summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJonathan Cameron <jic23@kernel.org>2017-01-01 15:32:45 +0300
committerJonathan Corbet <corbet@lwn.net>2017-01-04 23:24:41 +0300
commit49b2fd6ea63d7fe9c81f00e6d0117827db1d30c6 (patch)
tree1969e3f7ca1d6edade9fb501a688e2d3b3041111
parent36f671be1db1b17d3d4ab0c8b47f81ccb1efcb75 (diff)
downloadlinux-49b2fd6ea63d7fe9c81f00e6d0117827db1d30c6.tar.xz
docs: IIO documentation sphinx conversion
This is a manual conversion of the existing DocBook documentation for IIO. The intent is not to substantially change any of the content in this patch, but to give a base to build upon. Signed-off-by: Jonathan Cameron <jic23@kernel.org> Signed-off-by: Jonathan Corbet <corbet@lwn.net>
-rw-r--r--Documentation/DocBook/Makefile2
-rw-r--r--Documentation/DocBook/iio.tmpl697
-rw-r--r--Documentation/driver-api/iio/buffers.rst125
-rw-r--r--Documentation/driver-api/iio/core.rst182
-rw-r--r--Documentation/driver-api/iio/index.rst17
-rw-r--r--Documentation/driver-api/iio/intro.rst33
-rw-r--r--Documentation/driver-api/iio/triggered-buffers.rst69
-rw-r--r--Documentation/driver-api/iio/triggers.rst80
-rw-r--r--Documentation/driver-api/index.rst1
9 files changed, 508 insertions, 698 deletions
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index a6eb7dcd4dd5..c95b1aa47b45 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -13,7 +13,7 @@ DOCBOOKS := z8530book.xml \
gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
sh.xml regulator.xml w1.xml \
- writing_musb_glue_layer.xml iio.xml
+ writing_musb_glue_layer.xml
ifeq ($(DOCBOOKS),)
diff --git a/Documentation/DocBook/iio.tmpl b/Documentation/DocBook/iio.tmpl
deleted file mode 100644
index e2ab6a1f223e..000000000000
--- a/Documentation/DocBook/iio.tmpl
+++ /dev/null
@@ -1,697 +0,0 @@
-<?xml version="1.0" encoding="UTF-8"?>
-<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
- "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
-
-<book id="iioid">
- <bookinfo>
- <title>Industrial I/O driver developer's guide </title>
-
- <authorgroup>
- <author>
- <firstname>Daniel</firstname>
- <surname>Baluta</surname>
- <affiliation>
- <address>
- <email>daniel.baluta@intel.com</email>
- </address>
- </affiliation>
- </author>
- </authorgroup>
-
- <copyright>
- <year>2015</year>
- <holder>Intel Corporation</holder>
- </copyright>
-
- <legalnotice>
- <para>
- This documentation is free software; you can redistribute
- it and/or modify it under the terms of the GNU General Public
- License version 2.
- </para>
- </legalnotice>
- </bookinfo>
-
- <toc></toc>
-
- <chapter id="intro">
- <title>Introduction</title>
- <para>
- The main purpose of the Industrial I/O subsystem (IIO) is to provide
- support for devices that in some sense perform either analog-to-digital
- conversion (ADC) or digital-to-analog conversion (DAC) or both. The aim
- is to fill the gap between the somewhat similar hwmon and input
- subsystems.
- Hwmon is directed at low sample rate sensors used to monitor and
- control the system itself, like fan speed control or temperature
- measurement. Input is, as its name suggests, focused on human interaction
- input devices (keyboard, mouse, touchscreen). In some cases there is
- considerable overlap between these and IIO.
- </para>
- <para>
- Devices that fall into this category include:
- <itemizedlist>
- <listitem>
- analog to digital converters (ADCs)
- </listitem>
- <listitem>
- accelerometers
- </listitem>
- <listitem>
- capacitance to digital converters (CDCs)
- </listitem>
- <listitem>
- digital to analog converters (DACs)
- </listitem>
- <listitem>
- gyroscopes
- </listitem>
- <listitem>
- inertial measurement units (IMUs)
- </listitem>
- <listitem>
- color and light sensors
- </listitem>
- <listitem>
- magnetometers
- </listitem>
- <listitem>
- pressure sensors
- </listitem>
- <listitem>
- proximity sensors
- </listitem>
- <listitem>
- temperature sensors
- </listitem>
- </itemizedlist>
- Usually these sensors are connected via SPI or I2C. A common use case of the
- sensors devices is to have combined functionality (e.g. light plus proximity
- sensor).
- </para>
- </chapter>
- <chapter id='iiosubsys'>
- <title>Industrial I/O core</title>
- <para>
- The Industrial I/O core offers:
- <itemizedlist>
- <listitem>
- a unified framework for writing drivers for many different types of
- embedded sensors.
- </listitem>
- <listitem>
- a standard interface to user space applications manipulating sensors.
- </listitem>
- </itemizedlist>
- The implementation can be found under <filename>
- drivers/iio/industrialio-*</filename>
- </para>
- <sect1 id="iiodevice">
- <title> Industrial I/O devices </title>
-
-!Finclude/linux/iio/iio.h iio_dev
-!Fdrivers/iio/industrialio-core.c iio_device_alloc
-!Fdrivers/iio/industrialio-core.c iio_device_free
-!Fdrivers/iio/industrialio-core.c iio_device_register
-!Fdrivers/iio/industrialio-core.c iio_device_unregister
-
- <para>
- An IIO device usually corresponds to a single hardware sensor and it
- provides all the information needed by a driver handling a device.
- Let's first have a look at the functionality embedded in an IIO
- device then we will show how a device driver makes use of an IIO
- device.
- </para>
- <para>
- There are two ways for a user space application to interact
- with an IIO driver.
