summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2008-10-20 20:03:12 +0400
committerLinus Torvalds <torvalds@linux-foundation.org>2008-10-20 20:03:12 +0400
commit2be508d847392e431759e370d21cea9412848758 (patch)
treebe5e00a4d7be4ef353ffe4d550fb80a251d321c3
parent01e8ef11bc1a74e65678ed55795f59266d4add01 (diff)
parent8a1a6272057e2ad90ab531a70330165888866e60 (diff)
downloadlinux-2be508d847392e431759e370d21cea9412848758.tar.xz
Merge git://git.infradead.org/mtd-2.6
* git://git.infradead.org/mtd-2.6: (69 commits) Revert "[MTD] m25p80.c code cleanup" [MTD] [NAND] GPIO driver depends on ARM... for now. [MTD] [NAND] sh_flctl: fix compile error [MTD] [NOR] AT49BV6416 has swapped erase regions [MTD] [NAND] GPIO NAND flash driver [MTD] cmdlineparts documentation change - explain where mtd-id comes from [MTD] cfi_cmdset_0002.c: Add Macronix CFI V1.0 TopBottom detection [MTD] [NAND] Fix compilation warnings in drivers/mtd/nand/cs553x_nand.c [JFFS2] Write buffer offset adjustment for NOR-ECC (Sibley) flash [MTD] mtdoops: Fix a bug where block may not be erased [MTD] mtdoops: Add a magic number to logged kernel oops [MTD] mtdoops: Fix an off by one error [JFFS2] Correct parameter names of jffs2_compress() in comments [MTD] [NAND] sh_flctl: add support for Renesas SuperH FLCTL [MTD] [NAND] Bug on atmel_nand HW ECC : OOB info not correctly written [MTD] [MAPS] Remove unused variable after ROM API cleanup. [MTD] m25p80.c extended jedec support (v2) [MTD] remove unused mtd parameter in of_mtd_parse_partitions() [MTD] [NAND] remove dead Kconfig associated with !CONFIG_PPC_MERGE [MTD] [NAND] driver extension to support NAND on TQM85xx modules ...
-rw-r--r--Documentation/mtd/nand_ecc.txt714
-rw-r--r--arch/arm/mach-pxa/include/mach/pxa3xx_nand.h44
-rw-r--r--arch/arm/plat-mxc/include/mach/mxc_nand.h27
-rw-r--r--arch/arm/plat-omap/include/mach/onenand.h6
-rw-r--r--drivers/mtd/Kconfig5
-rw-r--r--drivers/mtd/chips/Kconfig4
-rw-r--r--drivers/mtd/chips/cfi_cmdset_0001.c71
-rw-r--r--drivers/mtd/chips/cfi_cmdset_0002.c52
-rw-r--r--drivers/mtd/chips/cfi_probe.c58
-rw-r--r--drivers/mtd/chips/cfi_util.c66
-rw-r--r--drivers/mtd/chips/gen_probe.c2
-rw-r--r--drivers/mtd/cmdlinepart.c1
-rw-r--r--drivers/mtd/devices/Kconfig21
-rw-r--r--drivers/mtd/devices/m25p80.c138
-rw-r--r--drivers/mtd/devices/mtd_dataflash.c214
-rw-r--r--drivers/mtd/inftlcore.c5
-rw-r--r--drivers/mtd/maps/Kconfig33
-rw-r--r--drivers/mtd/maps/Makefile4
-rw-r--r--drivers/mtd/maps/ebony.c163
-rw-r--r--drivers/mtd/maps/ocotea.c154
-rw-r--r--drivers/mtd/maps/omap-toto-flash.c133
-rw-r--r--drivers/mtd/maps/pci.c18
-rw-r--r--drivers/mtd/maps/physmap_of.c3
-rw-r--r--drivers/mtd/maps/walnut.c122
-rw-r--r--drivers/mtd/mtdchar.c4
-rw-r--r--drivers/mtd/mtdconcat.c4
-rw-r--r--drivers/mtd/mtdoops.c42
-rw-r--r--drivers/mtd/mtdpart.c4
-rw-r--r--drivers/mtd/nand/Kconfig42
-rw-r--r--drivers/mtd/nand/Makefile4
-rw-r--r--drivers/mtd/nand/atmel_nand.c58
-rw-r--r--drivers/mtd/nand/cs553x_nand.c2
-rw-r--r--drivers/mtd/nand/fsl_elbc_nand.c3
-rw-r--r--drivers/mtd/nand/fsl_upm.c68
-rw-r--r--drivers/mtd/nand/gpio.c375
-rw-r--r--drivers/mtd/nand/mxc_nand.c1077
-rw-r--r--drivers/mtd/nand/nand_base.c16
-rw-r--r--drivers/mtd/nand/nand_ecc.c554
-rw-r--r--drivers/mtd/nand/nandsim.c1
-rw-r--r--drivers/mtd/nand/pxa3xx_nand.c147
-rw-r--r--drivers/mtd/nand/sh_flctl.c878
-rw-r--r--drivers/mtd/nand/toto.c206
-rw-r--r--drivers/mtd/ofpart.c1
-rw-r--r--drivers/mtd/onenand/Kconfig8
-rw-r--r--drivers/mtd/onenand/Makefile1
-rw-r--r--drivers/mtd/onenand/omap2.c802
-rw-r--r--drivers/mtd/onenand/onenand_base.c2
-rw-r--r--drivers/mtd/ssfdc.c3
-rw-r--r--drivers/mtd/ubi/cdev.c6
-rw-r--r--drivers/mtd/ubi/scan.c2
-rw-r--r--drivers/mtd/ubi/vtbl.c4
-rw-r--r--drivers/pci/rom.c6
-rw-r--r--fs/Kconfig190
-rw-r--r--fs/jffs2/Kconfig188
-rw-r--r--fs/jffs2/compr.c4
-rw-r--r--fs/jffs2/dir.c2
-rw-r--r--fs/jffs2/erase.c4
-rw-r--r--fs/jffs2/fs.c6
-rw-r--r--fs/jffs2/nodemgmt.c4
-rw-r--r--fs/jffs2/wbuf.c5
