diff options
author | Ingo Molnar <mingo@kernel.org> | 2017-09-04 12:01:18 +0300 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2017-09-04 12:01:18 +0300 |
commit | edc2988c548db05e33b921fed15821010bc74895 (patch) | |
tree | b35860428acea35e5866d4cf007519ed943a85de /drivers/gpu/drm/drm_vblank.c | |
parent | d82fed75294229abc9d757f08a4817febae6c4f4 (diff) | |
parent | 81a84ad3cb5711cec79f4dd53a4ce026b092c432 (diff) | |
download | linux-edc2988c548db05e33b921fed15821010bc74895.tar.xz |
Merge branch 'linus' into locking/core, to fix up conflicts
Conflicts:
mm/page_alloc.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'drivers/gpu/drm/drm_vblank.c')
-rw-r--r-- | drivers/gpu/drm/drm_vblank.c | 187 |
1 files changed, 76 insertions, 111 deletions
diff --git a/drivers/gpu/drm/drm_vblank.c b/drivers/gpu/drm/drm_vblank.c index e9f33cd805dd..70f2b9593edc 100644 --- a/drivers/gpu/drm/drm_vblank.c +++ b/drivers/gpu/drm/drm_vblank.c @@ -31,6 +31,41 @@ #include "drm_trace.h" #include "drm_internal.h" +/** + * DOC: vblank handling + * + * Vertical blanking plays a major role in graphics rendering. To achieve + * tear-free display, users must synchronize page flips and/or rendering to + * vertical blanking. The DRM API offers ioctls to perform page flips + * synchronized to vertical blanking and wait for vertical blanking. + * + * The DRM core handles most of the vertical blanking management logic, which + * involves filtering out spurious interrupts, keeping race-free blanking + * counters, coping with counter wrap-around and resets and keeping use counts. + * It relies on the driver to generate vertical blanking interrupts and + * optionally provide a hardware vertical blanking counter. + * + * Drivers must initialize the vertical blanking handling core with a call to + * drm_vblank_init(). Minimally, a driver needs to implement + * &drm_crtc_funcs.enable_vblank and &drm_crtc_funcs.disable_vblank plus call + * drm_crtc_handle_vblank() in it's vblank interrupt handler for working vblank + * support. + * + * Vertical blanking interrupts can be enabled by the DRM core or by drivers + * themselves (for instance to handle page flipping operations). The DRM core + * maintains a vertical blanking use count to ensure that the interrupts are not + * disabled while a user still needs them. To increment the use count, drivers + * call drm_crtc_vblank_get() and release the vblank reference again with + * drm_crtc_vblank_put(). In between these two calls vblank interrupts are + * guaranteed to be enabled. + * + * On many hardware disabling the vblank interrupt cannot be done in a race-free + * manner, see &drm_driver.vblank_disable_immediate and + * &drm_driver.max_vblank_count. In that case the vblank core only disables the + * vblanks after a timer has expired, which can be configured through the + * ``vblankoffdelay`` module parameter. + */ + /* Retry timestamp calculation up to 3 times to satisfy * drm_timestamp_precision before giving up. */ @@ -259,16 +294,17 @@ static u32 drm_vblank_count(struct drm_device *dev, unsigned int pipe) } /** - * drm_accurate_vblank_count - retrieve the master vblank counter + * drm_crtc_accurate_vblank_count - retrieve the master vblank counter * @crtc: which counter to retrieve * - * This function is similar to @drm_crtc_vblank_count but this - * function interpolates to handle a race with vblank irq's. + * This function is similar to drm_crtc_vblank_count() but this function + * interpolates to handle a race with vblank interrupts using the high precision + * timestamping support. * - * This is mostly useful for hardware that can obtain the scanout - * position, but doesn't have a frame counter. + * This is mostly useful for hardware that can obtain the scanout position, but + * doesn't have a hardware frame counter. */ -u32 drm_accurate_vblank_count(struct