->umem_fq, pos + i) =
+ bcache_cons(p->bc);
+
+ xsk_ring_prod__submit(&p->umem_fq, umem_fq_size);
+ p->umem_fq_initialized = 1;
+
+ return p;
+}
+
+static inline u32
+port_rx_burst(struct port *p, struct burst_rx *b)
+{
+ u32 n_pkts, pos, i;
+
+ /* Free buffers for FQ replenish. */
+ n_pkts = ARRAY_SIZE(b->addr);
+
+ n_pkts = bcache_cons_check(p->bc, n_pkts);
+ if (!n_pkts)
+ return 0;
+
+ /* RXQ. */
+ n_pkts = xsk_ring_cons__peek(&p->rxq, n_pkts, &pos);
+ if (!n_pkts) {
+ if (xsk_ring_prod__needs_wakeup(&p->umem_fq)) {
+ struct pollfd pollfd = {
+ .fd = xsk_socket__fd(p->xsk),
+ .events = POLLIN,
+ };
+
+ poll(&pollfd, 1, 0);
+ }
+ return 0;
+ }
+
+ for (i = 0; i < n_pkts; i++) {
+ b->addr[i] = xsk_ring_cons__rx_desc(&p->rxq, pos + i)->addr;
+ b->len[i] = xsk_ring_cons__rx_desc(&p->rxq, pos + i)->len;
+ }
+
+ xsk_ring_cons__release(&p->rxq, n_pkts);
+ p->n_pkts_rx += n_pkts;
+
+ /* UMEM FQ. */
+ for ( ; ; ) {
+ int status;
+
+ status = xsk_ring_prod__reserve(&p->umem_fq, n_pkts, &pos);
+ if (status == n_pkts)
+ break;
+
+ if (xsk_ring_prod__needs_wakeup(&p->umem_fq)) {
+ struct pollfd pollfd = {
+ .fd = xsk_socket__fd(p->xsk),
+ .events = POLLIN,
+ };
+
+ poll(&pollfd, 1, 0);
+ }
+ }
+
+ for (i = 0; i < n_pkts; i++)
+ *xsk_ring_prod__fill_addr(&p->umem_fq, pos + i) =
+ bcache_cons(p->bc);
+
+ xsk_ring_prod__submit(&p->umem_fq, n_pkts);
+
+ return n_pkts;
+}
+
+static inline void
+port_tx_burst(struct port *p, struct burst_tx *b)
+{
+ u32 n_pkts, pos, i;
+ int status;
+
+ /* UMEM CQ. */
+ n_pkts = p->params.bp->umem_cfg.comp_size;
+
+ n_pkts = xsk_ring_cons__peek(&p->umem_cq, n_pkts, &pos);
+
+ for (i = 0; i < n_pkts; i++) {
+ u64 addr = *xsk_ring_cons__comp_addr(&p->umem_cq, pos + i);
+
+ bcache_prod(p->bc, addr);
+ }
+
+ xsk_ring_cons__release(&p->umem_cq, n_pkts);
+
+ /* TXQ. */
+ n_pkts = b->n_pkts;
+
+ for ( ; ; ) {
+ status = xsk_ring_prod__reserve(&p->txq, n_pkts, &pos);
+ if (status == n_pkts)
+ break;
+
+ if (xsk_ring_prod__needs_wakeup(&p->txq))
+ sendto(xsk_socket__fd(p->xsk), NULL, 0, MSG_DONTWAIT,
+ NULL, 0);
+ }
+
+ for (i = 0; i < n_pkts; i++) {
+ xsk_ring_prod__tx_desc(&p->txq, pos + i)->addr = b->addr[i];
+ xsk_ring_prod__tx_desc(&p->txq, pos + i)->len = b->len[i];
+ }
+
+ xsk_ring_prod__submit(&p->txq, n_pkts);
+ if (xsk_ring_prod__needs_wakeup(&p->txq))
+ sendto(xsk_socket__fd(p->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0);
+ p->n_pkts_tx += n_pkts;
+}
+
+/*
+ * Thread
+ *
+ * Packet forwarding threads.
