diff options
author | Dave Ertman <david.m.ertman@intel.com> | 2020-12-03 03:54:24 +0300 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@linuxfoundation.org> | 2020-12-04 14:23:25 +0300 |
commit | 7de3697e9cbd4bd3d62bafa249d57990e1b8f294 (patch) | |
tree | f7cc86874738deef11a859b92c792807c7f8aa4d /Documentation/driver-api | |
parent | f8394f232b1eab649ce2df5c5f15b0e528c92091 (diff) | |
download | linux-7de3697e9cbd4bd3d62bafa249d57990e1b8f294.tar.xz |
Add auxiliary bus support
Add support for the Auxiliary Bus, auxiliary_device and auxiliary_driver.
It enables drivers to create an auxiliary_device and bind an
auxiliary_driver to it.
The bus supports probe/remove shutdown and suspend/resume callbacks.
Each auxiliary_device has a unique string based id; driver binds to
an auxiliary_device based on this id through the bus.
Co-developed-by: Kiran Patil <kiran.patil@intel.com>
Co-developed-by: Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
Co-developed-by: Fred Oh <fred.oh@linux.intel.com>
Co-developed-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Kiran Patil <kiran.patil@intel.com>
Signed-off-by: Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
Signed-off-by: Fred Oh <fred.oh@linux.intel.com>
Signed-off-by: Leon Romanovsky <leonro@nvidia.com>
Signed-off-by: Dave Ertman <david.m.ertman@intel.com>
Reviewed-by: Pierre-Louis Bossart <pierre-louis.bossart@linux.intel.com>
Reviewed-by: Shiraz Saleem <shiraz.saleem@intel.com>
Reviewed-by: Parav Pandit <parav@mellanox.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Martin Habets <mhabets@solarflare.com>
Link: https://lore.kernel.org/r/20201113161859.1775473-2-david.m.ertman@intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/160695681289.505290.8978295443574440604.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r-- | Documentation/driver-api/auxiliary_bus.rst | 234 | ||||
-rw-r--r-- | Documentation/driver-api/index.rst | 1 |
2 files changed, 235 insertions, 0 deletions
diff --git a/Documentation/driver-api/auxiliary_bus.rst b/Documentation/driver-api/auxiliary_bus.rst new file mode 100644 index 000000000000..5dd7804631ef --- /dev/null +++ b/Documentation/driver-api/auxiliary_bus.rst @@ -0,0 +1,234 @@ +.. SPDX-License-Identifier: GPL-2.0-only + +============= +Auxiliary Bus +============= + +In some subsystems, the functionality of the core device (PCI/ACPI/other) is +too complex for a single device to be managed by a monolithic driver +(e.g. Sound Open Firmware), multiple devices might implement a common +intersection of functionality (e.g. NICs + RDMA), or a driver may want to +export an interface for another subsystem to drive (e.g. SIOV Physical Function +export Virtual Function management). A split of the functinoality into child- +devices representing sub-domains of functionality makes it possible to +compartmentalize, layer, and distribute domain-specific concerns via a Linux +device-driver model. + +An example for this kind of requirement is the audio subsystem where a single +IP is handling multiple entities such as HDMI, Soundwire, local devices such as +mics/speakers etc. The split for the core's functionality can be arbitrary or +be defined by the DSP firmware topology and include hooks for test/debug. This +allows for the audio core device to be minimal and focused on hardware-specific +control and communication. + +Each auxiliary_device represents a part of its parent functionality. The +generic behavior can be extended and specialized as needed by encapsulating an +auxiliary_device within other domain-specific structures and the use of .ops +callbacks. Devices on the auxiliary bus do not share any structures and the use +of a communication channel with the parent is domain-specific. + +Note that ops are intended as a way to augment instance behavior within a class +of auxiliary devices, it is not the mechanism for exporting common +infrastructure from the parent. Consider EXPORT_SYMBOL_NS() to convey +infrastructure from the parent module to the auxiliary module(s). + + +When Should the Auxiliary Bus Be Used +===================================== + +The auxiliary bus is to be used when a driver and one or more kernel modules, +who share a common header file with the driver, need a mechanism to connect and +provide access to a shared object allocated by the auxiliary_device's +registering driver. The registering driver for the auxiliary_device(s) and the +kernel module(s) registering auxiliary_drivers can be from the same subsystem, +or from multiple subsystems. + +The emphasis here is on a common generic interface that keeps subsystem +customization out of the bus infrastructure. + +One example is a PCI network device that is RDMA-capable and exports a child +device to be driven by an auxiliary_driver in the RDMA subsystem. The PCI +driver allocates and registers an auxiliary_device for each physical +function on the NIC. The RDMA driver registers an auxiliary_driver that claims +each of these auxiliary_devices. This conveys data/ops published by the parent +PCI device/driver to the RDMA auxiliary_driver. + +Another use case is for the PCI device to be split out into multiple sub +functions. For each sub function an auxiliary_device is created. A PCI sub +function driver binds to such devices that creates its own one or more class +devices. A PCI sub function auxiliary device is likely to be contained in a +struct with additional attributes such as user defined sub function number and +optional attributes such as resources and a link to the parent device. These +attributes could be used by systemd/udev; and hence should be initialized +before a driver binds to an auxiliary_device. + +A key requirement for utilizing the auxiliary bus is that there is no +dependency on a physical bus, device, register accesses or regmap support. +These individual devices split from the core cannot live on the platform bus as +they are not physical devices that are controlled by DT/ACPI. The same +argument applies for not using MFD in this scenario as MFD relies on individual +function devices being physical devices. + +Auxiliary Device +================ + +An auxiliary_device represents a part of its parent device's functionality. It +is given a name that, combined with the registering drivers KBUILD_MODNAME, +creates a match_name