- <itemizedlist>
- <listitem>
- <filename>/sys/bus/iio/iio:deviceX/</filename>, this
- represents a hardware sensor and groups together the data
- channels of the same chip.
- </listitem>
- <listitem>
- <filename>/dev/iio:deviceX</filename>, character device node
- interface used for buffered data transfer and for events information
- retrieval.
- </listitem>
- </itemizedlist>
- </para>
- A typical IIO driver will register itself as an I2C or SPI driver and will
- create two routines, <function> probe </function> and <function> remove
- </function>. At <function>probe</function>:
- <itemizedlist>
- <listitem>call <function>iio_device_alloc</function>, which allocates memory
- for an IIO device.
- </listitem>
- <listitem> initialize IIO device fields with driver specific information
- (e.g. device name, device channels).
- </listitem>
- <listitem>call <function> iio_device_register</function>, this registers the
- device with the IIO core. After this call the device is ready to accept
- requests from user space applications.
- </listitem>
- </itemizedlist>
- At <function>remove</function>, we free the resources allocated in
- <function>probe</function> in reverse order:
- <itemizedlist>
- <listitem><function>iio_device_unregister</function>, unregister the device
- from the IIO core.
- </listitem>
- <listitem><function>iio_device_free</function>, free the memory allocated
- for the IIO device.
- </listitem>
- </itemizedlist>
-
- <sect2 id="iioattr"> <title> IIO device sysfs interface </title>
- <para>
- Attributes are sysfs files used to expose chip info and also allowing
- applications to set various configuration parameters. For device
- with index X, attributes can be found under
- <filename>/sys/bus/iio/iio:deviceX/ </filename> directory.
- Common attributes are:
- <itemizedlist>
- <listitem><filename>name</filename>, description of the physical
- chip.
- </listitem>
- <listitem><filename>dev</filename>, shows the major:minor pair
- associated with <filename>/dev/iio:deviceX</filename> node.
- </listitem>
- <listitem><filename>sampling_frequency_available</filename>,
- available discrete set of sampling frequency values for
- device.
- </listitem>
- </itemizedlist>
- Available standard attributes for IIO devices are described in the
- <filename>Documentation/ABI/testing/sysfs-bus-iio </filename> file
- in the Linux kernel sources.
- </para>
- </sect2>
- <sect2 id="iiochannel"> <title> IIO device channels </title>
-!Finclude/linux/iio/iio.h iio_chan_spec structure.
- <para>
- An IIO device channel is a representation of a data channel. An
- IIO device can have one or multiple channels. For example:
- <itemizedlist>
- <listitem>
- a thermometer sensor has one channel representing the
- temperature measurement.
- </listitem>
- <listitem>
- a light sensor with two channels indicating the measurements in
- the visible and infrared spectrum.
- </listitem>
- <listitem>
- an accelerometer can have up to 3 channels representing
- acceleration on X, Y and Z axes.
- </listitem>
- </itemizedlist>
- An IIO channel is described by the <type> struct iio_chan_spec
- </type>. A thermometer driver for the temperature sensor in the
- example above would have to describe its channel as follows:
- <programlisting>
- static const struct iio_chan_spec temp_channel[] = {
- {
- .type = IIO_TEMP,
- .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
- },
- };
-
- </programlisting>
- Channel sysfs attributes exposed to userspace are specified in
- the form of <emphasis>bitmasks</emphasis>. Depending on their
- shared info, attributes can be set in one of the following masks:
- <itemizedlist>
- <listitem><emphasis>info_mask_separate</emphasis>, attributes will
- be specific to this channel</listitem>
- <listitem><emphasis>info_mask_shared_by_type</emphasis>,
- attributes are shared by all channels of the same type</listitem>
- <listitem><emphasis>info_mask_shared_by_dir</emphasis>, attributes
- are shared by all channels of the same direction </listitem>
- <listitem><emphasis>info_mask_shared_by_all</emphasis>,
- attributes are shared by all channels</listitem>
- </itemizedlist>
- When there are multiple data channels per channel type we have two
- ways to distinguish between them:
- <itemizedlist>
- <listitem> set <emphasis> .modified</emphasis> field of <type>
- iio_chan_spec</type> to 1. Modifiers are specified using
- <emphasis>.channel2</emphasis> field of the same
- <type>iio_chan_spec</type> structure and are used to indicate a
- physically unique characteristic of the channel such as its direction
- or spectral response. For example, a light sensor can have two channels,
- one for infrared light and one for both infrared and visible light.
- </listitem>
- <listitem> set <emphasis>.indexed </emphasis> field of
- <type>iio_chan_spec</type> to 1. In this case the channel is
- simply another instance with an index specified by the
- <emphasis>.channel</emphasis> field.
- </listitem>
- </itemizedlist>
- Here is how we can make use of the channel's modifiers:
- <programlisting>
- static const struct iio_chan_spec light_channels[] = {
- {
- .type = IIO_INTENSITY,
- .modified = 1,
- .channel2 = IIO_MOD_LIGHT_IR,
- .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
- .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
- },
- {
- .type = IIO_INTENSITY,
- .modified = 1,
- .channel2 = IIO_MOD_LIGHT_BOTH,
- .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
- .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
- },
- {
- .type = IIO_LIGHT,
- .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
- .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
- },
-
- }
- </programlisting>
- This channel's definition will generate two separate sysfs files
- for raw data retrieval:
- <itemizedlist>
- <listitem>
- <filename>/sys/bus/iio/iio:deviceX/in_intensity_ir_raw</filename>
- </listitem>
- <listitem>
- <filename>/sys/bus/iio/iio:deviceX/in_intensity_both_raw</filename>
- </listitem>
- </itemizedlist>
- one file for processed data:
- <itemizedlist>
- <listitem>
- <filename>/sys/bus/iio/iio:deviceX/in_illuminance_input
- </filename>
- </listitem>
- </itemizedlist>
- and one shared sysfs file for sampling frequency:
- <itemizedlist>
- <listitem>
- <filename>/sys/bus/iio/iio:deviceX/sampling_frequency.