-rw-r--r--include/linux/mtd/cfi.h9
-rw-r--r--include/linux/mtd/flashchip.h4
-rw-r--r--include/linux/mtd/mtd.h4
-rw-r--r--include/linux/mtd/nand-gpio.h19
-rw-r--r--include/linux/mtd/nand.h1
-rw-r--r--include/linux/mtd/onenand_regs.h2
-rw-r--r--include/linux/mtd/partitions.h1
-rw-r--r--include/linux/mtd/sh_flctl.h125
-rw-r--r--include/linux/pci.h2
69 files changed, 5441 insertions, 1507 deletions
diff --git a/Documentation/mtd/nand_ecc.txt b/Documentation/mtd/nand_ecc.txt
new file mode 100644
index 000000000000..bdf93b7f0f24
--- /dev/null
+++ b/Documentation/mtd/nand_ecc.txt
@@ -0,0 +1,714 @@
+Introduction
+============
+
+Having looked at the linux mtd/nand driver and more specific at nand_ecc.c
+I felt there was room for optimisation. I bashed the code for a few hours
+performing tricks like table lookup removing superfluous code etc.
+After that the speed was increased by 35-40%.
+Still I was not too happy as I felt there was additional room for improvement.
+
+Bad! I was hooked.
+I decided to annotate my steps in this file. Perhaps it is useful to someone
+or someone learns something from it.
+
+
+The problem
+===========
+
+NAND flash (at least SLC one) typically has sectors of 256 bytes.
+However NAND flash is not extremely reliable so some error detection
+(and sometimes correction) is needed.
+
+This is done by means of a Hamming code. I'll try to explain it in
+laymans terms (and apologies to all the pro's in the field in case I do
+not use the right terminology, my coding theory class was almost 30
+years ago, and I must admit it was not one of my favourites).
+
+As I said before the ecc calculation is performed on sectors of 256
+bytes. This is done by calculating several parity bits over the rows and
+columns. The parity used is even parity which means that the parity bit = 1
+if the data over which the parity is calculated is 1 and the parity bit = 0
+if the data over which the parity is calculated is 0. So the total
+number of bits over the data over which the parity is calculated + the
+parity bit is even. (see wikipedia if you can't follow this).
+Parity is often calculated by means of an exclusive or operation,
+sometimes also referred to as xor. In C the operator for xor is ^
+
+Back to ecc.
+Let's give a small figure:
+
+byte 0: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp4 ... rp14
+byte 1: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp2 rp4 ... rp14
+byte 2: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp4 ... rp14
+byte 3: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp4 ... rp14
+byte 4: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp2 rp5 ... rp14
+....
+byte 254: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp0 rp3 rp5 ... rp15
+byte 255: bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 rp1 rp3 rp5 ... rp15
+ cp1 cp0 cp1 cp0 cp1 cp0 cp1 cp0
+ cp3 cp3 cp2 cp2 cp3 cp3 cp2 cp2
+ cp5 cp5 cp5 cp5 cp4 cp4 cp4 cp4
+
+This figure represents a sector of 256 bytes.
+cp is my abbreviaton for column parity, rp for row parity.
+
+Let's start to explain column parity.
+cp0 is the parity that belongs to all bit0, bit2, bit4, bit6.
+so the sum of all bit0, bit2, bit4 and bit6 values + cp0 itself is even.
+Similarly cp1 is the sum of all bit1, bit3, bit5 and bit7.
+cp2 is the parity over bit0, bit1, bit4 and bit5
+cp3 is the parity over bit2, bit3, bit6 and bit7.
+cp4 is the parity over bit0, bit1, bit2 and bit3.
+cp5 is the parity over bit4, bit5, bit6 and bit7.
+Note that each of cp0 .. cp5 is exactly one bit.
+
+Row parity actually works almost the same.
+rp0 is the parity of all even bytes (0, 2, 4, 6, ... 252, 254)
+rp1 is the parity of all odd bytes (1, 3, 5, 7, ..., 253, 255)
+rp2 is the parity of all bytes 0, 1, 4, 5, 8, 9, ...
+(so handle two bytes, then skip 2 bytes).
+rp3 is covers the half rp2 does not cover (bytes 2, 3, 6, 7, 10, 11, ...)
+for rp4 the rule is cover 4 bytes, skip 4 bytes, cover 4 bytes, skip 4 etc.