+ */
+#ifndef MAX_PORTS_PER_THREAD
+#define MAX_PORTS_PER_THREAD 16
+#endif
+
+struct thread_data {
+ struct port *ports_rx[MAX_PORTS_PER_THREAD];
+ struct port *ports_tx[MAX_PORTS_PER_THREAD];
+ u32 n_ports_rx;
+ struct burst_rx burst_rx;
+ struct burst_tx burst_tx[MAX_PORTS_PER_THREAD];
+ u32 cpu_core_id;
+ int quit;
+};
+
+static void swap_mac_addresses(void *data)
+{
+ struct ether_header *eth = (struct ether_header *)data;
+ struct ether_addr *src_addr = (struct ether_addr *)&eth->ether_shost;
+ struct ether_addr *dst_addr = (struct ether_addr *)&eth->ether_dhost;
+ struct ether_addr tmp;
+
+ tmp = *src_addr;
+ *src_addr = *dst_addr;
+ *dst_addr = tmp;
+}
+
+static void *
+thread_func(void *arg)
+{
+ struct thread_data *t = arg;
+ cpu_set_t cpu_cores;
+ u32 i;
+
+ CPU_ZERO(&cpu_cores);
+ CPU_SET(t->cpu_core_id, &cpu_cores);
+ pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpu_cores);
+
+ for (i = 0; !t->quit; i = (i + 1) & (t->n_ports_rx - 1)) {
+ struct port *port_rx = t->ports_rx[i];
+ struct port *port_tx = t->ports_tx[i];
+ struct burst_rx *brx = &t->burst_rx;
+ struct burst_tx *btx = &t->burst_tx[i];
+ u32 n_pkts, j;
+
+ /* RX. */
+ n_pkts = port_rx_burst(port_rx, brx);
+ if (!n_pkts)
+ continue;
+
+ /* Process & TX. */
+ for (j = 0; j < n_pkts; j++) {
+ u64 addr = xsk_umem__add_offset_to_addr(brx->addr[j]);
+ u8 *pkt = xsk_umem__get_data(port_rx->params.bp->addr,
+ addr);
+
+ swap_mac_addresses(pkt);
+
+ btx->addr[btx->n_pkts] = brx->addr[j];
+ btx->len[btx->n_pkts] = brx->len[j];
+ btx->n_pkts++;
+
+ if (btx->n_pkts == MAX_BURST_TX) {
+ port_tx_burst(port_tx, btx);
+ btx->n_pkts = 0;
+ }
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Process
+ */
+static const struct bpool_params bpool_params_default = {
+ .n_buffers = 64 * 1024,
+ .buffer_size = XSK_UMEM__DEFAULT_FRAME_SIZE,
+ .mmap_flags = 0,
+
+ .n_users_max = 16,
+ .n_buffers_per_slab = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2,
+};
+
+static const struct xsk_umem_config umem_cfg_default = {
+ .fill_size = XSK_RING_PROD__DEFAULT_NUM_DESCS * 2,
+ .comp_size = XSK_RING_CONS__DEFAULT_NUM_DESCS,
+ .frame_size = XSK_UMEM__DEFAULT_FRAME_SIZE,
+ .frame_headroom = XSK_UMEM__DEFAULT_FRAME_HEADROOM,
+ .flags = 0,
+};
+
+static const struct port_params port_params_default = {
+ .xsk_cfg = {
+ .rx_size = XSK_RING_CONS__DEFAULT_NUM_DESCS,
+ .tx_size = XSK_RING_PROD__DEFAULT_NUM_DESCS,
+ .libbpf_flags = 0,
+ .xdp_flags = XDP_FLAGS_DRV_MODE,
+ .bind_flags = XDP_USE_NEED_WAKEUP | XDP_ZEROCOPY,
+ },
+
+ .bp = NULL,
+ .iface = NULL,
+ .iface_queue = 0,
+};
+
+#ifndef MAX_PORTS
+#define MAX_PORTS 64
+#endif
+
+#ifndef MAX_THREADS
+#define MAX_THREADS 64
+#endif
+
+static struct bpool_params bpool_params;
+static struct xsk_umem_config umem_cfg;
+static struct bpool *bp;
+
+static struct port_params port_params[MAX_PORTS];
+static struct port *ports[MAX_PORTS];
+static u64 n_pkts_rx[MAX_PORTS];
+static u64 n_pkts_tx[MAX_PORTS];
+static int n_ports;
+
+static pthread_t threads[MAX_THREADS];
+static struct thread_data thread_data[MAX_THREADS];
+static int n_threads;
+
+static void
+print_usage(char *prog_name)
+{
+ const char *usage =
+ "Usage:\n"
+ "\t%s [ -b SIZE ] -c CORE -i INTERFACE [ -q QUEUE ]\n"
+ "\n"
+ "-c CORE CPU core to run a packet forwarding thread\n"