- </filename>
- </listitem>
- </itemizedlist>
- </para>
- <para>
- Here is how we can make use of the channel's indexing:
- <programlisting>
- static const struct iio_chan_spec light_channels[] = {
- {
- .type = IIO_VOLTAGE,
- .indexed = 1,
- .channel = 0,
- .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
- },
- {
- .type = IIO_VOLTAGE,
- .indexed = 1,
- .channel = 1,
- .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
- },
- }
- </programlisting>
- This will generate two separate attributes files for raw data
- retrieval:
- <itemizedlist>
- <listitem>
- <filename>/sys/bus/iio/devices/iio:deviceX/in_voltage0_raw</filename>,
- representing voltage measurement for channel 0.
- </listitem>
- <listitem>
- <filename>/sys/bus/iio/devices/iio:deviceX/in_voltage1_raw</filename>,
- representing voltage measurement for channel 1.
- </listitem>
- </itemizedlist>
- </para>
- </sect2>
- </sect1>
-
- <sect1 id="iiobuffer"> <title> Industrial I/O buffers </title>
-!Finclude/linux/iio/buffer.h iio_buffer
-!Edrivers/iio/industrialio-buffer.c
-
- <para>
- The Industrial I/O core offers a way for continuous data capture
- based on a trigger source. Multiple data channels can be read at once
- from <filename>/dev/iio:deviceX</filename> character device node,
- thus reducing the CPU load.
- </para>
-
- <sect2 id="iiobuffersysfs">
- <title>IIO buffer sysfs interface </title>
- <para>
- An IIO buffer has an associated attributes directory under <filename>
- /sys/bus/iio/iio:deviceX/buffer/</filename>. Here are the existing
- attributes:
- <itemizedlist>
- <listitem>
- <emphasis>length</emphasis>, the total number of data samples
- (capacity) that can be stored by the buffer.
- </listitem>
- <listitem>
- <emphasis>enable</emphasis>, activate buffer capture.
- </listitem>
- </itemizedlist>
-
- </para>
- </sect2>
- <sect2 id="iiobuffersetup"> <title> IIO buffer setup </title>
- <para>The meta information associated with a channel reading
- placed in a buffer is called a <emphasis> scan element </emphasis>.
- The important bits configuring scan elements are exposed to
- userspace applications via the <filename>
- /sys/bus/iio/iio:deviceX/scan_elements/</filename> directory. This
- file contains attributes of the following form:
- <itemizedlist>
- <listitem><emphasis>enable</emphasis>, used for enabling a channel.
- If and only if its attribute is non zero, then a triggered capture
- will contain data samples for this channel.
- </listitem>
- <listitem><emphasis>type</emphasis>, description of the scan element
- data storage within the buffer and hence the form in which it is
- read from user space. Format is <emphasis>
- [be|le]:[s|u]bits/storagebitsXrepeat[>>shift] </emphasis>.
- <itemizedlist>
- <listitem> <emphasis>be</emphasis> or <emphasis>le</emphasis>, specifies
- big or little endian.
- </listitem>
- <listitem>
- <emphasis>s </emphasis>or <emphasis>u</emphasis>, specifies if
- signed (2's complement) or unsigned.
- </listitem>
- <listitem><emphasis>bits</emphasis>, is the number of valid data
- bits.
- </listitem>
- <listitem><emphasis>storagebits</emphasis>, is the number of bits
- (after padding) that it occupies in the buffer.
- </listitem>
- <listitem>
- <emphasis>shift</emphasis>, if specified, is the shift that needs
- to be applied prior to masking out unused bits.
- </listitem>
- <listitem>
- <emphasis>repeat</emphasis>, specifies the number of bits/storagebits
- repetitions. When the repeat element is 0 or 1, then the repeat
- value is omitted.
- </listitem>
- </itemizedlist>
- </listitem>
- </itemizedlist>
- For example, a driver for a 3-axis accelerometer with 12 bit
- resolution where data is stored in two 8-bits registers as
- follows:
- <programlisting>
- 7 6 5 4 3 2 1 0
- +---+---+---+---+---+---+---+---+
- |D3 |D2 |D1 |D0 | X | X | X | X | (LOW byte, address 0x06)
- +---+---+---+---+---+---+---+---+
-
- 7 6 5 4 3 2 1 0
- +---+---+---+---+---+---+---+---+
- |D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)
- +---+---+---+---+---+---+---+---+
- </programlisting>
-
- will have the following scan element type for each axis:
- <programlisting>
- $ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
- le:s12/16>>4
- </programlisting>
- A user space application will interpret data samples read from the
- buffer as two byte little endian signed data, that needs a 4 bits
- right shift before masking out the 12 valid bits of data.
- </para>
- <para>
- For implementing buffer support a driver should initialize the following
- fields in <type>iio_chan_spec</type> definition:
- <programlisting>
- struct iio_chan_spec {
- /* other members */
- int scan_index
- struct {
- char sign;
- u8 realbits;
- u8 storagebits;
- u8 shift;
- u8 repeat;
- enum iio_endian endianness;
- } scan_type;
- };
- </programlisting>
- The driver implementing the accelerometer described above will
- have the following channel definition:
- <programlisting>
- struct struct iio_chan_spec accel_channels[] = {
- {
- .type = IIO_ACCEL,
- .modified = 1,
- .channel2 = IIO_MOD_X,
- /* other stuff here */
- .scan_index = 0,
- .scan_type = {
- .sign = 's',
- .realbits = 12,
- .storagebits = 16,
- .shift = 4,
- .endianness = IIO_LE,
- },
- }
- /* similar for Y (with channel2 = IIO_MOD_Y, scan_index = 1)
- * and Z (with channel2 = IIO_MOD_Z, scan_index = 2) axis
- */
- }
- </programlisting>
- </para>
- <para>
- Here <emphasis> scan_index </emphasis> defines the order in which
- the enabled channels are placed inside the buffer. Channels with a lower
- scan_index will be placed before channels with a higher index. Each
- channel needs to have a unique scan_index.
