diff options
author | Deven Bowers <deven.desai@linux.microsoft.com> | 2024-08-03 09:08:33 +0300 |
---|---|---|
committer | Paul Moore <paul@paul-moore.com> | 2024-08-20 21:03:47 +0300 |
commit | ac6731870ed943c7c6a8d4114b3ccaddfbdf7d58 (patch) | |
tree | cefdb5d8a8801e6d96bbd2c27d192e8c010e3433 /Documentation/security | |
parent | 10ca05a7606519c7ec6a4b48be00ef90822c36a8 (diff) | |
download | linux-ac6731870ed943c7c6a8d4114b3ccaddfbdf7d58.tar.xz |
documentation: add IPE documentation
Add IPE's admin and developer documentation to the kernel tree.
Co-developed-by: Fan Wu <wufan@linux.microsoft.com>
Signed-off-by: Deven Bowers <deven.desai@linux.microsoft.com>
Signed-off-by: Fan Wu <wufan@linux.microsoft.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Diffstat (limited to 'Documentation/security')
-rw-r--r-- | Documentation/security/index.rst | 1 | ||||
-rw-r--r-- | Documentation/security/ipe.rst | 446 |
2 files changed, 447 insertions, 0 deletions
diff --git a/Documentation/security/index.rst b/Documentation/security/index.rst index 59f8fc106cb0..3e0a7114a862 100644 --- a/Documentation/security/index.rst +++ b/Documentation/security/index.rst @@ -19,3 +19,4 @@ Security Documentation digsig landlock secrets/index + ipe diff --git a/Documentation/security/ipe.rst b/Documentation/security/ipe.rst new file mode 100644 index 000000000000..4a7d953abcdc --- /dev/null +++ b/Documentation/security/ipe.rst @@ -0,0 +1,446 @@ +.. SPDX-License-Identifier: GPL-2.0 + +Integrity Policy Enforcement (IPE) - Kernel Documentation +========================================================= + +.. NOTE:: + + This is documentation targeted at developers, instead of administrators. + If you're looking for documentation on the usage of IPE, please see + :doc:`IPE admin guide </admin-guide/LSM/ipe>`. + +Historical Motivation +--------------------- + +The original issue that prompted IPE's implementation was the creation +of a locked-down system. This system would be born-secure, and have +strong integrity guarantees over both the executable code, and specific +*data files* on the system, that were critical to its function. These +specific data files would not be readable unless they passed integrity +policy. A mandatory access control system would be present, and +as a result, xattrs would have to be protected. This lead to a selection +of what would provide the integrity claims. At the time, there were two +main mechanisms considered that could guarantee integrity for the system +with these requirements: + + 1. IMA + EVM Signatures + 2. DM-Verity + +Both options were carefully considered, however the choice to use DM-Verity +over IMA+EVM as the *integrity mechanism* in the original use case of IPE +was due to three main reasons: + + 1. Protection of additional attack vectors: + + * With IMA+EVM, without an encryption solution, the system is vulnerable + to offline attack against the aforementioned specific data files. + + Unlike executables, read operations (like those on the protected data + files), cannot be enforced to be globally integrity verified. This means + there must be some form of selector to determine whether a read should + enforce the integrity policy, or it should not. + + At the time, this was done with mandatory access control labels. An IMA + policy would indicate what labels required integrity verification, which + presented an issue: EVM would protect the label, but if an attacker could + modify filesystem offline, the attacker could wipe all the xattrs - + including the SELinux labels that would be used to determine whether the + file should be subject to integrity policy. + + With DM-Verity, as the xattrs are saved as part of the Merkel tree, if + offline mount occurs against the filesystem protected by dm-verity, the + checksum no longer matches and the file fails to be read. + + * As userspace binaries are paged in Linux, dm-verity also offers the + additional protection against a hostile block device. In such an attack, + the block device reports the appropriate content for the IMA hash + initially, passing the required integrity check. Then, on the page fault + that accesses the real data, will report the attacker's payload. Since + dm-verity will check the data when the page fault occurs (and the disk + access), this attack is mitigated. + + 2. Performance: + + * dm-verity provides integrity verification on demand as blocks are + read versus requiring the entire file being read into memory for + validation. + + 3. Simplicity of signing: + + * No need for two signatures (IMA, then EVM): one signature covers + an entire block device. + * Signatures can be stored externally to the filesystem metadata. + * The signature supports an x.509-based signing infrastructure. + +The next step was to choose a *policy* to enforce the integrity mechanism. +The minimum requirements for the policy were: + + 1. The policy itself must be integrity verified (preventing trivial + attack against it). + 2. The policy itself must be resistant to rollback attacks. + 3. The policy enforcement must have a permissive-like mode. + 4. The policy must be able to be updated, in its entirety, without + a reboot. + 5. Policy updates must be atomic. + 6. The policy must support *revocations* of previously authored + components. + 7. The