+ " on. May be invoked multiple times.\n"
+ "\n"
+ "-b SIZE Number of buffers in the buffer pool shared\n"
+ " by all the forwarding threads. Default: %u.\n"
+ "\n"
+ "-i INTERFACE Network interface. Each (INTERFACE, QUEUE)\n"
+ " pair specifies one forwarding port. May be\n"
+ " invoked multiple times.\n"
+ "\n"
+ "-q QUEUE Network interface queue for RX and TX. Each\n"
+ " (INTERFACE, QUEUE) pair specified one\n"
+ " forwarding port. Default: %u. May be invoked\n"
+ " multiple times.\n"
+ "\n";
+ printf(usage,
+ prog_name,
+ bpool_params_default.n_buffers,
+ port_params_default.iface_queue);
+}
+
+static int
+parse_args(int argc, char **argv)
+{
+ struct option lgopts[] = {
+ { NULL, 0, 0, 0 }
+ };
+ int opt, option_index;
+
+ /* Parse the input arguments. */
+ for ( ; ;) {
+ opt = getopt_long(argc, argv, "c:i:q:", lgopts, &option_index);
+ if (opt == EOF)
+ break;
+
+ switch (opt) {
+ case 'b':
+ bpool_params.n_buffers = atoi(optarg);
+ break;
+
+ case 'c':
+ if (n_threads == MAX_THREADS) {
+ printf("Max number of threads (%d) reached.\n",
+ MAX_THREADS);
+ return -1;
+ }
+
+ thread_data[n_threads].cpu_core_id = atoi(optarg);
+ n_threads++;
+ break;
+
+ case 'i':
+ if (n_ports == MAX_PORTS) {
+ printf("Max number of ports (%d) reached.\n",
+ MAX_PORTS);
+ return -1;
+ }
+
+ port_params[n_ports].iface = optarg;
+ port_params[n_ports].iface_queue = 0;
+ n_ports++;
+ break;
+
+ case 'q':
+ if (n_ports == 0) {
+ printf("No port specified for queue.\n");
+ return -1;
+ }
+ port_params[n_ports - 1].iface_queue = atoi(optarg);
+ break;
+
+ default:
+ printf("Illegal argument.\n");
+ return -1;
+ }
+ }
+
+ optind = 1; /* reset getopt lib */
+
+ /* Check the input arguments. */
+ if (!n_ports) {
+ printf("No ports specified.\n");
+ return -1;
+ }
+
+ if (!n_threads) {
+ printf("No threads specified.\n");
+ return -1;
+ }
+
+ if (n_ports % n_threads) {
+ printf("Ports cannot be evenly distributed to threads.\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+static void
+print_port(u32 port_id)
+{
+ struct port *port = ports[port_id];
+
+ printf("Port %u: interface = %s, queue = %u\n",
+ port_id, port->params.iface, port->params.iface_queue);
+}
+
+static void
+print_thread(u32 thread_id)
+{
+ struct thread_data *t = &thread_data[thread_id];
+ u32 i;
+
+ printf("Thread %u (CPU core %u): ",
+ thread_id, t->cpu_core_id);
+
+ for (i = 0; i < t->n_ports_rx; i++) {
+ struct port *port_rx = t->ports_rx[i];
+ struct port *port_tx = t->ports_tx[i];
+
+ printf("(%s, %u) -> (%s, %u), ",
+ port_rx->params.iface,
+ port_rx->params.iface_queue,
+ port_tx->params.iface,
+ port_tx->params.iface_queue);
+ }
+
+ printf("\n");
+}
+
+static void
+print_port_stats_separator(void)
+{
+ printf("+-%4s-+-%12s-+-%13s-+-%12s-+-%13s-+\n",
+ "----",
+ "------------",
+ "-------------",
+ "------------",
+ "-------------");
+}
+
+static void
+print_port_stats_header(void)
+{
+ print_port_stats_separator();
+ printf("| %4s | %12s | %13s | %12s | %13s |\n",
+ "Port",
+ "RX packets",
+ "RX rate (pps)",
+ "TX packets",
+ "TX_rate (pps)");
+ print_port_stats_separator();
+}
+
+static void
+print_port_stats_trailer(void)
+{
+ print_port_stats_separator();
+ printf("\n");
+}
+
+static void
+print_port_stats(int port_id, u64 ns_diff)