drm_crtc *crtc) +u32 drm_crtc_accurate_vblank_count(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; unsigned int pipe = drm_crtc_index(crtc); @@ -287,7 +323,7 @@ u32 drm_accurate_vblank_count(struct drm_crtc *crtc) return vblank; } -EXPORT_SYMBOL(drm_accurate_vblank_count); +EXPORT_SYMBOL(drm_crtc_accurate_vblank_count); static void __disable_vblank(struct drm_device *dev, unsigned int pipe) { @@ -358,15 +394,6 @@ static void vblank_disable_fn(unsigned long arg) spin_unlock_irqrestore(&dev->vbl_lock, irqflags); } -/** - * drm_vblank_cleanup - cleanup vblank support - * @dev: DRM device - * - * This function cleans up any resources allocated in drm_vblank_init. - * - * Drivers which don't use drm_irq_install() need to set &drm_device.irq_enabled - * themselves, to signal to the DRM core that vblank interrupts are enabled. - */ void drm_vblank_cleanup(struct drm_device *dev) { unsigned int pipe; @@ -388,7 +415,6 @@ void drm_vblank_cleanup(struct drm_device *dev) dev->num_crtcs = 0; } -EXPORT_SYMBOL(drm_vblank_cleanup); /** * drm_vblank_init - initialize vblank support @@ -396,6 +422,8 @@ EXPORT_SYMBOL(drm_vblank_cleanup); * @num_crtcs: number of CRTCs supported by @dev * * This function initializes vblank support for @num_crtcs display pipelines. + * Cleanup is handled by the DRM core, or through calling drm_dev_fini() for + * drivers with a &drm_driver.release callback. * * Returns: * Zero on success or a negative error code on failure. @@ -468,11 +496,11 @@ EXPORT_SYMBOL(drm_crtc_vblank_waitqueue); * @crtc: drm_crtc whose timestamp constants should be updated. * @mode: display mode containing the scanout timings * - * Calculate and store various constants which are later - * needed by vblank and swap-completion timestamping, e.g, - * by drm_calc_vbltimestamp_from_scanoutpos(). They are - * derived from CRTC's true scanout timing, so they take - * things like panel scaling or other adjustments into account. + * Calculate and store various constants which are later needed by vblank and + * swap-completion timestamping, e.g, by + * drm_calc_vbltimestamp_from_scanoutpos(). They are derived from CRTC's true + * scanout timing, so they take things like panel scaling or other adjustments + * into account. */ void drm_calc_timestamping_constants(struct drm_crtc *crtc, const struct drm_display_mode *mode) @@ -535,25 +563,14 @@ EXPORT_SYMBOL(drm_calc_timestamping_constants); * if flag is set. * * Implements calculation of exact vblank timestamps from given drm_display_mode - * timings and current video scanout position of a CRTC. This can be called from - * within get_vblank_timestamp() implementation of a kms driver to implement the - * actual timestamping. - * - * Should return timestamps conforming to the OML_sync_control OpenML - * extension specification. The timestamp corresponds to the end of - * the vblank interval, aka start of scanout of topmost-leftmost display - * pixel in the following video frame. + * timings and current video scanout position of a CRTC. This can be directly + * used as the &drm_driver.get_vblank_timestamp implementation of a kms driver + * if &drm_driver.get_scanout_position is implemented. * - * Requires support for optional dev->driver->get_scanout_position() - * in kms driver, plus a bit of setup code to provide a drm_display_mode - * that corresponds to the true scanout timing. - * - * The current implementation only handles standard video modes. It - * returns as no operation if a doublescan or interlaced video mode is - * active. Higher level code is expected to handle this. - * - * This function can be used to implement the &drm_driver.get_vblank_timestamp - * directly, if the driver implements the &drm_driver.get_scanout_position hook. + * The current implementation only handles standard video modes. For double scan + * and interlaced modes