policy must be auditable, at any point-of-time. + +IMA, as the only integrity policy mechanism at the time, was +considered against these list of requirements, and did not fulfill +all of the minimum requirements. Extending IMA to cover these +requirements was considered, but ultimately discarded for a +two reasons: + + 1. Regression risk; many of these changes would result in + dramatic code changes to IMA, which is already present in the + kernel, and therefore might impact users. + + 2. IMA was used in the system for measurement and attestation; + separation of measurement policy from local integrity policy + enforcement was considered favorable. + +Due to these reasons, it was decided that a new LSM should be created, +whose responsibility would be only the local integrity policy enforcement. + +Role and Scope +-------------- + +IPE, as its name implies, is fundamentally an integrity policy enforcement +solution; IPE does not mandate how integrity is provided, but instead +leaves that decision to the system administrator to set the security bar, +via the mechanisms that they select that suit their individual needs. +There are several different integrity solutions that provide a different +level of security guarantees; and IPE allows sysadmins to express policy for +theoretically all of them. + +IPE does not have an inherent mechanism to ensure integrity on its own. +Instead, there are more effective layers available for building systems that +can guarantee integrity. It's important to note that the mechanism for proving +integrity is independent of the policy for enforcing that integrity claim. + +Therefore, IPE was designed around: + + 1. Easy integrations with integrity providers. + 2. Ease of use for platform administrators/sysadmins. + +Design Rationale: +----------------- + +IPE was designed after evaluating existing integrity policy solutions +in other operating systems and environments. In this survey of other +implementations, there were a few pitfalls identified: + + 1. Policies were not readable by humans, usually requiring a binary + intermediary format. + 2. A single, non-customizable action was implicitly taken as a default. + 3. Debugging the policy required manual steps to determine what rule was violated. + 4. Authoring a policy required an in-depth knowledge of the larger system, + or operating system. + +IPE attempts to avoid all of these pitfalls. + +Policy +~~~~~~ + +Plain Text +^^^^^^^^^^ + +IPE's policy is plain-text. This introduces slightly larger policy files than +other LSMs, but solves two major problems that occurs with some integrity policy +solutions on other platforms. + +The first issue is one of code maintenance and duplication. To author policies, +the policy has to be some form of string representation (be it structured, +through XML, JSON, YAML, etcetera), to allow the policy author to understand +what is being written. In a hypothetical binary policy design, a serializer +is necessary to write the policy from the human readable form, to the binary +form, and a deserializer is needed to interpret the binary form into a data +structure in the kernel. + +Eventually, another deserializer will be needed to transform the binary from +back into the human-readable form with as much information preserved. This is because a +user of this access control system will have to keep a lookup table of a checksum +and the original file itself to try to understand what policies have been deployed +on this system and what policies have not. For a single user, this may be alright, +as old policies can be discarded almost immediately after the update takes hold. +For users that manage computer fleets in the thousands, if not hundreds of thousands, +with multiple different operating systems, and multiple different operational needs, +this quickly becomes an issue, as stale policies from years ago may be present, +quickly resulting in the need to recover the policy or fund extensive infrastructure +to track what each policy contains. + +With now three separate serializer/deserializers, maintenance becomes costly. If the +policy avoids the binary format, there is only one required serializer: from the +human-readable form to the data structure in kernel, saving on code maintenance, +and retaining operability. + +The second issue with a binary format is one of transparency. As IPE controls +access based on the trust of the system's resources, it's policy must also be +trusted to be changed. This is done through signatures, resulting in needing +signing as a process. Signing, as a process, is typically done with a +high security bar, as anything signed can be used to attack integrity +enforcement systems. It is also important that, when signing something, that +the signer is aware of what they are signing. A binary policy can cause +obfuscation of that fact; what signers see is an opaque binary blob. A +plain-text policy, on the other hand, the signers see the actual policy +submitted for signing. + +Boot Policy +~~~~~~~~~~~ + +IPE, if configured appropriately, is able to enforce a policy as soon as a +kernel is booted and usermode starts. That implies some level of storage +of the policy to apply the minute usermode starts. Generally, that storage +can be handled in one of three ways: + + 1. The