+so rp4 calculates parity over bytes 0, 1, 2, 3, 8, 9, 10, 11, 16, ...)
+and rp5 covers the other half, so bytes 4, 5, 6, 7, 12, 13, 14, 15, 20, ..
+The story now becomes quite boring. I guess you get the idea.
+rp6 covers 8 bytes then skips 8 etc
+rp7 skips 8 bytes then covers 8 etc
+rp8 covers 16 bytes then skips 16 etc
+rp9 skips 16 bytes then covers 16 etc
+rp10 covers 32 bytes then skips 32 etc
+rp11 skips 32 bytes then covers 32 etc
+rp12 covers 64 bytes then skips 64 etc
+rp13 skips 64 bytes then covers 64 etc
+rp14 covers 128 bytes then skips 128
+rp15 skips 128 bytes then covers 128
+
+In the end the parity bits are grouped together in three bytes as
+follows:
+ECC Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
+ECC 0 rp07 rp06 rp05 rp04 rp03 rp02 rp01 rp00
+ECC 1 rp15 rp14 rp13 rp12 rp11 rp10 rp09 rp08
+ECC 2 cp5 cp4 cp3 cp2 cp1 cp0 1 1
+
+I detected after writing this that ST application note AN1823
+(http://www.st.com/stonline/books/pdf/docs/10123.pdf) gives a much
+nicer picture.(but they use line parity as term where I use row parity)
+Oh well, I'm graphically challenged, so suffer with me for a moment :-)
+And I could not reuse the ST picture anyway for copyright reasons.
+
+
+Attempt 0
+=========
+
+Implementing the parity calculation is pretty simple.
+In C pseudocode:
+for (i = 0; i < 256; i++)
+{
+ if (i & 0x01)
+ rp1 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
+ else
+ rp0 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp1;
+ if (i & 0x02)
+ rp3 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp3;
+ else
+ rp2 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp2;
+ if (i & 0x04)
+ rp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp5;
+ else
+ rp4 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp4;
+ if (i & 0x08)
+ rp7 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp7;
+ else
+ rp6 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp6;
+ if (i & 0x10)
+ rp9 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp9;
+ else
+ rp8 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp8;
+ if (i & 0x20)
+ rp11 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp11;
+ else
+ rp10 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp10;
+ if (i & 0x40)
+ rp13 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp13;
+ else
+ rp12 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp12;
+ if (i & 0x80)
+ rp15 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp15;
+ else
+ rp14 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ bit3 ^ bit2 ^ bit1 ^ bit0 ^ rp14;
+ cp0 = bit6 ^ bit4 ^ bit2 ^ bit0 ^ cp0;
+ cp1 = bit7 ^ bit5 ^ bit3 ^ bit1 ^ cp1;
+ cp2 = bit5 ^ bit4 ^ bit1 ^ bit0 ^ cp2;
+ cp3 = bit7 ^ bit6 ^ bit3 ^ bit2 ^ cp3
+ cp4 = bit3 ^ bit2 ^ bit1 ^ bit0 ^ cp4
+ cp5 = bit7 ^ bit6 ^ bit5 ^ bit4 ^ cp5
+}
+
+
+Analysis 0
+==========
+
+C does have bitwise operators but not really operators to do the above
+efficiently (and most hardware has no such instructions either).
+Therefore without implementing this it was clear that the code above was
+not going to bring me a Nobel prize :-)
+
+Fortunately the exclusive or operation is commutative, so we can combine
+the values in any order. So instead of calculating all the bits
+individually, let us try to rearrange things.
+For the column parity this is easy. We can just xor the bytes and in the
+end filter out the relevant bits. This is pretty nice as it will bring
+all cp calculation out of the if loop.
+
+Similarly we can first xor the bytes for the various rows.
+This leads to:
+
+
+Attempt 1
+=========
+
+const char parity[256] = {
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
+};
+
+void ecc1(const unsigned char *buf, unsigned char *code)
+{
+ int i;
+ const unsigned char *bp = buf;
+ unsigned char cur;
+ unsigned char rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
+ unsigned char rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
+ unsigned char par;
+
+ par = 0;
+ rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
+ rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
+ rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
+ rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
+
+ for (i = 0; i < 256; i++)
+ {
+ cur = *bp++;
+ par ^= cur;
+ if (i & 0x01) rp1 ^= cur; else rp0 ^= cur;
+ if (i & 0x02) rp3 ^= cur; else rp2 ^= cur;
+ if (i & 0x04) rp5 ^= cur; else rp4 ^= cur;
+ if (i & 0x08) rp7 ^= cur; else rp6 ^= cur;
+ if (i & 0x10) rp9 ^= cur; else rp8 ^= cur;
+ if (i & 0x20) rp11 ^= cur; else rp10 ^= cur;
+ if (i & 0x40) rp13 ^= cur; else rp12 ^= cur;
+ if (i & 0x80) rp15 ^= cur; else rp14 ^= cur;
+ }
+ code[0] =
+ (parity[rp7] << 7) |
+ (parity[rp6] << 6) |
+ (parity[rp5] << 5) |
+ (parity[rp4] << 4) |
+ (parity[rp3] << 3) |
+ (parity[rp2] << 2) |
+ (parity[rp1] << 1) |
+ (parity[rp0]);
+ code[1] =
+ (parity[rp15] << 7) |
+ (parity[rp14] << 6) |
+ (parity[rp13] << 5) |
+ (parity[rp12] << 4) |
+ (parity[rp11] << 3) |
+ (parity[rp10] << 2) |
+ (parity[rp9] << 1) |
+ (parity[rp8]);
+ code[2] =
+ (parity[par & 0xf0] << 7) |
+ (parity[par & 0x0f] << 6) |
+ (parity[par & 0xcc] << 5) |
+ (parity[par & 0x33] << 4) |
+ (parity[par & 0xaa] << 3) |
+ (parity[par & 0x55] << 2);
+ code[0] = ~code[0];
+ code[1] = ~code[1];
+ code[2] = ~code[2];
+}
+
+Still pretty straightforward. The last three invert statements are there to
+give a checksum of 0xff 0xff 0xff for an empty flash. In an empty flash
+all data is 0xff, so the checksum then matches.