the driver is supposed to adjust the hardware mode + * (taken from &drm_crtc_state.adjusted mode for atomic modeset drivers) to + * match the scanout position reported. * * Note that atomic drivers must call drm_calc_timestamping_constants() before * enabling a CRTC. The atomic helpers already take care of that in @@ -738,7 +755,9 @@ drm_get_last_vbltimestamp(struct drm_device *dev, unsigned int pipe, * * Fetches the "cooked" vblank count value that represents the number of * vblank events since the system was booted, including lost events due to - * modesetting activity. + * modesetting activity. Note that this timer isn't correct against a racing + * vblank interrupt (since it only reports the software vblank counter), see + * drm_crtc_accurate_vblank_count() for such use-cases. * * Returns: * The software vblank counter. @@ -749,20 +768,6 @@ u32 drm_crtc_vblank_count(struct drm_crtc *crtc) } EXPORT_SYMBOL(drm_crtc_vblank_count); -/** - * drm_vblank_count_and_time - retrieve "cooked" vblank counter value and the - * system timestamp corresponding to that vblank counter value. - * @dev: DRM device - * @pipe: index of CRTC whose counter to retrieve - * @vblanktime: Pointer to struct timeval to receive the vblank timestamp. - * - * Fetches the "cooked" vblank count value that represents the number of - * vblank events since the system was booted, including lost events due to - * modesetting activity. Returns corresponding system timestamp of the time - * of the vblank interval that corresponds to the current vblank counter value. - * - * This is the legacy version of drm_crtc_vblank_count_and_time(). - */ static u32 drm_vblank_count_and_time(struct drm_device *dev, unsigned int pipe, struct timeval *vblanktime) { @@ -831,7 +836,7 @@ static void send_vblank_event(struct drm_device *dev, * NOTE: Drivers using this to send out the &drm_crtc_state.event as part of an * atomic commit must ensure that the next vblank happens at exactly the same * time as the atomic commit is committed to the hardware. This function itself - * does **not** protect again the next vblank interrupt racing with either this + * does **not** protect against the next vblank interrupt racing with either this * function call or the atomic commit operation. A possible sequence could be: * * 1. Driver commits new hardware state into vblank-synchronized registers. @@ -852,8 +857,8 @@ static void send_vblank_event(struct drm_device *dev, * handler by calling drm_crtc_send_vblank_event() and make sure that there's no * possible race with the hardware committing the atomic update. * - * Caller must hold event lock. Caller must also hold a vblank reference for - * the event @e, which will be dropped when the next vblank arrives. + * Caller must hold a vblank reference for the event @e, which will be dropped + * when the next vblank arrives. */ void drm_crtc_arm_vblank_event(struct drm_crtc *crtc, struct drm_pending_vblank_event *e) @@ -913,14 +918,6 @@ static int __enable_vblank(struct drm_device *dev, unsigned int pipe) return dev->driver->enable_vblank(dev, pipe); } -/** - * drm_vblank_enable - enable the vblank interrupt on a CRTC - * @dev: DRM device - * @pipe: CRTC index - * - * Returns: - * Zero on success or a negative error code on failure. - */ static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) { struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; @@ -958,19 +955,6 @@ static int drm_vblank_enable(struct drm_device *dev, unsigned int pipe) return ret; } -/** - * drm_vblank_get - get a reference count on vblank events - * @dev: DRM device - * @pipe: index of CRTC to own - * - * Acquire a reference count on vblank events to avoid having them disabled - * while in use. - * - * This is the legacy version of drm_crtc_vblank_get(). - * - * Returns: - * Zero on success or a negative error code on