policy file(s) live on disk and the kernel loads the policy prior + to an code path that would result in an enforcement decision. + 2. The policy file(s) are passed by the bootloader to the kernel, who + parses the policy. + 3. There is a policy file that is compiled into the kernel that is + parsed and enforced on initialization. + +The first option has problems: the kernel reading files from userspace +is typically discouraged and very uncommon in the kernel. + +The second option also has problems: Linux supports a variety of bootloaders +across its entire ecosystem - every bootloader would have to support this +new methodology or there must be an independent source. It would likely +result in more drastic changes to the kernel startup than necessary. + +The third option is the best but it's important to be aware that the policy +will take disk space against the kernel it's compiled in. It's important to +keep this policy generalized enough that userspace can load a new, more +complicated policy, but restrictive enough that it will not overauthorize +and cause security issues. + +The initramfs provides a way that this bootup path can be established. The +kernel starts with a minimal policy, that trusts the initramfs only. Inside +the initramfs, when the real rootfs is mounted, but not yet transferred to, +it deploys and activates a policy that trusts the new root filesystem. +This prevents overauthorization at any step, and keeps the kernel policy +to a minimal size. + +Startup +^^^^^^^ + +Not every system, however starts with an initramfs, so the startup policy +compiled into the kernel will need some flexibility to express how trust +is established for the next phase of the bootup. To this end, if we just +make the compiled-in policy a full IPE policy, it allows system builders +to express the first stage bootup requirements appropriately. + +Updatable, Rebootless Policy +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +As requirements change over time (vulnerabilities are found in previously +trusted applications, keys roll, etcetera). Updating a kernel to change the +meet those security goals is not always a suitable option, as updates are not +always risk-free, and blocking a security update leaves systems vulnerable. +This means IPE requires a policy that can be completely updated (allowing +revocations of existing policy) from a source external to the kernel (allowing +policies to be updated without updating the kernel). + +Additionally, since the kernel is stateless between invocations, and reading +policy files off the disk from kernel space is a bad idea(tm), then the +policy updates have to be done rebootlessly. + +To allow an update from an external source, it could be potentially malicious, +so this policy needs to have a way to be identified as trusted. This is +done via a signature chained to a trust source in the kernel. Arbitrarily, +this is the ``SYSTEM_TRUSTED_KEYRING``, a keyring that is initially +populated at kernel compile-time, as this matches the expectation that the +author of the compiled-in policy described above is the same entity that can +deploy policy updates. + +Anti-Rollback / Anti-Replay +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Over time, vulnerabilities are found and trusted resources may not be +trusted anymore. IPE's policy has no exception to this. There can be +instances where a mistaken policy author deploys an insecure policy, +before correcting it with a secure policy. + +Assuming that as soon as the insecure policy is signed, and an attacker +acquires the insecure policy, IPE needs a way to prevent rollback +from the secure policy update to the insecure policy update. + +Initially, IPE's policy can have a policy_version that states the +minimum required version across all policies that can be active on +the system. This will prevent rollback while the system is live. + +.. WARNING:: + + However, since the kernel is stateless across boots, this policy + version will be reset to 0.0.0 on the next boot. System builders + need to be aware of this, and ensure the new secure policies are + deployed ASAP after a boot to ensure that the window of + opportunity is minimal for an attacker to deploy the insecure policy. + +Implicit Actions: +~~~~~~~~~~~~~~~~~ + +The issue of implicit actions only becomes visible when you consider +a mixed level of security bars across multiple operations in a system. +For example, consider a system that has strong integrity guarantees +over both the executable code, and specific *data files* on the system, +that were critical to its function. In this system, three types of policies +are possible: + + 1. A policy in which failure to match any rules in the policy results + in the action being denied. + 2. A policy in which failure to match any rules in the policy results + in the action being allowed. + 3. A policy in which the action taken when no rules are matched is + specified by the policy author. + +The first option could make a policy like this:: + + op=EXECUTE integrity_verified=YES action=ALLOW + +In the example system, this works well for the executables, as all +executables should have integrity guarantees, without exception. The +issue becomes with the second requirement about specific data files. +This would result in