diff options
author | Boris Burkov <boris@bur.io> | 2020-06-17 21:35:19 +0300 |
---|---|---|
committer | Greg Kroah-Hartman <gregkh@linuxfoundation.org> | 2020-07-22 10:22:19 +0300 |
commit | 332995cee4df953e51e908f54eabca2c7ef614c5 (patch) | |
tree | ce3b29ae8a785f8d7229e419a5fd9e4ef7054e4c | |
parent | 67ec42751b8023cb01ff8f87aad673e7360f2c82 (diff) | |
download | linux-332995cee4df953e51e908f54eabca2c7ef614c5.tar.xz |
btrfs: fix fatal extent_buffer readahead vs releasepage race
commit 6bf9cd2eed9aee6d742bb9296c994a91f5316949 upstream.
Under somewhat convoluted conditions, it is possible to attempt to
release an extent_buffer that is under io, which triggers a BUG_ON in
btrfs_release_extent_buffer_pages.
This relies on a few different factors. First, extent_buffer reads done
as readahead for searching use WAIT_NONE, so they free the local extent
buffer reference while the io is outstanding. However, they should still
be protected by TREE_REF. However, if the system is doing signficant
reclaim, and simultaneously heavily accessing the extent_buffers, it is
possible for releasepage to race with two concurrent readahead attempts
in a way that leaves TREE_REF unset when the readahead extent buffer is
released.
Essentially, if two tasks race to allocate a new extent_buffer, but the
winner who attempts the first io is rebuffed by a page being locked
(likely by the reclaim itself) then the loser will still go ahead with
issuing the readahead. The loser's call to find_extent_buffer must also
race with the reclaim task reading the extent_buffer's refcount as 1 in
a way that allows the reclaim to re-clear the TREE_REF checked by
find_extent_buffer.
The following represents an example execution demonstrating the race:
CPU0 CPU1 CPU2
reada_for_search reada_for_search
readahead_tree_block readahead_tree_block
find_create_tree_block find_create_tree_block
alloc_extent_buffer alloc_extent_buffer
find_extent_buffer // not found
allocates eb
lock pages
associate pages to eb
insert eb into radix tree
set TREE_REF, refs == 2
unlock pages
read_extent_buffer_pages // WAIT_NONE
not uptodate (brand new eb)
lock_page
if !trylock_page
goto unlock_exit // not an error
free_extent_buffer
release_extent_buffer
atomic_dec_and_test refs to 1
find_extent_buffer // found
try_release_extent_buffer
take refs_lock
reads refs == 1; no io
atomic_inc_not_zero refs to 2
mark_buffer_accessed
check_buffer_tree_ref
// not STALE, won't take refs_lock
refs == 2; TREE_REF set // no action
read_extent_buffer_pages // WAIT_NONE
clear TREE_REF
release_extent_buffer
atomic_dec_and_test refs to 1
unlock_page
still not uptodate (CPU1 read failed on trylock_page)
locks pages
set io_pages > 0
submit io
return
free_extent_buffer
release_extent_buffer
dec refs to 0
delete from radix tree
btrfs_release_extent_buffer_pages
BUG_ON(io_pages > 0)!!!
We observe this at a very low rate in production and were also able to
reproduce it in a test environment by introducing some spurious delays
and by introducing probabilistic trylock_page failures.
To fix it, we apply check_tree_ref at a point where it could not
possibly be unset by a competing task: after io_pages has been
incremented. All the codepaths that clear TREE_REF check for io, so they
would not be able to clear it after this point until the io is done.
Stack trace, for reference:
[1417839.424739] ------------[ cut here ]------------
[1417839.435328] kernel BUG at fs/btrfs/extent_io.c:4841!
[1417839.447024] invalid opcode: 0000 [#1] SMP
[1417839.502972] RIP: 0010:btrfs_release_extent_buffer_pages+0x20/0x1f0
[1417839.517008] Code: ed e9 ...