failure. - */ static int drm_vblank_get(struct drm_device *dev, unsigned int pipe) { struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; @@ -1014,16 +998,6 @@ int drm_crtc_vblank_get(struct drm_crtc *crtc) } EXPORT_SYMBOL(drm_crtc_vblank_get); -/** - * drm_vblank_put - release ownership of vblank events - * @dev: DRM device - * @pipe: index of CRTC to release - * - * Release ownership of a given vblank counter, turning off interrupts - * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. - * - * This is the legacy version of drm_crtc_vblank_put(). - */ static void drm_vblank_put(struct drm_device *dev, unsigned int pipe) { struct drm_vblank_crtc *vblank = &dev->vblank[pipe]; @@ -1067,6 +1041,8 @@ EXPORT_SYMBOL(drm_crtc_vblank_put); * This waits for one vblank to pass on @pipe, using the irq driver interfaces. * It is a failure to call this when the vblank irq for @pipe is disabled, e.g. * due to lack of driver support or because the crtc is off. + * + * This is the legacy version of drm_crtc_wait_one_vblank(). */ void drm_wait_one_vblank(struct drm_device *dev, unsigned int pipe) { @@ -1116,7 +1092,7 @@ EXPORT_SYMBOL(drm_crtc_wait_one_vblank); * stored so that drm_vblank_on can restore it again. * * Drivers must use this function when the hardware vblank counter can get - * reset, e.g. when suspending. + * reset, e.g. when suspending or disabling the @crtc in general. */ void drm_crtc_vblank_off(struct drm_crtc *crtc) { @@ -1184,6 +1160,8 @@ EXPORT_SYMBOL(drm_crtc_vblank_off); * drm_crtc_vblank_on() functions. The difference compared to * drm_crtc_vblank_off() is that this function doesn't save the vblank counter * and hence doesn't need to call any driver hooks. + * + * This is useful for recovering driver state e.g. on driver load, or on resume. */ void drm_crtc_vblank_reset(struct drm_crtc *crtc) { @@ -1212,9 +1190,10 @@ EXPORT_SYMBOL(drm_crtc_vblank_reset); * @crtc: CRTC in question * * This functions restores the vblank interrupt state captured with - * drm_crtc_vblank_off() again. Note that calls to drm_crtc_vblank_on() and - * drm_crtc_vblank_off() can be unbalanced and so can also be unconditionally called - * in driver load code to reflect the current hardware state of the crtc. + * drm_crtc_vblank_off() again and is generally called when enabling @crtc. Note + * that calls to drm_crtc_vblank_on() and drm_crtc_vblank_off() can be + * unbalanced and so can also be unconditionally called in driver load code to + * reflect the current hardware state of the crtc. */ void drm_crtc_vblank_on(struct drm_crtc *crtc) { @@ -1299,8 +1278,8 @@ static void drm_legacy_vblank_post_modeset(struct drm_device *dev, } } -int drm_legacy_modeset_ctl(struct drm_device *dev, void *data, - struct drm_file *file_priv) +int drm_legacy_modeset_ctl_ioctl(struct drm_device *dev, void *data, + struct drm_file *file_priv) { struct drm_modeset_ctl *modeset = data; unsigned int pipe; @@ -1419,22 +1398,8 @@ static bool drm_wait_vblank_is_query(union drm_wait_vblank *vblwait) _DRM_VBLANK_NEXTONMISS)); } -/* - * Wait for VBLANK. - * - * \param inode device inode. - * \param file_priv DRM file private. - * \param cmd command. - * \param data user argument, pointing to a drm_wait_vblank structure. - * \return zero on success or a negative number on failure. - * - * This function enables the vblank interrupt on the pipe requested, then - * sleeps waiting for the requested sequence number to occur, and drops - * the vblank interrupt refcount afterwards. (vblank IRQ disable follows that - * after a timeout with no further vblank waits scheduled). - */ -int drm_wait_vblank(struct drm_device *dev, void *data, - struct drm_file *file_priv) +int drm_wait_vblank_ioctl(struct drm_device *dev, void *data, + struct drm_file *file_priv) { struct drm_vblank_crtc *vblank; union drm_wait_vblank *vblwait = data; |