a policy like this (assuming each line is +evaluated in order):: + + op=EXECUTE integrity_verified=YES action=ALLOW + + op=READ integrity_verified=NO label=critical_t action=DENY + op=READ action=ALLOW + +This is somewhat clear if you read the docs, understand the policy +is executed in order and that the default is a denial; however, the +last line effectively changes that default to an ALLOW. This is +required, because in a realistic system, there are some unverified +reads (imagine appending to a log file). + +The second option, matching no rules results in an allow, is clearer +for the specific data files:: + + op=READ integrity_verified=NO label=critical_t action=DENY + +And, like the first option, falls short with the execution scenario, +effectively needing to override the default:: + + op=EXECUTE integrity_verified=YES action=ALLOW + op=EXECUTE action=DENY + + op=READ integrity_verified=NO label=critical_t action=DENY + +This leaves the third option. Instead of making users be clever +and override the default with an empty rule, force the end-user +to consider what the appropriate default should be for their +scenario and explicitly state it:: + + DEFAULT op=EXECUTE action=DENY + op=EXECUTE integrity_verified=YES action=ALLOW + + DEFAULT op=READ action=ALLOW + op=READ integrity_verified=NO label=critical_t action=DENY + +Policy Debugging: +~~~~~~~~~~~~~~~~~ + +When developing a policy, it is useful to know what line of the policy +is being violated to reduce debugging costs; narrowing the scope of the +investigation to the exact line that resulted in the action. Some integrity +policy systems do not provide this information, instead providing the +information that was used in the evaluation. This then requires a correlation +with the policy to evaluate what went wrong. + +Instead, IPE just emits the rule that was matched. This limits the scope +of the investigation to the exact policy line (in the case of a specific +rule), or the section (in the case of a DEFAULT). This decreases iteration +and investigation times when policy failures are observed while evaluating +policies. + +IPE's policy engine is also designed in a way that it makes it obvious to +a human of how to investigate a policy failure. Each line is evaluated in +the sequence that is written, so the algorithm is very simple to follow +for humans to recreate the steps and could have caused the failure. In other +surveyed systems, optimizations occur (sorting rules, for instance) when loading +the policy. In those systems, it requires multiple steps to debug, and the +algorithm may not always be clear to the end-user without reading the code first. + +Simplified Policy: +~~~~~~~~~~~~~~~~~~ + +Finally, IPE's policy is designed for sysadmins, not kernel developers. Instead +of covering individual LSM hooks (or syscalls), IPE covers operations. This means +instead of sysadmins needing to know that the syscalls ``mmap``, ``mprotect``, +``execve``, and ``uselib`` must have rules protecting them, they must simple know +that they want to restrict code execution. This limits the amount of bypasses that +could occur due to a lack of knowledge of the underlying system; whereas the +maintainers of IPE, being kernel developers can make the correct choice to determine +whether something maps to these operations, and under what conditions. + +Implementation Notes +-------------------- + +Anonymous Memory +~~~~~~~~~~~~~~~~ + +Anonymous memory isn't treated any differently from any other access in IPE. +When anonymous memory is mapped with ``+X``, it still comes into the ``file_mmap`` +or ``file_mprotect`` hook, but with a ``NULL`` file object. This is submitted to +the evaluation, like any other file. However, all current trust properties will +evaluate to false, as they are all file-based and the operation is not +associated with a file. + +.. WARNING:: + + This also occurs with the ``kernel_load_data`` hook, when the kernel is + loading data from a userspace buffer that is not backed by a file. In this + scenario all current trust properties will also evaluate to false. + +Securityfs Interface +~~~~~~~~~~~~~~~~~~~~ + +The per-policy securityfs tree is somewhat unique. For example, for +a standard securityfs policy tree:: + + MyPolicy + |- active + |- delete + |- name + |- pkcs7 + |- policy + |- update + |- version + +The policy is stored in the ``->i_private`` data of the MyPolicy inode. + +Tests +----- + +IPE has KUnit Tests for the policy parser. Recommended kunitconfig:: + + CONFIG_KUNIT=y + CONFIG_SECURITY=y + CONFIG_SECURITYFS=y + CONFIG_PKCS7_MESSAGE_PARSER=y + CONFIG_SYSTEM_DATA_VERIFICATION=y + CONFIG_FS_VERITY=y + CONFIG_FS_VERITY_BUILTIN_SIGNATURES=y + CONFIG_BLOCK=y + CONFIG_MD=y + CONFIG_BLK_DEV_DM=y + CONFIG_DM_VERITY=y + CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG=y + CONFIG_NET=y + CONFIG_AUDIT=y + CONFIG_AUDITSYSCALL=y + CONFIG_BLK_DEV_INITRD=y + + CONFIG_SECURITY_IPE=y + CONFIG_IPE_PROP_DM_VERITY=y + CONFIG_IPE_PROP_DM_VERITY_SIGNATURE=y + CONFIG_IPE_PROP_FS_VERITY=y + CONFIG_IPE_PROP_FS_VERITY_BUILTIN_SIG=y + CONFIG_SECURITY_IPE_KUNIT_TEST=y + +In addition, IPE has a python based integration +`test suite <https://github.com/microsoft/ipe/tree/test-suite>`_ that +can test both user interfaces and enforcement functionalities. |