+
+I also introduced the parity lookup. I expected this to be the fastest
+way to calculate the parity, but I will investigate alternatives later
+on.
+
+
+Analysis 1
+==========
+
+The code works, but is not terribly efficient. On my system it took
+almost 4 times as much time as the linux driver code. But hey, if it was
+*that* easy this would have been done long before.
+No pain. no gain.
+
+Fortunately there is plenty of room for improvement.
+
+In step 1 we moved from bit-wise calculation to byte-wise calculation.
+However in C we can also use the unsigned long data type and virtually
+every modern microprocessor supports 32 bit operations, so why not try
+to write our code in such a way that we process data in 32 bit chunks.
+
+Of course this means some modification as the row parity is byte by
+byte. A quick analysis:
+for the column parity we use the par variable. When extending to 32 bits
+we can in the end easily calculate p0 and p1 from it.
+(because par now consists of 4 bytes, contributing to rp1, rp0, rp1, rp0
+respectively)
+also rp2 and rp3 can be easily retrieved from par as rp3 covers the
+first two bytes and rp2 the last two bytes.
+
+Note that of course now the loop is executed only 64 times (256/4).
+And note that care must taken wrt byte ordering. The way bytes are
+ordered in a long is machine dependent, and might affect us.
+Anyway, if there is an issue: this code is developed on x86 (to be
+precise: a DELL PC with a D920 Intel CPU)
+
+And of course the performance might depend on alignment, but I expect
+that the I/O buffers in the nand driver are aligned properly (and
+otherwise that should be fixed to get maximum performance).
+
+Let's give it a try...
+
+
+Attempt 2
+=========
+
+extern const char parity[256];
+
+void ecc2(const unsigned char *buf, unsigned char *code)
+{
+ int i;
+ const unsigned long *bp = (unsigned long *)buf;
+ unsigned long cur;
+ unsigned long rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
+ unsigned long rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
+ unsigned long par;
+
+ par = 0;
+ rp0 = 0; rp1 = 0; rp2 = 0; rp3 = 0;
+ rp4 = 0; rp5 = 0; rp6 = 0; rp7 = 0;
+ rp8 = 0; rp9 = 0; rp10 = 0; rp11 = 0;
+ rp12 = 0; rp13 = 0; rp14 = 0; rp15 = 0;
+
+ for (i = 0; i < 64; i++)
+ {
+ cur = *bp++;
+ par ^= cur;
+ if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
+ if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
+ if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
+ if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
+ if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
+ if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
+ }
+ /*
+ we need to adapt the code generation for the fact that rp vars are now
+ long; also the column parity calculation needs to be changed.
+ we'll bring rp4 to 15 back to single byte entities by shifting and
+ xoring
+ */
+ rp4 ^= (rp4 >> 16); rp4 ^= (rp4 >> 8); rp4 &= 0xff;
+ rp5 ^= (rp5 >> 16); rp5 ^= (rp5 >> 8); rp5 &= 0xff;
+ rp6 ^= (rp6 >> 16); rp6 ^= (rp6 >> 8); rp6 &= 0xff;
+ rp7 ^= (rp7 >> 16); rp7 ^= (rp7 >> 8); rp7 &= 0xff;
+ rp8 ^= (rp8 >> 16); rp8 ^= (rp8 >> 8); rp8 &= 0xff;
+ rp9 ^= (rp9 >> 16); rp9 ^= (rp9 >> 8); rp9 &= 0xff;
+ rp10 ^= (rp10 >> 16); rp10 ^= (rp10 >> 8); rp10 &= 0xff;
+ rp11 ^= (rp11 >> 16); rp11 ^= (rp11 >> 8); rp11 &= 0xff;
+ rp12 ^= (rp12 >> 16); rp12 ^= (rp12 >> 8); rp12 &= 0xff;
+ rp13 ^= (rp13 >> 16); rp13 ^= (rp13 >> 8); rp13 &= 0xff;
+ rp14 ^= (rp14 >> 16); rp14 ^= (rp14 >> 8); rp14 &= 0xff;
+ rp15 ^= (rp15 >> 16); rp15 ^= (rp15 >> 8); rp15 &= 0xff;
+ rp3 = (par >> 16); rp3 ^= (rp3 >> 8); rp3 &= 0xff;
+ rp2 = par & 0xffff; rp2 ^= (rp2 >> 8); rp2 &= 0xff;
+ par ^= (par >> 16);
+ rp1 = (par >> 8); rp1 &= 0xff;
+ rp0 = (par & 0xff);
+ par ^= (par >> 8); par &= 0xff;
+
+ code[0] =
+ (parity[rp7] << 7) |
+ (parity[rp6] << 6) |
+ (parity[rp5] << 5) |