that is used for driver binding, and an id that combined +with the match_name provide a unique name to register with the bus subsystem. + +Registering an auxiliary_device is a two-step process. First call +auxiliary_device_init(), which checks several aspects of the auxiliary_device +struct and performs a device_initialize(). After this step completes, any +error state must have a call to auxiliary_device_uninit() in its resolution path. +The second step in registering an auxiliary_device is to perform a call to +auxiliary_device_add(), which sets the name of the device and add the device to +the bus. + +Unregistering an auxiliary_device is also a two-step process to mirror the +register process. First call auxiliary_device_delete(), then call +auxiliary_device_uninit(). + +.. code-block:: c + + struct auxiliary_device { + struct device dev; + const char *name; + u32 id; + }; + +If two auxiliary_devices both with a match_name "mod.foo" are registered onto +the bus, they must have unique id values (e.g. "x" and "y") so that the +registered devices names are "mod.foo.x" and "mod.foo.y". If match_name + id +are not unique, then the device_add fails and generates an error message. + +The auxiliary_device.dev.type.release or auxiliary_device.dev.release must be +populated with a non-NULL pointer to successfully register the auxiliary_device. + +The auxiliary_device.dev.parent must also be populated. + +Auxiliary Device Memory Model and Lifespan +------------------------------------------ + +The registering driver is the entity that allocates memory for the +auxiliary_device and register it on the auxiliary bus. It is important to note +that, as opposed to the platform bus, the registering driver is wholly +responsible for the management for the memory used for the driver object. + +A parent object, defined in the shared header file, contains the +auxiliary_device. It also contains a pointer to the shared object(s), which +also is defined in the shared header. Both the parent object and the shared +object(s) are allocated by the registering driver. This layout allows the +auxiliary_driver's registering module to perform a container_of() call to go +from the pointer to the auxiliary_device, that is passed during the call to the +auxiliary_driver's probe function, up to the parent object, and then have +access to the shared object(s). + +The memory for the auxiliary_device is freed only in its release() callback +flow as defined by its registering driver. + +The memory for the shared object(s) must have a lifespan equal to, or greater +than, the lifespan of the memory for the auxiliary_device. The auxiliary_driver +should only consider that this shared object is valid as long as the +auxiliary_device is still registered on the auxiliary bus. It is up to the +registering driver to manage (e.g. free or keep available) the memory for the +shared object beyond the life of the auxiliary_device. + +The registering driver must unregister all auxiliary devices before its own +driver.remove() is completed. + +Auxiliary Drivers +================= + +Auxiliary drivers follow the standard driver model convention, where +discovery/enumeration is handled by the core, and drivers +provide probe() and remove() methods. They support power management +and shutdown notifications using the standard conventions. + +.. code-block:: c + + struct auxiliary_driver { + int (*probe)(struct auxiliary_device *, + const struct auxiliary_device_id *id); + int (*remove)(struct auxiliary_device *); + void (*shutdown)(struct auxiliary_device *); + int (*suspend)(struct auxiliary_device *, pm_message_t); + int (*resume)(struct auxiliary_device *); + struct device_driver driver; + const struct auxiliary_device_id *id_table; + }; + +Auxiliary drivers register themselves with the bus by calling +auxiliary_driver_register(). The id_table contains the match_names of auxiliary +devices that a driver can bind with. + +Example Usage +============= + +Auxiliary devices are created and registered by a subsystem-level core device +that needs to break up its functionality into smaller fragments. One way to +extend the scope of an auxiliary_device is to encapsulate it within a domain- +pecific structure defined by the parent device. This structure contains the +auxiliary_device and any associated shared data/callbacks needed to establish +the connection with the parent. + +An example is: + +.. code-block:: c + + struct foo { + struct auxiliary_device auxdev; + void (*connect)(struct auxiliary_device *auxdev); + void (*disconnect)(struct auxiliary_device *auxdev); + void *data; + }; + +The parent device then registers the auxiliary_device by calling +auxiliary_device_init(), and then auxiliary_device_add(), with the pointer to +the auxdev member of the above structure. The parent provides a name for the +auxiliary_device that, combined with the parent's KBUILD_MODNAME, creates a +match_name that is be used for matching and binding with a driver. + +Whenever an auxiliary_driver is registered, based on the match_name, the +auxiliary_driver's probe() is invoked for the matching devices. The +auxiliary_driver can also be encapsulated inside custom drivers that make the +core device's functionality extensible by adding additional domain-specific ops +as follows: + +.. code-block:: c + + struct my_ops { + void (*send)(struct auxiliary_device *auxdev); + void (*receive)(struct auxiliary_device *auxdev); + }; + + + struct my_driver { + struct auxiliary_driver auxiliary_drv; + const struct my_ops ops; + }; + +An example of this type of usage is: + +.. code-block:: c + + const struct auxiliary_device_id my_auxiliary_id_table[] = { + { .name = "foo_mod.foo_dev" }, + { }, + }; + + const struct my_ops my_custom_ops = { + .send = my_tx, + .receive = my_rx, + }; + + const struct my_driver my_drv = { + .auxiliary_drv = { + .name = "myauxiliarydrv", + .id_table = my_auxiliary_id_table, + .probe = my_probe, + .remove = my_remove, + .shutdown = my_shutdown, + }, + .ops = my_custom_ops, + }; diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index f357f3eb400c..86759a74b7f1 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -72,6 +72,7 @@ available subsections can be seen below. thermal/index fpga/index acpi/index + auxiliary_bus backlight/lp855x-driver.rst connector console |