- </para>
- <para>
- Setting scan_index to -1 can be used to indicate that the specific
- channel does not support buffered capture. In this case no entries will
- be created for the channel in the scan_elements directory.
- </para>
- </sect2>
- </sect1>
-
- <sect1 id="iiotrigger"> <title> Industrial I/O triggers </title>
-!Finclude/linux/iio/trigger.h iio_trigger
-!Edrivers/iio/industrialio-trigger.c
- <para>
- In many situations it is useful for a driver to be able to
- capture data based on some external event (trigger) as opposed
- to periodically polling for data. An IIO trigger can be provided
- by a device driver that also has an IIO device based on hardware
- generated events (e.g. data ready or threshold exceeded) or
- provided by a separate driver from an independent interrupt
- source (e.g. GPIO line connected to some external system, timer
- interrupt or user space writing a specific file in sysfs). A
- trigger may initiate data capture for a number of sensors and
- also it may be completely unrelated to the sensor itself.
- </para>
-
- <sect2 id="iiotrigsysfs"> <title> IIO trigger sysfs interface </title>
- There are two locations in sysfs related to triggers:
- <itemizedlist>
- <listitem><filename>/sys/bus/iio/devices/triggerY</filename>,
- this file is created once an IIO trigger is registered with
- the IIO core and corresponds to trigger with index Y. Because
- triggers can be very different depending on type there are few
- standard attributes that we can describe here:
- <itemizedlist>
- <listitem>
- <emphasis>name</emphasis>, trigger name that can be later
- used for association with a device.
- </listitem>
- <listitem>
- <emphasis>sampling_frequency</emphasis>, some timer based
- triggers use this attribute to specify the frequency for
- trigger calls.
- </listitem>
- </itemizedlist>
- </listitem>
- <listitem>
- <filename>/sys/bus/iio/devices/iio:deviceX/trigger/</filename>, this
- directory is created once the device supports a triggered
- buffer. We can associate a trigger with our device by writing
- the trigger's name in the <filename>current_trigger</filename> file.
- </listitem>
- </itemizedlist>
- </sect2>
-
- <sect2 id="iiotrigattr"> <title> IIO trigger setup</title>
-
- <para>
- Let's see a simple example of how to setup a trigger to be used
- by a driver.
-
- <programlisting>
- struct iio_trigger_ops trigger_ops = {
- .set_trigger_state = sample_trigger_state,
- .validate_device = sample_validate_device,
- }
-
- struct iio_trigger *trig;
-
- /* first, allocate memory for our trigger */
- trig = iio_trigger_alloc(dev, "trig-%s-%d", name, idx);
-
- /* setup trigger operations field */
- trig->ops = &amp;trigger_ops;
-
- /* now register the trigger with the IIO core */
- iio_trigger_register(trig);
- </programlisting>
- </para>
- </sect2>
-
- <sect2 id="iiotrigsetup"> <title> IIO trigger ops</title>
-!Finclude/linux/iio/trigger.h iio_trigger_ops
- <para>
- Notice that a trigger has a set of operations attached:
- <itemizedlist>
- <listitem>
- <function>set_trigger_state</function>, switch the trigger on/off
- on demand.
- </listitem>
- <listitem>
- <function>validate_device</function>, function to validate the
- device when the current trigger gets changed.
- </listitem>
- </itemizedlist>
- </para>
- </sect2>
- </sect1>
- <sect1 id="iiotriggered_buffer">
- <title> Industrial I/O triggered buffers </title>
- <para>
- Now that we know what buffers and triggers are let's see how they
- work together.
- </para>
- <sect2 id="iiotrigbufsetup"> <title> IIO triggered buffer setup</title>
-!Edrivers/iio/buffer/industrialio-triggered-buffer.c
-!Finclude/linux/iio/iio.h iio_buffer_setup_ops
-
-
- <para>
- A typical triggered buffer setup looks like this:
- <programlisting>
- const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {
- .preenable = sensor_buffer_preenable,
- .postenable = sensor_buffer_postenable,
- .postdisable = sensor_buffer_postdisable,
- .predisable = sensor_buffer_predisable,
- };
-
- irqreturn_t sensor_iio_pollfunc(int irq, void *p)
- {
- pf->timestamp = iio_get_time_ns((struct indio_dev *)p);
- return IRQ_WAKE_THREAD;
- }
-
- irqreturn_t sensor_trigger_handler(int irq, void *p)
- {
- u16 buf[8];
- int i = 0;
-
- /* read data for each active channel */
- for_each_set_bit(bit, active_scan_mask, masklength)
- buf[i++] = sensor_get_data(bit)
-
- iio_push_to_buffers_with_timestamp(indio_dev, buf, timestamp);
-
- iio_trigger_notify_done(trigger);
- return IRQ_HANDLED;
- }
-
- /* setup triggered buffer, usually in probe function */
- iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,
- sensor_trigger_handler,
- sensor_buffer_setup_ops);
- </programlisting>
- </para>
- The important things to notice here are:
- <itemizedlist>
- <listitem><function> iio_buffer_setup_ops</function>, the buffer setup
- functions to be called at predefined points in the buffer configuration
- sequence (e.g. before enable, after disable). If not specified, the
- IIO core uses the default <type>iio_triggered_buffer_setup_ops</type>.