+ (parity[rp4] << 4) |
+ (parity[rp3] << 3) |
+ (parity[rp2] << 2) |
+ (parity[rp1] << 1) |
+ (parity[rp0]);
+ code[1] =
+ (parity[rp15] << 7) |
+ (parity[rp14] << 6) |
+ (parity[rp13] << 5) |
+ (parity[rp12] << 4) |
+ (parity[rp11] << 3) |
+ (parity[rp10] << 2) |
+ (parity[rp9] << 1) |
+ (parity[rp8]);
+ code[2] =
+ (parity[par & 0xf0] << 7) |
+ (parity[par & 0x0f] << 6) |
+ (parity[par & 0xcc] << 5) |
+ (parity[par & 0x33] << 4) |
+ (parity[par & 0xaa] << 3) |
+ (parity[par & 0x55] << 2);
+ code[0] = ~code[0];
+ code[1] = ~code[1];
+ code[2] = ~code[2];
+}
+
+The parity array is not shown any more. Note also that for these
+examples I kinda deviated from my regular programming style by allowing
+multiple statements on a line, not using { } in then and else blocks
+with only a single statement and by using operators like ^=
+
+
+Analysis 2
+==========
+
+The code (of course) works, and hurray: we are a little bit faster than
+the linux driver code (about 15%). But wait, don't cheer too quickly.
+THere is more to be gained.
+If we look at e.g. rp14 and rp15 we see that we either xor our data with
+rp14 or with rp15. However we also have par which goes over all data.
+This means there is no need to calculate rp14 as it can be calculated from
+rp15 through rp14 = par ^ rp15;
+(or if desired we can avoid calculating rp15 and calculate it from
+rp14). That is why some places refer to inverse parity.
+Of course the same thing holds for rp4/5, rp6/7, rp8/9, rp10/11 and rp12/13.
+Effectively this means we can eliminate the else clause from the if
+statements. Also we can optimise the calculation in the end a little bit
+by going from long to byte first. Actually we can even avoid the table
+lookups
+
+Attempt 3
+=========
+
+Odd replaced:
+ if (i & 0x01) rp5 ^= cur; else rp4 ^= cur;
+ if (i & 0x02) rp7 ^= cur; else rp6 ^= cur;
+ if (i & 0x04) rp9 ^= cur; else rp8 ^= cur;
+ if (i & 0x08) rp11 ^= cur; else rp10 ^= cur;
+ if (i & 0x10) rp13 ^= cur; else rp12 ^= cur;
+ if (i & 0x20) rp15 ^= cur; else rp14 ^= cur;
+with
+ if (i & 0x01) rp5 ^= cur;
+ if (i & 0x02) rp7 ^= cur;
+ if (i & 0x04) rp9 ^= cur;
+ if (i & 0x08) rp11 ^= cur;
+ if (i & 0x10) rp13 ^= cur;
+ if (i & 0x20) rp15 ^= cur;
+
+ and outside the loop added:
+ rp4 = par ^ rp5;
+ rp6 = par ^ rp7;
+ rp8 = par ^ rp9;
+ rp10 = par ^ rp11;
+ rp12 = par ^ rp13;
+ rp14 = par ^ rp15;
+
+And after that the code takes about 30% more time, although the number of
+statements is reduced. This is also reflected in the assembly code.
+
+
+Analysis 3
+==========
+
+Very weird. Guess it has to do with caching or instruction parallellism
+or so. I also tried on an eeePC (Celeron, clocked at 900 Mhz). Interesting
+observation was that this one is only 30% slower (according to time)
+executing the code as my 3Ghz D920 processor.
+
+Well, it was expected not to be easy so maybe instead move to a
+different track: let's move back to the code from attempt2 and do some
+loop unrolling. This will eliminate a few if statements. I'll try
+different amounts of unrolling to see what works best.
+
+
+Attempt 4
+=========
+
+Unrolled the loop 1, 2, 3 and 4 times.
+For 4 the code starts with:
+
+ for (i = 0; i < 4; i++)
+ {
+ cur = *bp++;
+ par ^= cur;
+ rp4 ^= cur;
+ rp6 ^= cur;
+ rp8 ^= cur;
+ rp10 ^= cur;
+ if (i & 0x1) rp13 ^= cur; else rp12 ^= cur;
+ if (i & 0x2) rp15 ^= cur; else rp14 ^= cur;
+ cur = *bp++;
+ par ^= cur;
+ rp5 ^= cur;
+ rp6 ^= cur;
+ ...
+
+
+Analysis 4
+==========
+
+Unrolling once gains about 15%
+Unrolling twice keeps the gain at about 15%
+Unrolling three times gives a gain of 30% compared to attempt 2.
+Unrolling four times gives a marginal improvement compared to unrolling
+three times.
+
+I decided to proceed with a four time unrolled loop anyway. It was my gut
+feeling that in the next steps I would obtain additional gain from it.