[1417839.558895] RSP: 0018:ffffc90020bcf798 EFLAGS: 00010202
[1417839.570816] RAX: 0000000000000002 RBX: ffff888102d6def0 RCX: 0000000000000028
[1417839.586962] RDX: 0000000000000002 RSI: ffff8887f0296482 RDI: ffff888102d6def0
[1417839.603108] RBP: ffff88885664a000 R08: 0000000000000046 R09: 0000000000000238
[1417839.619255] R10: 0000000000000028 R11: ffff88885664af68 R12: 0000000000000000
[1417839.635402] R13: 0000000000000000 R14: ffff88875f573ad0 R15: ffff888797aafd90
[1417839.651549] FS: 00007f5a844fa700(0000) GS:ffff88885f680000(0000) knlGS:0000000000000000
[1417839.669810] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1417839.682887] CR2: 00007f7884541fe0 CR3: 000000049f609002 CR4: 00000000003606e0
[1417839.699037] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[1417839.715187] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[1417839.731320] Call Trace:
[1417839.737103] release_extent_buffer+0x39/0x90
[1417839.746913] read_block_for_search.isra.38+0x2a3/0x370
[1417839.758645] btrfs_search_slot+0x260/0x9b0
[1417839.768054] btrfs_lookup_file_extent+0x4a/0x70
[1417839.778427] btrfs_get_extent+0x15f/0x830
[1417839.787665] ? submit_extent_page+0xc4/0x1c0
[1417839.797474] ? __do_readpage+0x299/0x7a0
[1417839.806515] __do_readpage+0x33b/0x7a0
[1417839.815171] ? btrfs_releasepage+0x70/0x70
[1417839.824597] extent_readpages+0x28f/0x400
[1417839.833836] read_pages+0x6a/0x1c0
[1417839.841729] ? startup_64+0x2/0x30
[1417839.849624] __do_page_cache_readahead+0x13c/0x1a0
[1417839.860590] filemap_fault+0x6c7/0x990
[1417839.869252] ? xas_load+0x8/0x80
[1417839.876756] ? xas_find+0x150/0x190
[1417839.884839] ? filemap_map_pages+0x295/0x3b0
[1417839.894652] __do_fault+0x32/0x110
[1417839.902540] __handle_mm_fault+0xacd/0x1000
[1417839.912156] handle_mm_fault+0xaa/0x1c0
[1417839.921004] __do_page_fault+0x242/0x4b0
[1417839.930044] ? page_fault+0x8/0x30
[1417839.937933] page_fault+0x1e/0x30
[1417839.945631] RIP: 0033:0x33c4bae
[1417839.952927] Code: Bad RIP value.
[1417839.960411] RSP: 002b:00007f5a844f7350 EFLAGS: 00010206
[1417839.972331] RAX: 000000000000006e RBX: 1614b3ff6a50398a RCX: 0000000000000000
[1417839.988477] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000002
[1417840.004626] RBP: 00007f5a844f7420 R08: 000000000000006e R09: 00007f5a94aeccb8
[1417840.020784] R10: 00007f5a844f7350 R11: 0000000000000000 R12: 00007f5a94aecc79
[1417840.036932] R13: 00007f5a94aecc78 R14: 00007f5a94aecc90 R15: 00007f5a94aecc40
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-rw-r--r-- | fs/btrfs/extent_io.c | 40 |
1 files changed, 24 insertions, 16 deletions
diff --git a/fs/btrfs/extent_io.c b/fs/btrfs/extent_io.c index a8be9478ca3e..c55c2ae335ea 100644 --- a/fs/btrfs/extent_io.c +++ b/fs/btrfs/extent_io.c @@ -4862,25 +4862,28 @@ struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info, static void check_buffer_tree_ref(struct extent_buffer *eb) { int refs; - /* the ref bit is tricky. We have to make sure it is set - * if we have the buffer dirty. Otherwise the - * code to free a buffer can end up dropping a dirty - * page + /* + * The TREE_REF bit is first set when the extent_buffer is added + * to the radix tree. It is also reset, if unset, when a new reference + * is created by find_extent_buffer. * - * Once the ref bit is set, it won't go away while the - * buffer is dirty or in writeback, and it also won't - * go away while we have the reference count on the - * eb bumped. + * It is only cleared in two cases: freeing the last non-tree + * reference to the extent_buffer when its STALE bit is set or + * calling releasepage when the tree reference is the only reference. * - * We can't just set the ref bit without bumping the - * ref on the eb because free_extent_buffer might - * see the ref bit and try to clear it. If this happens - * free_extent_buffer might end up dropping our original - * ref by mistake and freeing the page before we are able - * to add one more ref. + * In both cases, care is taken to ensure that the extent_buffer's + * pages are not under io. However, releasepage can be concurrently + * called with creating new references, which is prone to race + * conditions between the calls to check_buffer_tree_ref in those + * codepaths and clearing TREE_REF in try_release_extent_buffer. * - * So bump the ref count first, then set the bit. If someone - * beat us to it, drop the ref we added. + * The actual lifetime of the extent_buffer in the radix tree is + * adequately protected by the refcount, but the TREE_REF bit and + * its corresponding reference are not. To protect against this + * class of races, we call check_buffer_tree_ref from the codepaths + * which trigger io after they set eb->io_pages. Note that once io is + * initiated, TREE_REF can no longer be cleared, so that is the + * moment at which any such race is best fixed. */ refs = atomic_read(&eb->refs); if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) @@ -5344,6 +5347,11 @@ int read_extent_buffer_pages(struct extent_io_tree *tree, clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); eb->read_mirror = 0; atomic_set(&eb->io_pages, num_reads); + /* + * It is possible for releasepage to clear the TREE_REF bit before we + * set io_pages. See check_buffer_tree_ref for a more detailed comment. + */ + check_buffer_tree_ref(eb); for (i = 0; i < num_pages; i++) { page = eb->pages[i]; |