- </listitem>
- <listitem><function>sensor_iio_pollfunc</function>, the function that
- will be used as top half of poll function. It should do as little
- processing as possible, because it runs in interrupt context. The most
- common operation is recording of the current timestamp and for this reason
- one can use the IIO core defined <function>iio_pollfunc_store_time
- </function> function.
- </listitem>
- <listitem><function>sensor_trigger_handler</function>, the function that
- will be used as bottom half of the poll function. This runs in the
- context of a kernel thread and all the processing takes place here.
- It usually reads data from the device and stores it in the internal
- buffer together with the timestamp recorded in the top half.
- </listitem>
- </itemizedlist>
- </sect2>
- </sect1>
- </chapter>
- <chapter id='iioresources'>
- <title> Resources </title>
- IIO core may change during time so the best documentation to read is the
- source code. There are several locations where you should look:
- <itemizedlist>
- <listitem>
- <filename>drivers/iio/</filename>, contains the IIO core plus
- and directories for each sensor type (e.g. accel, magnetometer,
- etc.)
- </listitem>
- <listitem>
- <filename>include/linux/iio/</filename>, contains the header
- files, nice to read for the internal kernel interfaces.
- </listitem>
- <listitem>
- <filename>include/uapi/linux/iio/</filename>, contains files to be
- used by user space applications.
- </listitem>
- <listitem>
- <filename>tools/iio/</filename>, contains tools for rapidly
- testing buffers, events and device creation.
- </listitem>
- <listitem>
- <filename>drivers/staging/iio/</filename>, contains code for some
- drivers or experimental features that are not yet mature enough
- to be moved out.
- </listitem>
- </itemizedlist>
- <para>
- Besides the code, there are some good online documentation sources:
- <itemizedlist>
- <listitem>
- <ulink url="http://marc.info/?l=linux-iio"> Industrial I/O mailing
- list </ulink>
- </listitem>
- <listitem>
- <ulink url="http://wiki.analog.com/software/linux/docs/iio/iio">
- Analog Device IIO wiki page </ulink>
- </listitem>
- <listitem>
- <ulink url="https://fosdem.org/2015/schedule/event/iiosdr/">
- Using the Linux IIO framework for SDR, Lars-Peter Clausen's
- presentation at FOSDEM </ulink>
- </listitem>
- </itemizedlist>
- </para>
- </chapter>
-</book>
-
-<!--
-vim: softtabstop=2:shiftwidth=2:expandtab:textwidth=72
--->
diff --git a/Documentation/driver-api/iio/buffers.rst b/Documentation/driver-api/iio/buffers.rst
new file mode 100644
index 000000000000..02c99a6bee18
--- /dev/null
+++ b/Documentation/driver-api/iio/buffers.rst
@@ -0,0 +1,125 @@
+=======
+Buffers
+=======
+
+* struct :c:type:`iio_buffer` — general buffer structure
+* :c:func:`iio_validate_scan_mask_onehot` — Validates that exactly one channel
+ is selected
+* :c:func:`iio_buffer_get` — Grab a reference to the buffer
+* :c:func:`iio_buffer_put` — Release the reference to the buffer
+
+The Industrial I/O core offers a way for continuous data capture based on a
+trigger source. Multiple data channels can be read at once from
+:file:`/dev/iio:device{X}` character device node, thus reducing the CPU load.
+
+IIO buffer sysfs interface
+==========================
+An IIO buffer has an associated attributes directory under
+:file:`/sys/bus/iio/iio:device{X}/buffer/*`. Here are some of the existing
+attributes:
+
+* :file:`length`, the total number of data samples (capacity) that can be
+ stored by the buffer.
+* :file:`enable`, activate buffer capture.
+
+IIO buffer setup
+================
+
+The meta information associated with a channel reading placed in a buffer is
+called a scan element . The important bits configuring scan elements are
+exposed to userspace applications via the
+:file:`/sys/bus/iio/iio:device{X}/scan_elements/*` directory. This file contains
+attributes of the following form:
+
+* :file:`enable`, used for enabling a channel. If and only if its attribute
+ is non *zero*, then a triggered capture will contain data samples for this
+ channel.
+* :file:`type`, description of the scan element data storage within the buffer
+ and hence the form in which it is read from user space.
+ Format is [be|le]:[s|u]bits/storagebitsXrepeat[>>shift] .
+ * *be* or *le*, specifies big or little endian.
+ * *s* or *u*, specifies if signed (2's complement) or unsigned.
+ * *bits*, is the number of valid data bits.
+ * *storagebits*, is the number of bits (after padding) that it occupies in the
+ buffer.
+ * *shift*, if specified, is the shift that needs to be applied prior to
+ masking out unused bits.
+ * *repeat*, specifies the number of bits/storagebits repetitions. When the
+ repeat element is 0 or 1, then the repeat value is omitted.
+
+For example, a driver for a 3-axis accelerometer with 12 bit resolution where
+data is stored in two 8-bits registers as follows::
+
+ 7 6 5 4 3 2 1 0
+ +---+---+---+---+---+---+---+---+
+ |D3 |D2 |D1 |D0 | X | X | X | X | (LOW byte, address 0x06)
+ +---+---+---+---+---+---+---+---+
+
+ 7 6 5 4 3 2 1 0
+ +---+---+---+---+---+---+---+---+
+ |D11|D10|D9 |D8 |D7 |D6 |D5 |D4 | (HIGH byte, address 0x07)
+ +---+---+---+---+---+---+---+---+
+
+will have the following scan element type for each axis::
+
+ $ cat /sys/bus/iio/devices/iio:device0/scan_elements/in_accel_y_type
+ le:s12/16>>4
+
+A user space application will interpret data samples read from the buffer as
+two byte little endian signed data, that needs a 4 bits right shift before
+masking out the 12 valid bits of data.