+
+The next step was triggered by the fact that par contains the xor of all
+bytes and rp4 and rp5 each contain the xor of half of the bytes.
+So in effect par = rp4 ^ rp5. But as xor is commutative we can also say
+that rp5 = par ^ rp4. So no need to keep both rp4 and rp5 around. We can
+eliminate rp5 (or rp4, but I already foresaw another optimisation).
+The same holds for rp6/7, rp8/9, rp10/11 rp12/13 and rp14/15.
+
+
+Attempt 5
+=========
+
+Effectively so all odd digit rp assignments in the loop were removed.
+This included the else clause of the if statements.
+Of course after the loop we need to correct things by adding code like:
+ rp5 = par ^ rp4;
+Also the initial assignments (rp5 = 0; etc) could be removed.
+Along the line I also removed the initialisation of rp0/1/2/3.
+
+
+Analysis 5
+==========
+
+Measurements showed this was a good move. The run-time roughly halved
+compared with attempt 4 with 4 times unrolled, and we only require 1/3rd
+of the processor time compared to the current code in the linux kernel.
+
+However, still I thought there was more. I didn't like all the if
+statements. Why not keep a running parity and only keep the last if
+statement. Time for yet another version!
+
+
+Attempt 6
+=========
+
+THe code within the for loop was changed to:
+
+ for (i = 0; i < 4; i++)
+ {
+ cur = *bp++; tmppar = cur; rp4 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
+
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp6 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
+
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur; rp8 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp6 ^= cur; rp8 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp8 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp8 ^= cur;
+
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur; rp6 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp6 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur;
+ cur = *bp++; tmppar ^= cur;
+
+ par ^= tmppar;
+ if ((i & 0x1) == 0) rp12 ^= tmppar;
+ if ((i & 0x2) == 0) rp14 ^= tmppar;
+ }
+
+As you can see tmppar is used to accumulate the parity within a for
+iteration. In the last 3 statements is is added to par and, if needed,
+to rp12 and rp14.
+
+While making the changes I also found that I could exploit that tmppar
+contains the running parity for this iteration. So instead of having:
+rp4 ^= cur; rp6 = cur;
+I removed the rp6 = cur; statement and did rp6 ^= tmppar; on next
+statement. A similar change was done for rp8 and rp10
+
+
+Analysis 6
+==========
+
+Measuring this code again showed big gain. When executing the original
+linux code 1 million times, this took about 1 second on my system.
+(using time to measure the performance). After this iteration I was back
+to 0.075 sec. Actually I had to decide to start measuring over 10
+million interations in order not to loose too much accuracy. This one
+definitely seemed to be the jackpot!
+
+There is a little bit more room for improvement though. There are three
+places with statements:
+rp4 ^= cur; rp6 ^= cur;
+It seems more efficient to also maintain a variable rp4_6 in the while
+loop; This eliminates 3 statements per loop. Of course after the loop we
+need to correct by adding:
+ rp4 ^= rp4_6;
+ rp6 ^= rp4_6
+Furthermore there are 4 sequential assingments to rp8. This can be
+encoded slightly more efficient by saving tmppar before those 4 lines
+and later do rp8 = rp8 ^ tmppar ^ notrp8;
+(where notrp8 is the value of rp8 before those 4 lines).
+Again a use of the commutative property of xor.
+Time for a new test!
+
+
+Attempt 7
+=========
+
+The new code now looks like:
+
+ for (i = 0; i < 4; i++)
+ {
+ cur = *bp++; tmppar = cur; rp4 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp6 ^= tmppar;
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp8 ^= tmppar;
+
+ cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp6 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp10 ^= tmppar;
+
+ notrp8 = tmppar;
+ cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp6 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur;
+ cur = *bp++; tmppar ^= cur;
+ rp8 = rp8 ^ tmppar ^ notrp8;
+
+ cur = *bp++; tmppar ^= cur; rp4_6 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp6 ^= cur;
+ cur = *bp++; tmppar ^= cur; rp4 ^= cur;
+ cur = *bp++; tmppar ^= cur;
+
+ par ^= tmppar;
+ if ((i & 0x1) == 0) rp12 ^= tmppar;
+ if ((i & 0x2) == 0) rp14 ^= tmppar;
+ }
+ rp4 ^= rp4_6;
+ rp6 ^= rp4_6;
+
+
+Not a big change, but every penny counts :-)
+
+
+Analysis 7
+==========
+
+Acutally this made things worse. Not very much, but I don't want to move
+into the wrong direction. Maybe something to investigate later. Could
+have to do with caching again.
+
+Guess that is what there is to win within the loop. Maybe unrolling one
+more time will help. I'll keep the optimisations from 7 for now.
+
+
+Attempt 8
+=========
+
+Unrolled the loop one more time.
+
+
+Analysis 8
+==========
+
+This makes things worse. Let's stick with attempt 6 and continue from there.
+Although it seems that the code within the loop cannot be optimised
+further there is still room to optimize the generation of the ecc codes.
+We can simply calcualate the total parity. If this is 0 then rp4 = rp5
+etc. If the parity is 1, then rp4 = !rp5;
+But if rp4 = rp5 we do not need rp5 etc. We can just write the even bits
+in the result byte and then do something like
+ code[0] |= (code[0] << 1);
+Lets test this.
