summaryrefslogtreecommitdiff
path: root/Documentation/admin-guide/hw-vuln
diff options
context:
space:
mode:
authorDaniel Sneddon <daniel.sneddon@linux.intel.com>2022-08-03 01:47:01 +0300
committerBorislav Petkov <bp@suse.de>2022-08-03 12:23:52 +0300
commit2b1299322016731d56807aa49254a5ea3080b6b3 (patch)
treef64540ab8e1dd3283e7184bd25daa6b7dd7de2d0 /Documentation/admin-guide/hw-vuln
parent3d7cb6b04c3f3115719235cc6866b10326de34cd (diff)
downloadlinux-2b1299322016731d56807aa49254a5ea3080b6b3.tar.xz
x86/speculation: Add RSB VM Exit protections
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as documented for RET instructions after VM exits. Mitigate it with a new one-entry RSB stuffing mechanism and a new LFENCE. == Background == Indirect Branch Restricted Speculation (IBRS) was designed to help mitigate Branch Target Injection and Speculative Store Bypass, i.e. Spectre, attacks. IBRS prevents software run in less privileged modes from affecting branch prediction in more privileged modes. IBRS requires the MSR to be written on every privilege level change. To overcome some of the performance issues of IBRS, Enhanced IBRS was introduced. eIBRS is an "always on" IBRS, in other words, just turn it on once instead of writing the MSR on every privilege level change. When eIBRS is enabled, more privileged modes should be protected from less privileged modes, including protecting VMMs from guests. == Problem == Here's a simplification of how guests are run on Linux' KVM: void run_kvm_guest(void) { // Prepare to run guest VMRESUME(); // Clean up after guest runs } The execution flow for that would look something like this to the processor: 1. Host-side: call run_kvm_guest() 2. Host-side: VMRESUME 3. Guest runs, does "CALL guest_function" 4. VM exit, host runs again 5. Host might make some "cleanup" function calls 6. Host-side: RET from run_kvm_guest() Now, when back on the host, there are a couple of possible scenarios of post-guest activity the host needs to do before executing host code: * on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not touched and Linux has to do a 32-entry stuffing. * on eIBRS hardware, VM exit with IBRS enabled, or restoring the host IBRS=1 shortly after VM exit, has a documented side effect of flushing the RSB except in this PBRSB situation where the software needs to stuff the last RSB entry "by hand". IOW, with eIBRS supported, host RET instructions should no longer be influenced by guest behavior after the host retires a single CALL instruction. However, if the RET instructions are "unbalanced" with CALLs after a VM exit as is the RET in #6, it might speculatively use the address for the instruction after the CALL in #3 as an RSB prediction. This is a problem since the (untrusted) guest controls this address. Balanced CALL/RET instruction pairs such as in step #5 are not affected. == Solution == The PBRSB issue affects a wide variety of Intel processors which support eIBRS. But not all of them need mitigation. Today, X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e., eIBRS systems which enable legacy IBRS explicitly. However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT and most of them need a new mitigation. Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT. The lighter-weight mitigation performs a CALL instruction which is immediately followed by a speculative execution barrier (INT3). This steers speculative execution to the barrier -- just like a retpoline -- which ensures that speculation can never reach an unbalanced RET. Then, ensure this CALL is retired before continuing execution with an LFENCE. In other words, the window of exposure is opened at VM exit where RET behavior is troublesome. While the window is open, force RSB predictions sampling for RET targets to a dead end at the INT3. Close the window with the LFENCE. There is a subset of eIBRS systems which are not vulnerable to PBRSB. Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB. Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO. [ bp: Massage, incorporate review comments from Andy Cooper. ] Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de>
Diffstat (limited to 'Documentation/admin-guide/hw-vuln')
-rw-r--r--Documentation/admin-guide/hw-vuln/spectre.rst8
1 files changed, 8 insertions, 0 deletions
diff --git a/Documentation/admin-guide/hw-vuln/spectre.rst b/Documentation/admin-guide/hw-vuln/spectre.rst
index 9e9556826450..2ce2a38cdd55 100644
--- a/Documentation/admin-guide/hw-vuln/spectre.rst
+++ b/Documentation/admin-guide/hw-vuln/spectre.rst
@@ -422,6 +422,14 @@ The possible values in this file are:
'RSB filling' Protection of RSB on context switch enabled
============= ===========================================
+ - EIBRS Post-barrier Return Stack Buffer (PBRSB) protection status:
+
+ =========================== =======================================================
+ 'PBRSB-eIBRS: SW sequence' CPU is affected and protection of RSB on VMEXIT enabled
+ 'PBRSB-eIBRS: Vulnerable' CPU is vulnerable
+ 'PBRSB-eIBRS: Not affected' CPU is not affected by PBRSB
+ =========================== =======================================================
+
Full mitigation might require a microcode update from the CPU
vendor. When the necessary microcode is not available, the kernel will
report vulnerability.