+
+For implementing buffer support a driver should initialize the following
+fields in iio_chan_spec definition::
+
+ struct iio_chan_spec {
+ /* other members */
+ int scan_index
+ struct {
+ char sign;
+ u8 realbits;
+ u8 storagebits;
+ u8 shift;
+ u8 repeat;
+ enum iio_endian endianness;
+ } scan_type;
+ };
+
+The driver implementing the accelerometer described above will have the
+following channel definition::
+
+ struct struct iio_chan_spec accel_channels[] = {
+ {
+ .type = IIO_ACCEL,
+ .modified = 1,
+ .channel2 = IIO_MOD_X,
+ /* other stuff here */
+ .scan_index = 0,
+ .scan_type = {
+ .sign = 's',
+ .realbits = 12,
+ .storagebits = 16,
+ .shift = 4,
+ .endianness = IIO_LE,
+ },
+ }
+ /* similar for Y (with channel2 = IIO_MOD_Y, scan_index = 1)
+ * and Z (with channel2 = IIO_MOD_Z, scan_index = 2) axis
+ */
+ }
+
+Here **scan_index** defines the order in which the enabled channels are placed
+inside the buffer. Channels with a lower **scan_index** will be placed before
+channels with a higher index. Each channel needs to have a unique
+**scan_index**.
+
+Setting **scan_index** to -1 can be used to indicate that the specific channel
+does not support buffered capture. In this case no entries will be created for
+the channel in the scan_elements directory.
+
+More details
+============
+.. kernel-doc:: include/linux/iio/buffer.h
+.. kernel-doc:: drivers/iio/industrialio-buffer.c
+ :export:
+
diff --git a/Documentation/driver-api/iio/core.rst b/Documentation/driver-api/iio/core.rst
new file mode 100644
index 000000000000..9a34ae03b679
--- /dev/null
+++ b/Documentation/driver-api/iio/core.rst
@@ -0,0 +1,182 @@
+=============
+Core elements
+=============
+
+The Industrial I/O core offers a unified framework for writing drivers for
+many different types of embedded sensors. a standard interface to user space
+applications manipulating sensors. The implementation can be found under
+:file:`drivers/iio/industrialio-*`
+
+Industrial I/O Devices
+----------------------
+
+* struct :c:type:`iio_dev` - industrial I/O device
+* :c:func:`iio_device_alloc()` - alocate an :c:type:`iio_dev` from a driver
+* :c:func:`iio_device_free()` - free an :c:type:`iio_dev` from a driver
+* :c:func:`iio_device_register()` - register a device with the IIO subsystem
+* :c:func:`iio_device_unregister()` - unregister a device from the IIO
+ subsystem
+
+An IIO device usually corresponds to a single hardware sensor and it
+provides all the information needed by a driver handling a device.
+Let's first have a look at the functionality embedded in an IIO device
+then we will show how a device driver makes use of an IIO device.
+
+There are two ways for a user space application to interact with an IIO driver.
+
+1. :file:`/sys/bus/iio/iio:device{X}/`, this represents a hardware sensor
+ and groups together the data channels of the same chip.
+2. :file:`/dev/iio:device{X}`, character device node interface used for
+ buffered data transfer and for events information retrieval.
+
+A typical IIO driver will register itself as an :doc:`I2C <../i2c>` or
+:doc:`SPI <../spi>` driver and will create two routines, probe and remove.
+
+At probe:
+
+1. Call :c:func:`iio_device_alloc()`, which allocates memory for an IIO device.
+2. Initialize IIO device fields with driver specific information (e.g.
+ device name, device channels).
+3. Call :c:func:`iio_device_register()`, this registers the device with the
+ IIO core. After this call the device is ready to accept requests from user
+ space applications.
+
+At remove, we free the resources allocated in probe in reverse order:
+
+1. :c:func:`iio_device_unregister()`, unregister the device from the IIO core.
+2. :c:func:`iio_device_free()`, free the memory allocated for the IIO device.
+
+IIO device sysfs interface
+==========================
+
+Attributes are sysfs files used to expose chip info and also allowing
+applications to set various configuration parameters. For device with
+index X, attributes can be found under /sys/bus/iio/iio:deviceX/ directory.
+Common attributes are:
+
+* :file:`name`, description of the physical chip.
+* :file:`dev`, shows the major:minor pair associated with
+ :file:`/dev/iio:deviceX` node.
+* :file:`sampling_frequency_available`, available discrete set of sampling
+ frequency values for device.
+* Available standard attributes for IIO devices are described in the
+ :file:`Documentation/ABI/testing/sysfs-bus-iio` file in the Linux kernel
+ sources.
+
+IIO device channels
+===================
+
+struct :c:type:`iio_chan_spec` - specification of a single channel
+
+An IIO device channel is a representation of a data channel. An IIO device can
+have one or multiple channels. For example:
+
+* a thermometer sensor has one channel representing the temperature measurement.
+* a light sensor with two channels indicating the measurements in the visible
+ and infrared spectrum.
+* an accelerometer can have up to 3 channels representing acceleration on X, Y
+ and Z axes.
+
+An IIO channel is described by the struct :c:type:`iio_chan_spec`.