+
+
+Attempt 9
+=========
+
+Changed the code but again this slightly degrades performance. Tried all
+kind of other things, like having dedicated parity arrays to avoid the
+shift after parity[rp7] << 7; No gain.
+Change the lookup using the parity array by using shift operators (e.g.
+replace parity[rp7] << 7 with:
+rp7 ^= (rp7 << 4);
+rp7 ^= (rp7 << 2);
+rp7 ^= (rp7 << 1);
+rp7 &= 0x80;
+No gain.
+
+The only marginal change was inverting the parity bits, so we can remove
+the last three invert statements.
+
+Ah well, pity this does not deliver more. Then again 10 million
+iterations using the linux driver code takes between 13 and 13.5
+seconds, whereas my code now takes about 0.73 seconds for those 10
+million iterations. So basically I've improved the performance by a
+factor 18 on my system. Not that bad. Of course on different hardware
+you will get different results. No warranties!
+
+But of course there is no such thing as a free lunch. The codesize almost
+tripled (from 562 bytes to 1434 bytes). Then again, it is not that much.
+
+
+Correcting errors
+=================
+
+For correcting errors I again used the ST application note as a starter,
+but I also peeked at the existing code.
+The algorithm itself is pretty straightforward. Just xor the given and
+the calculated ecc. If all bytes are 0 there is no problem. If 11 bits
+are 1 we have one correctable bit error. If there is 1 bit 1, we have an
+error in the given ecc code.
+It proved to be fastest to do some table lookups. Performance gain
+introduced by this is about a factor 2 on my system when a repair had to
+be done, and 1% or so if no repair had to be done.
+Code size increased from 330 bytes to 686 bytes for this function.
+(gcc 4.2, -O3)
+
+
+Conclusion
+==========
+
+The gain when calculating the ecc is tremendous. Om my development hardware
+a speedup of a factor of 18 for ecc calculation was achieved. On a test on an
+embedded system with a MIPS core a factor 7 was obtained.
+On a test with a Linksys NSLU2 (ARMv5TE processor) the speedup was a factor
+5 (big endian mode, gcc 4.1.2, -O3)
+For correction not much gain could be obtained (as bitflips are rare). Then
+again there are also much less cycles spent there.
+
+It seems there is not much more gain possible in this, at least when
+programmed in C. Of course it might be possible to squeeze something more
+out of it with an assembler program, but due to pipeline behaviour etc
+this is very tricky (at least for intel hw).
+
+Author: Frans Meulenbroeks
+Copyright (C) 2008 Koninklijke Philips Electronics NV.
diff --git a/arch/arm/mach-pxa/include/mach/pxa3xx_nand.h b/arch/arm/mach-pxa/include/mach/pxa3xx_nand.h
index eb4b190b6657..eb35fca9aea5 100644
--- a/arch/arm/mach-pxa/include/mach/pxa3xx_nand.h
+++ b/arch/arm/mach-pxa/include/mach/pxa3xx_nand.h
@@ -4,6 +4,43 @@
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
+struct pxa3xx_nand_timing {
+ unsigned int tCH; /* Enable signal hold time */
+ unsigned int tCS; /* Enable signal setup time */
+ unsigned int tWH; /* ND_nWE high duration */
+ unsigned int tWP; /* ND_nWE pulse time */
+ unsigned int tRH; /* ND_nRE high duration */
+ unsigned int tRP; /* ND_nRE pulse width */
+ unsigned int tR; /* ND_nWE high to ND_nRE low for read */
+ unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */
+ unsigned int tAR; /* ND_ALE low to ND_nRE low delay */
+};
+
+struct pxa3xx_nand_cmdset {
+ uint16_t read1;
+ uint16_t read2;
+ uint16_t program;
+ uint16_t read_status;
+ uint16_t read_id;
+ uint16_t erase;
+ uint16_t reset;
+ uint16_t lock;
+ uint16_t unlock;
+ uint16_t lock_status;
+};
+
+struct pxa3xx_nand_flash {
+ const struct pxa3xx_nand_timing *timing; /* NAND Flash timing */
+ const struct pxa3xx_nand_cmdset *cmdset;
+
+ uint32_t page_per_block;/* Pages per block (PG_PER_BLK) */
+ uint32_t page_size; /* Page size in bytes (PAGE_SZ) */
+ uint32_t flash_width; /* Width of Flash memory (DWIDTH_M) */
+ uint32_t dfc_width; /* Width of flash controller(DWIDTH_C) */
+ uint32_t num_blocks; /* Number of physical blocks in Flash */
+ uint32_t chip_id;
+};
+
struct pxa3xx_nand_platform_data {
/* the data flash bus is shared between the Static Memory
@@ -12,8 +49,11 @@ struct pxa3xx_nand_platform_data {
*/
int enable_arbiter;
- struct mtd_partition *parts;
- unsigned int nr_parts;
+ const struct mtd_partition *parts;
+ unsigned int nr_parts;
+
+ const struct pxa3xx_nand_flash * flash;
+ size_t num_flash;
};
extern void pxa3xx_set_nand_info(struct pxa3xx_nand_platform_data *info);
diff --git a/arch/arm/plat-mxc/include/mach/mxc_nand.h b/arch/arm/plat-mxc/include/mach/mxc_nand.h
new file mode 100644
index 000000000000..2b972df22d12
--- /dev/null
+++ b/arch/arm/plat-mxc/include/mach/mxc_nand.h
@@ -0,0 +1,27 @@
+/*
+ * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
+ * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
+ * MA 02110-1301, USA.
