diff options
author | Haavard Skinnemoen <hskinnemoen@atmel.com> | 2006-09-26 10:32:13 +0400 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-09-26 19:48:54 +0400 |
commit | 5f97f7f9400de47ae837170bb274e90ad3934386 (patch) | |
tree | 514451e6dc6b46253293a00035d375e77b1c65ed /include/asm-avr32/io.h | |
parent | 53e62d3aaa60590d4a69b4e07c29f448b5151047 (diff) | |
download | linux-5f97f7f9400de47ae837170bb274e90ad3934386.tar.xz |
[PATCH] avr32 architecture
This adds support for the Atmel AVR32 architecture as well as the AT32AP7000
CPU and the AT32STK1000 development board.
AVR32 is a new high-performance 32-bit RISC microprocessor core, designed for
cost-sensitive embedded applications, with particular emphasis on low power
consumption and high code density. The AVR32 architecture is not binary
compatible with earlier 8-bit AVR architectures.
The AVR32 architecture, including the instruction set, is described by the
AVR32 Architecture Manual, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32000.pdf
The Atmel AT32AP7000 is the first CPU implementing the AVR32 architecture. It
features a 7-stage pipeline, 16KB instruction and data caches and a full
Memory Management Unit. It also comes with a large set of integrated
peripherals, many of which are shared with the AT91 ARM-based controllers from
Atmel.
Full data sheet is available from
http://www.atmel.com/dyn/resources/prod_documents/doc32003.pdf
while the CPU core implementation including caches and MMU is documented by
the AVR32 AP Technical Reference, available from
http://www.atmel.com/dyn/resources/prod_documents/doc32001.pdf
Information about the AT32STK1000 development board can be found at
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3918
including a BSP CD image with an earlier version of this patch, development
tools (binaries and source/patches) and a root filesystem image suitable for
booting from SD card.
Alternatively, there's a preliminary "getting started" guide available at
http://avr32linux.org/twiki/bin/view/Main/GettingStarted which provides links
to the sources and patches you will need in order to set up a cross-compiling
environment for avr32-linux.
This patch, as well as the other patches included with the BSP and the
toolchain patches, is actively supported by Atmel Corporation.
[dmccr@us.ibm.com: Fix more pxx_page macro locations]
[bunk@stusta.de: fix `make defconfig']
Signed-off-by: Haavard Skinnemoen <hskinnemoen@atmel.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'include/asm-avr32/io.h')
-rw-r--r-- | include/asm-avr32/io.h | 253 |
1 files changed, 253 insertions, 0 deletions
diff --git a/include/asm-avr32/io.h b/include/asm-avr32/io.h new file mode 100644 index 000000000000..2fc8f111dce9 --- /dev/null +++ b/include/asm-avr32/io.h @@ -0,0 +1,253 @@ +#ifndef __ASM_AVR32_IO_H +#define __ASM_AVR32_IO_H + +#include <linux/string.h> + +#ifdef __KERNEL__ + +#include <asm/addrspace.h> +#include <asm/byteorder.h> + +/* virt_to_phys will only work when address is in P1 or P2 */ +static __inline__ unsigned long virt_to_phys(volatile void *address) +{ + return PHYSADDR(address); +} + +static __inline__ void * phys_to_virt(unsigned long address) +{ + return (void *)P1SEGADDR(address); +} + +#define cached_to_phys(addr) ((unsigned long)PHYSADDR(addr)) +#define uncached_to_phys(addr) ((unsigned long)PHYSADDR(addr)) +#define phys_to_cached(addr) ((void *)P1SEGADDR(addr)) +#define phys_to_uncached(addr) ((void *)P2SEGADDR(addr)) + +/* + * Generic IO read/write. These perform native-endian accesses. Note + * that some architectures will want to re-define __raw_{read,write}w. + */ +extern void __raw_writesb(unsigned int addr, const void *data, int bytelen); +extern void __raw_writesw(unsigned int addr, const void *data, int wordlen); +extern void __raw_writesl(unsigned int addr, const void *data, int longlen); + +extern void __raw_readsb(unsigned int addr, void *data, int bytelen); +extern void __raw_readsw(unsigned int addr, void *data, int wordlen); +extern void __raw_readsl(unsigned int addr, void *data, int longlen); + +static inline void writeb(unsigned char b, volatile void __iomem *addr) +{ + *(volatile unsigned char __force *)addr = b; +} +static inline void writew(unsigned short b, volatile void __iomem *addr) +{ + *(volatile unsigned short __force *)addr = b; +} +static inline void writel(unsigned int b, volatile void __iomem *addr) +{ + *(volatile unsigned int __force *)addr = b; +} +#define __raw_writeb writeb +#define __raw_writew writew +#define __raw_writel writel + +static inline unsigned char readb(const volatile void __iomem *addr) +{ + return *(const volatile unsigned char __force *)addr; +} +static inline unsigned short readw(const volatile void __iomem *addr) +{ + return *(const volatile unsigned short __force *)addr; +} +static inline unsigned int readl(const volatile void __iomem *addr) +{ + return *(const volatile unsigned int __force *)addr; +} +#define __raw_readb readb +#define __raw_readw readw +#define __raw_readl readl + +#define writesb(p, d, l) __raw_writesb((unsigned int)p, d, l) +#define writesw(p, d, l) __raw_writesw((unsigned int)p, d, l) +#define writesl(p, d, l) __raw_writesl((unsigned int)p, d, l) + +#define readsb(p, d, l) __raw_readsb((unsigned int)p, d, l) +#define readsw(p, d, l) __raw_readsw((unsigned int)p, d, l) +#define readsl(p, d, l) __raw_readsl((unsigned int)p, d, l) + +/* + * These two are only here because ALSA _thinks_ it needs them... + */ +static inline void memcpy_fromio(void * to, const volatile void __iomem *from, + unsigned long count) +{ + char *p = to; + while (count) { + count--; + *p = readb(from); + p++; + from++; + } +} + +static inline void memcpy_toio(volatile void __iomem *to, const void * from, + unsigned long count) +{ + const char *p = from; + while (count) { + count--; + writeb(*p, to); + p++; + to++; + } +} + +static inline void memset_io(volatile void __iomem *addr, unsigned char val, + unsigned long count) +{ + memset((void __force *)addr, val, count); +} + +/* + * Bad read/write accesses... + */ +extern void __readwrite_bug(const char *fn); + +#define IO_SPACE_LIMIT 0xffffffff + +/* Convert I/O port address to virtual address */ +#define __io(p) ((void __iomem *)phys_to_uncached(p)) + +/* + * IO port access primitives + * ------------------------- + * + * The AVR32 doesn't have special IO access instructions; all IO is memory + * mapped. Note that these are defined to perform little endian accesses + * only. Their primary purpose is to access PCI and ISA peripherals. + * + * Note that for a big endian machine, this implies that the following + * big endian mode connectivity is in place. + * + * The machine specific io.h include defines __io to translate an "IO" + * address to a memory address. + * + * Note that we prevent GCC re-ordering or caching values in expressions + * by introducing sequence points into the in*() definitions. Note that + * __raw_* do not guarantee this behaviour. + * + * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space. + */ +#define outb(v, p) __raw_writeb(v, __io(p)) +#define outw(v, p) __raw_writew(cpu_to_le16(v), __io(p)) +#define outl(v, p) __raw_writel(cpu_to_le32(v), __io(p)) + +#define inb(p) __raw_readb(__io(p)) +#define inw(p) le16_to_cpu(__raw_readw(__io(p))) +#define inl(p) le32_to_cpu(__raw_readl(__io(p))) + +static inline void __outsb(unsigned long port, void *addr, unsigned int count) +{ + while (count--) { + outb(*(u8 *)addr, port); + addr++; + } +} + +static inline void __insb(unsigned long port, void *addr, unsigned int count) +{ + while (count--) { + *(u8 *)addr = inb(port); + addr++; + } +} + +static inline void __outsw(unsigned long port, void *addr, unsigned int count) +{ + while (count--) { + outw(*(u16 *)addr, port); + addr += 2; + } +} + +static inline void __insw(unsigned long port, void *addr, unsigned int count) +{ + while (count--) { + *(u16 *)addr = inw(port); + addr += 2; + } +} + +static inline void __outsl(unsigned long port, void *addr, unsigned int count) +{ + while (count--) { + outl(*(u32 *)addr, port); + addr += 4; + } +} + +static inline void __insl(unsigned long port, void *addr, unsigned int count) +{ + while (count--) { + *(u32 *)addr = inl(port); + addr += 4; + } +} + +#define outsb(port, addr, count) __outsb(port, addr, count) +#define insb(port, addr, count) __insb(port, addr, count) +#define outsw(port, addr, count) __outsw(port, addr, count) +#define insw(port, addr, count) __insw(port, addr, count) +#define outsl(port, addr, count) __outsl(port, addr, count) +#define insl(port, addr, count) __insl(port, addr, count) + +extern void __iomem *__ioremap(unsigned long offset, size_t size, + unsigned long flags); +extern void __iounmap(void __iomem *addr); + +/* + * ioremap - map bus memory into CPU space + * @offset bus address of the memory + * @size size of the resource to map + * + * ioremap performs a platform specific sequence of operations to make + * bus memory CPU accessible via the readb/.../writel functions and + * the other mmio helpers. The returned address is not guaranteed to + * be usable directly as a virtual address. + */ +#define ioremap(offset, size) \ + __ioremap((offset), (size), 0) + +#define iounmap(addr) \ + __iounmap(addr) + +#define cached(addr) P1SEGADDR(addr) +#define uncached(addr) P2SEGADDR(addr) + +#define virt_to_bus virt_to_phys +#define bus_to_virt phys_to_virt +#define page_to_bus page_to_phys +#define bus_to_page phys_to_page + +#define dma_cache_wback_inv(_start, _size) \ + flush_dcache_region(_start, _size) +#define dma_cache_inv(_start, _size) \ + invalidate_dcache_region(_start, _size) +#define dma_cache_wback(_start, _size) \ + clean_dcache_region(_start, _size) + +/* + * Convert a physical pointer to a virtual kernel pointer for /dev/mem + * access + */ +#define xlate_dev_mem_ptr(p) __va(p) + +/* + * Convert a virtual cached pointer to an uncached pointer + */ +#define xlate_dev_kmem_ptr(p) p + +#endif /* __KERNEL__ */ + +#endif /* __ASM_AVR32_IO_H */ |