+A thermometer driver for the temperature sensor in the example above would
+have to describe its channel as follows::
+
+ static const struct iio_chan_spec temp_channel[] = {
+ {
+ .type = IIO_TEMP,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
+ },
+ };
+
+Channel sysfs attributes exposed to userspace are specified in the form of
+bitmasks. Depending on their shared info, attributes can be set in one of the
+following masks:
+
+* **info_mask_separate**, attributes will be specific to
+ this channel
+* **info_mask_shared_by_type**, attributes are shared by all channels of the
+ same type
+* **info_mask_shared_by_dir**, attributes are shared by all channels of the same
+ direction
+* **info_mask_shared_by_all**, attributes are shared by all channels
+
+When there are multiple data channels per channel type we have two ways to
+distinguish between them:
+
+* set **.modified** field of :c:type:`iio_chan_spec` to 1. Modifiers are
+ specified using **.channel2** field of the same :c:type:`iio_chan_spec`
+ structure and are used to indicate a physically unique characteristic of the
+ channel such as its direction or spectral response. For example, a light
+ sensor can have two channels, one for infrared light and one for both
+ infrared and visible light.
+* set **.indexed** field of :c:type:`iio_chan_spec` to 1. In this case the
+ channel is simply another instance with an index specified by the **.channel**
+ field.
+
+Here is how we can make use of the channel's modifiers::
+
+ static const struct iio_chan_spec light_channels[] = {
+ {
+ .type = IIO_INTENSITY,
+ .modified = 1,
+ .channel2 = IIO_MOD_LIGHT_IR,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+ },
+ {
+ .type = IIO_INTENSITY,
+ .modified = 1,
+ .channel2 = IIO_MOD_LIGHT_BOTH,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+ },
+ {
+ .type = IIO_LIGHT,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
+ .info_mask_shared = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+ },
+ }
+
+This channel's definition will generate two separate sysfs files for raw data
+retrieval:
+
+* :file:`/sys/bus/iio/iio:device{X}/in_intensity_ir_raw`
+* :file:`/sys/bus/iio/iio:device{X}/in_intensity_both_raw`
+
+one file for processed data:
+
+* :file:`/sys/bus/iio/iio:device{X}/in_illuminance_input`
+
+and one shared sysfs file for sampling frequency:
+
+* :file:`/sys/bus/iio/iio:device{X}/sampling_frequency`.
+
+Here is how we can make use of the channel's indexing::
+
+ static const struct iio_chan_spec light_channels[] = {
+ {
+ .type = IIO_VOLTAGE,
+ .indexed = 1,
+ .channel = 0,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ },
+ {
+ .type = IIO_VOLTAGE,
+ .indexed = 1,
+ .channel = 1,
+ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
+ },
+ }
+
+This will generate two separate attributes files for raw data retrieval:
+
+* :file:`/sys/bus/iio/devices/iio:device{X}/in_voltage0_raw`, representing
+ voltage measurement for channel 0.
+* :file:`/sys/bus/iio/devices/iio:device{X}/in_voltage1_raw`, representing
+ voltage measurement for channel 1.
+
+More details
+============
+.. kernel-doc:: include/linux/iio/iio.h
+.. kernel-doc:: drivers/iio/industrialio-core.c
+ :export:
diff --git a/Documentation/driver-api/iio/index.rst b/Documentation/driver-api/iio/index.rst
new file mode 100644
index 000000000000..e5c3922d1b6f
--- /dev/null
+++ b/Documentation/driver-api/iio/index.rst
@@ -0,0 +1,17 @@
+.. include:: <isonum.txt>
+
+Industrial I/O
+==============
+
+**Copyright** |copy| 2015 Intel Corporation
+
+Contents:
+
+.. toctree::
+ :maxdepth: 2
+
+ intro
+ core
+ buffers
+ triggers
+ triggered-buffers
diff --git a/Documentation/driver-api/iio/intro.rst b/Documentation/driver-api/iio/intro.rst
new file mode 100644
index 000000000000..3653fbd57069
--- /dev/null
+++ b/Documentation/driver-api/iio/intro.rst
@@ -0,0 +1,33 @@
+.. include:: <isonum.txt>
+
+============
+Introduction
+============
+
+The main purpose of the Industrial I/O subsystem (IIO) is to provide support
+for devices that in some sense perform either
+analog-to-digital conversion (ADC) or digital-to-analog conversion (DAC)
+or both. The aim is to fill the gap between the somewhat similar hwmon and
+:doc:`input <../input>` subsystems. Hwmon is directed at low sample rate
+sensors used to monitor and control the system itself, like fan speed control
+or temperature measurement. :doc:`Input <../input>` is, as its name suggests,
+focused on human interaction input devices (keyboard, mouse, touchscreen).
+In some cases there is considerable overlap between these and IIO.
+
+Devices that fall into this category include:
+
+* analog to digital converters (ADCs)
+* accelerometers
+* capacitance to digital converters (CDCs)
+* digital to analog converters (DACs)
+* gyroscopes
+* inertial measurement units (IMUs)
+* color and light sensors
+* magnetometers
+* pressure sensors
+* proximity sensors
+* temperature sensors
+
+Usually these sensors are connected via :doc:`SPI <../spi>` or
+:doc:`I2C <../i2c>`. A common use case of the sensors devices is to have
+combined functionality (e.g. light plus proximity sensor).
diff --git a/Documentation/driver-api/iio/triggered-buffers.rst b/Documentation/driver-api/iio/triggered-buffers.rst
new file mode 100644
index 000000000000..0db12660cc90
--- /dev/null
+++ b/Documentation/driver-api/iio/triggered-buffers.rst
@@ -0,0 +1,69 @@
+=================
+Triggered Buffers
+=================
+
+Now that we know what buffers and triggers are let's see how they work together.