+{
+ struct port *p = ports[port_id];
+ double rx_pps, tx_pps;
+
+ rx_pps = (p->n_pkts_rx - n_pkts_rx[port_id]) * 1000000000. / ns_diff;
+ tx_pps = (p->n_pkts_tx - n_pkts_tx[port_id]) * 1000000000. / ns_diff;
+
+ printf("| %4d | %12llu | %13.0f | %12llu | %13.0f |\n",
+ port_id,
+ p->n_pkts_rx,
+ rx_pps,
+ p->n_pkts_tx,
+ tx_pps);
+
+ n_pkts_rx[port_id] = p->n_pkts_rx;
+ n_pkts_tx[port_id] = p->n_pkts_tx;
+}
+
+static void
+print_port_stats_all(u64 ns_diff)
+{
+ int i;
+
+ print_port_stats_header();
+ for (i = 0; i < n_ports; i++)
+ print_port_stats(i, ns_diff);
+ print_port_stats_trailer();
+}
+
+static int quit;
+
+static void
+signal_handler(int sig)
+{
+ quit = 1;
+}
+
+static void remove_xdp_program(void)
+{
+ int i;
+
+ for (i = 0 ; i < n_ports; i++)
+ bpf_set_link_xdp_fd(if_nametoindex(port_params[i].iface), -1,
+ port_params[i].xsk_cfg.xdp_flags);
+}
+
+int main(int argc, char **argv)
+{
+ struct timespec time;
+ u64 ns0;
+ int i;
+
+ /* Parse args. */
+ memcpy(&bpool_params, &bpool_params_default,
+ sizeof(struct bpool_params));
+ memcpy(&umem_cfg, &umem_cfg_default,
+ sizeof(struct xsk_umem_config));
+ for (i = 0; i < MAX_PORTS; i++)
+ memcpy(&port_params[i], &port_params_default,
+ sizeof(struct port_params));
+
+ if (parse_args(argc, argv)) {
+ print_usage(argv[0]);
+ return -1;
+ }
+
+ /* Buffer pool initialization. */
+ bp = bpool_init(&bpool_params, &umem_cfg);
+ if (!bp) {
+ printf("Buffer pool initialization failed.\n");
+ return -1;
+ }
+ printf("Buffer pool created successfully.\n");
+
+ /* Ports initialization. */
+ for (i = 0; i < MAX_PORTS; i++)
+ port_params[i].bp = bp;
+
+ for (i = 0; i < n_ports; i++) {
+ ports[i] = port_init(&port_params[i]);
+ if (!ports[i]) {
+ printf("Port %d initialization failed.\n", i);
+ return -1;
+ }
+ print_port(i);
+ }
+ printf("All ports created successfully.\n");
+
+ /* Threads. */
+ for (i = 0; i < n_threads; i++) {
+ struct thread_data *t = &thread_data[i];
+ u32 n_ports_per_thread = n_ports / n_threads, j;
+
+ for (j = 0; j < n_ports_per_thread; j++) {
+ t->ports_rx[j] = ports[i * n_ports_per_thread + j];
+ t->ports_tx[j] = ports[i * n_ports_per_thread +
+ (j + 1) % n_ports_per_thread];
+ }
+
+ t->n_ports_rx = n_ports_per_thread;
+
+ print_thread(i);
+ }
+
+ for (i = 0; i < n_threads; i++) {
+ int status;
+
+ status = pthread_create(&threads[i],
+ NULL,
+ thread_func,
+ &thread_data[i]);
+ if (status) {
+ printf("Thread %d creation failed.\n", i);
+ return -1;
+ }
+ }
+ printf("All threads created successfully.\n");
+
+ /* Print statistics. */
+ signal(SIGINT, signal_handler);
+ signal(SIGTERM, signal_handler);
+ signal(SIGABRT, signal_handler);
+
+ clock_gettime(CLOCK_MONOTONIC, &time);
+ ns0 = time.tv_sec * 1000000000UL + time.tv_nsec;
+ for ( ; !quit; ) {
+ u64 ns1, ns_diff;
+
+ sleep(1);
+ clock_gettime(CLOCK_MONOTONIC, &time);
+ ns1 = time.tv_sec * 1000000000UL + time.tv_nsec;
+ ns_diff = ns1 - ns0;
+ ns0 = ns1;
+
+ print_port_stats_all(ns_diff);
+ }
+
+ /* Threads completion. */
+ printf("Quit.\n");
+ for (i = 0; i < n_threads; i++)
+ thread_data[i].quit = 1;
+
+ for (i = 0; i < n_threads; i++)
+ pthread_join(threads[i], NULL);
+
+ for (i = 0; i < n_ports; i++)
+ port_free(ports[i]);
+
+ bpool_free(bp);
+
+ remove_xdp_program();
+
+ return 0;
+}