summaryrefslogtreecommitdiff
path: root/drivers/usb/core
diff options
context:
space:
mode:
authorAlan Stern <stern@rowland.harvard.edu>2019-04-19 20:52:38 +0300
committerGreg Kroah-Hartman <gregkh@linuxfoundation.org>2019-04-19 22:15:13 +0300
commitc2b71462d294cf517a0bc6e4fd6424d7cee5596f (patch)
treedf8fc206e13f52f2c4b174002ef42f2e9b51996f /drivers/usb/core
parentfc834e607ae3d18e1a20bca3f9a2d7f52ea7a2be (diff)
downloadlinux-c2b71462d294cf517a0bc6e4fd6424d7cee5596f.tar.xz
USB: core: Fix bug caused by duplicate interface PM usage counter
The syzkaller fuzzer reported a bug in the USB hub driver which turned out to be caused by a negative runtime-PM usage counter. This allowed a hub to be runtime suspended at a time when the driver did not expect it. The symptom is a WARNING issued because the hub's status URB is submitted while it is already active: URB 0000000031fb463e submitted while active WARNING: CPU: 0 PID: 2917 at drivers/usb/core/urb.c:363 The negative runtime-PM usage count was caused by an unfortunate design decision made when runtime PM was first implemented for USB. At that time, USB class drivers were allowed to unbind from their interfaces without balancing the usage counter (i.e., leaving it with a positive count). The core code would take care of setting the counter back to 0 before allowing another driver to bind to the interface. Later on when runtime PM was implemented for the entire kernel, the opposite decision was made: Drivers were required to balance their runtime-PM get and put calls. In order to maintain backward compatibility, however, the USB subsystem adapted to the new implementation by keeping an independent usage counter for each interface and using it to automatically adjust the normal usage counter back to 0 whenever a driver was unbound. This approach involves duplicating information, but what is worse, it doesn't work properly in cases where a USB class driver delays decrementing the usage counter until after the driver's disconnect() routine has returned and the counter has been adjusted back to 0. Doing so would cause the usage counter to become negative. There's even a warning about this in the USB power management documentation! As it happens, this is exactly what the hub driver does. The kick_hub_wq() routine increments the runtime-PM usage counter, and the corresponding decrement is carried out by hub_event() in the context of the hub_wq work-queue thread. This work routine may sometimes run after the driver has been unbound from its interface, and when it does it causes the usage counter to go negative. It is not possible for hub_disconnect() to wait for a pending hub_event() call to finish, because hub_disconnect() is called with the device lock held and hub_event() acquires that lock. The only feasible fix is to reverse the original design decision: remove the duplicate interface-specific usage counter and require USB drivers to balance their runtime PM gets and puts. As far as I know, all existing drivers currently do this. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Reported-and-tested-by: syzbot+7634edaea4d0b341c625@syzkaller.appspotmail.com CC: <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Diffstat (limited to 'drivers/usb/core')
-rw-r--r--drivers/usb/core/driver.c13
1 files changed, 0 insertions, 13 deletions
diff --git a/drivers/usb/core/driver.c b/drivers/usb/core/driver.c
index 8987cec9549d..ebcadaad89d1 100644
--- a/drivers/usb/core/driver.c
+++ b/drivers/usb/core/driver.c
@@ -473,11 +473,6 @@ static int usb_unbind_interface(struct device *dev)
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
- /* Undo any residual pm_autopm_get_interface_* calls */
- for (r = atomic_read(&intf->pm_usage_cnt); r > 0; --r)
- usb_autopm_put_interface_no_suspend(intf);
- atomic_set(&intf->pm_usage_cnt, 0);
-
if (!error)
usb_autosuspend_device(udev);
@@ -1633,7 +1628,6 @@ void usb_autopm_put_interface(struct usb_interface *intf)
int status;
usb_mark_last_busy(udev);
- atomic_dec(&intf->pm_usage_cnt);
status = pm_runtime_put_sync(&intf->dev);
dev_vdbg(&intf->dev, "%s: cnt %d -> %d\n",
__func__, atomic_read(&intf->dev.power.usage_count),
@@ -1662,7 +1656,6 @@ void usb_autopm_put_interface_async(struct usb_interface *intf)
int status;
usb_mark_last_busy(udev);
- atomic_dec(&intf->pm_usage_cnt);
status = pm_runtime_put(&intf->dev);
dev_vdbg(&intf->dev, "%s: cnt %d -> %d\n",
__func__, atomic_read(&intf->dev.power.usage_count),
@@ -1684,7 +1677,6 @@ void usb_autopm_put_interface_no_suspend(struct usb_interface *intf)
struct usb_device *udev = interface_to_usbdev(intf);
usb_mark_last_busy(udev);
- atomic_dec(&intf->pm_usage_cnt);
pm_runtime_put_noidle(&intf->dev);
}
EXPORT_SYMBOL_GPL(usb_autopm_put_interface_no_suspend);
@@ -1715,8 +1707,6 @@ int usb_autopm_get_interface(struct usb_interface *intf)
status = pm_runtime_get_sync(&intf->dev);
if (status < 0)
pm_runtime_put_sync(&intf->dev);
- else
- atomic_inc(&intf->pm_usage_cnt);
dev_vdbg(&intf->dev, "%s: cnt %d -> %d\n",
__func__, atomic_read(&intf->dev.power.usage_count),
status);
@@ -1750,8 +1740,6 @@ int usb_autopm_get_interface_async(struct usb_interface *intf)
status = pm_runtime_get(&intf->dev);
if (status < 0 && status != -EINPROGRESS)
pm_runtime_put_noidle(&intf->dev);
- else
- atomic_inc(&intf->pm_usage_cnt);
dev_vdbg(&intf->dev, "%s: cnt %d -> %d\n",
__func__, atomic_read(&intf->dev.power.usage_count),
status);
@@ -1775,7 +1763,6 @@ void usb_autopm_get_interface_no_resume(struct usb_interface *intf)
struct usb_device *udev = interface_to_usbdev(intf);
usb_mark_last_busy(udev);
- atomic_inc(&intf->pm_usage_cnt);
pm_runtime_get_noresume(&intf->dev);
}
EXPORT_SYMBOL_GPL(usb_autopm_get_interface_no_resume);