+
+IIO triggered buffer setup
+==========================
+
+* :c:func:`iio_triggered_buffer_setup` — Setup triggered buffer and pollfunc
+* :c:func:`iio_triggered_buffer_cleanup` — Free resources allocated by
+ :c:func:`iio_triggered_buffer_setup`
+* struct :c:type:`iio_buffer_setup_ops` — buffer setup related callbacks
+
+A typical triggered buffer setup looks like this::
+
+ const struct iio_buffer_setup_ops sensor_buffer_setup_ops = {
+ .preenable = sensor_buffer_preenable,
+ .postenable = sensor_buffer_postenable,
+ .postdisable = sensor_buffer_postdisable,
+ .predisable = sensor_buffer_predisable,
+ };
+
+ irqreturn_t sensor_iio_pollfunc(int irq, void *p)
+ {
+ pf->timestamp = iio_get_time_ns((struct indio_dev *)p);
+ return IRQ_WAKE_THREAD;
+ }
+
+ irqreturn_t sensor_trigger_handler(int irq, void *p)
+ {
+ u16 buf[8];
+ int i = 0;
+
+ /* read data for each active channel */
+ for_each_set_bit(bit, active_scan_mask, masklength)
+ buf[i++] = sensor_get_data(bit)
+
+ iio_push_to_buffers_with_timestamp(indio_dev, buf, timestamp);
+
+ iio_trigger_notify_done(trigger);
+ return IRQ_HANDLED;
+ }
+
+ /* setup triggered buffer, usually in probe function */
+ iio_triggered_buffer_setup(indio_dev, sensor_iio_polfunc,
+ sensor_trigger_handler,
+ sensor_buffer_setup_ops);
+
+The important things to notice here are:
+
+* :c:type:`iio_buffer_setup_ops`, the buffer setup functions to be called at
+ predefined points in the buffer configuration sequence (e.g. before enable,
+ after disable). If not specified, the IIO core uses the default
+ iio_triggered_buffer_setup_ops.
+* **sensor_iio_pollfunc**, the function that will be used as top half of poll
+ function. It should do as little processing as possible, because it runs in
+ interrupt context. The most common operation is recording of the current
+ timestamp and for this reason one can use the IIO core defined
+ :c:func:`iio_pollfunc_store_time` function.
+* **sensor_trigger_handler**, the function that will be used as bottom half of
+ the poll function. This runs in the context of a kernel thread and all the
+ processing takes place here. It usually reads data from the device and
+ stores it in the internal buffer together with the timestamp recorded in the
+ top half.
+
+More details
+============
+.. kernel-doc:: drivers/iio/buffer/industrialio-triggered-buffer.c
diff --git a/Documentation/driver-api/iio/triggers.rst b/Documentation/driver-api/iio/triggers.rst
new file mode 100644
index 000000000000..f89d37e7dd82
--- /dev/null
+++ b/Documentation/driver-api/iio/triggers.rst
@@ -0,0 +1,80 @@
+========
+Triggers
+========
+
+* struct :c:type:`iio_trigger` — industrial I/O trigger device
+* :c:func:`devm_iio_trigger_alloc` — Resource-managed iio_trigger_alloc
+* :c:func:`devm_iio_trigger_free` — Resource-managed iio_trigger_free
+* :c:func:`devm_iio_trigger_register` — Resource-managed iio_trigger_register
+* :c:func:`devm_iio_trigger_unregister` — Resource-managed
+ iio_trigger_unregister
+* :c:func:`iio_trigger_validate_own_device` — Check if a trigger and IIO
+ device belong to the same device
+
+In many situations it is useful for a driver to be able to capture data based
+on some external event (trigger) as opposed to periodically polling for data.
+An IIO trigger can be provided by a device driver that also has an IIO device
+based on hardware generated events (e.g. data ready or threshold exceeded) or
+provided by a separate driver from an independent interrupt source (e.g. GPIO
+line connected to some external system, timer interrupt or user space writing
+a specific file in sysfs). A trigger may initiate data capture for a number of
+sensors and also it may be completely unrelated to the sensor itself.
+
+IIO trigger sysfs interface
+===========================
+
+There are two locations in sysfs related to triggers:
+
+* :file:`/sys/bus/iio/devices/trigger{Y}/*`, this file is created once an
+ IIO trigger is registered with the IIO core and corresponds to trigger
+ with index Y.
+ Because triggers can be very different depending on type there are few
+ standard attributes that we can describe here:
+
+ * :file:`name`, trigger name that can be later used for association with a
+ device.
+ * :file:`sampling_frequency`, some timer based triggers use this attribute to
+ specify the frequency for trigger calls.
+
+* :file:`/sys/bus/iio/devices/iio:device{X}/trigger/*`, this directory is
+ created once the device supports a triggered buffer. We can associate a
+ trigger with our device by writing the trigger's name in the
+ :file:`current_trigger` file.
+
+IIO trigger setup
+=================
+
+Let's see a simple example of how to setup a trigger to be used by a driver::
+
+ struct iio_trigger_ops trigger_ops = {
+ .set_trigger_state = sample_trigger_state,
+ .validate_device = sample_validate_device,
+ }
+
+ struct iio_trigger *trig;
+
+ /* first, allocate memory for our trigger */
+ trig = iio_trigger_alloc(dev, "trig-%s-%d", name, idx);
+
+ /* setup trigger operations field */
+ trig->ops = &trigger_ops;
+
+ /* now register the trigger with the IIO core */
+ iio_trigger_register(trig);
+
+IIO trigger ops
+===============
+
+* struct :c:type:`iio_trigger_ops` — operations structure for an iio_trigger.
+
+Notice that a trigger has a set of operations attached:
+
+* :file:`set_trigger_state`, switch the trigger on/off on demand.
+* :file:`validate_device`, function to validate the device when the current
+ trigger gets changed.
+
+More details
+============
+.. kernel-doc:: include/linux/iio/trigger.h
+.. kernel-doc:: drivers/iio/industrialio-trigger.c
+ :export:
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index 5475a2807e7a..a2e5db07756c 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -21,6 +21,7 @@ available subsections can be seen below.
message-based
sound
frame-buffer
+ iio/index
input
usb
spi