+ */
+
+#ifndef __ASM_ARCH_NAND_H
+#define __ASM_ARCH_NAND_H
+
+struct mxc_nand_platform_data {
+ int width; /* data bus width in bytes */
+ int hw_ecc; /* 0 if supress hardware ECC */
+};
+#endif /* __ASM_ARCH_NAND_H */
diff --git a/arch/arm/plat-omap/include/mach/onenand.h b/arch/arm/plat-omap/include/mach/onenand.h
index d57f20226b28..4649d302c263 100644
--- a/arch/arm/plat-omap/include/mach/onenand.h
+++ b/arch/arm/plat-omap/include/mach/onenand.h
@@ -16,6 +16,10 @@ struct omap_onenand_platform_data {
int gpio_irq;
struct mtd_partition *parts;
int nr_parts;
- int (*onenand_setup)(void __iomem *);
+ int (*onenand_setup)(void __iomem *, int freq);
int dma_channel;
};
+
+int omap2_onenand_rephase(void);
+
+#define ONENAND_MAX_PARTITIONS 8
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig
index 14f11f8b9e5f..a90d50c2c3e5 100644
--- a/drivers/mtd/Kconfig
+++ b/drivers/mtd/Kconfig
@@ -172,6 +172,11 @@ config MTD_CHAR
memory chips, and also use ioctl() to obtain information about
the device, or to erase parts of it.
+config HAVE_MTD_OTP
+ bool
+ help
+ Enable access to OTP regions using MTD_CHAR.
+
config MTD_BLKDEVS
tristate "Common interface to block layer for MTD 'translation layers'"
depends on BLOCK
diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig
index 479d32b57a1e..9408099eec48 100644
--- a/drivers/mtd/chips/Kconfig
+++ b/drivers/mtd/chips/Kconfig
@@ -6,6 +6,7 @@ menu "RAM/ROM/Flash chip drivers"
config MTD_CFI
tristate "Detect flash chips by Common Flash Interface (CFI) probe"
select MTD_GEN_PROBE
+ select MTD_CFI_UTIL
help
The Common Flash Interface specification was developed by Intel,
AMD and other flash manufactures that provides a universal method
@@ -154,6 +155,7 @@ config MTD_CFI_I8
config MTD_OTP
bool "Protection Registers aka one-time programmable (OTP) bits"
depends on MTD_CFI_ADV_OPTIONS
+ select HAVE_MTD_OTP
default n
help
This enables support for reading, writing and locking so called
@@ -187,7 +189,7 @@ config MTD_CFI_INTELEXT
StrataFlash and other parts.
config MTD_CFI_AMDSTD
- tristate "Support for AMD/Fujitsu flash chips"
+ tristate "Support for AMD/Fujitsu/Spansion flash chips"
depends on MTD_GEN_PROBE
select MTD_CFI_UTIL
help
diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c
index 5f1b472137a0..c93a8be5d5f1 100644
--- a/drivers/mtd/chips/cfi_cmdset_0001.c
+++ b/drivers/mtd/chips/cfi_cmdset_0001.c
@@ -478,6 +478,28 @@ struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
else
cfi->chips[i].erase_time = 2000000;
+ if (cfi->cfiq->WordWriteTimeoutTyp &&
+ cfi->cfiq->WordWriteTimeoutMax)
+ cfi->chips[i].word_write_time_max =
+ 1<<(cfi->cfiq->WordWriteTimeoutTyp +
+ cfi->cfiq->WordWriteTimeoutMax);
+ else
+ cfi->chips[i].word_write_time_max = 50000 * 8;
+
+ if (cfi->cfiq->BufWriteTimeoutTyp &&
+ cfi->cfiq->BufWriteTimeoutMax)
+ cfi->chips[i].buffer_write_time_max =
+ 1<<(cfi->cfiq->BufWriteTimeoutTyp +
+ cfi->cfiq->BufWriteTimeoutMax);
+
+ if (cfi->cfiq->BlockEraseTimeoutTyp &&
+ cfi->cfiq->BlockEraseTimeoutMax)
+ cfi->chips[i].erase_time_max =
+ 1000<<(cfi->cfiq->BlockEraseTimeoutTyp +
+ cfi->cfiq->BlockEraseTimeoutMax);
+ else
+ cfi->chips[i].erase_time_max = 2000000 * 8;
+
cfi->chips[i].ref_point_counter = 0;
init_waitqueue_head(&(cfi->chips[i].wq));
}
@@ -703,6 +725,10 @@ static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
unsigned long timeo = jiffies + HZ;
+ /* Prevent setting state FL_SYNCING for chip in suspended state. */
+ if (mode == FL_SYNCING && chip->oldstate != FL_READY)
+ goto sleep;
+
switch (chip->state) {
case FL_STATUS:
@@ -808,8 +834,9 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
DECLARE_WAITQUEUE(wait, current);
retry:
- if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING
- || mode == FL_OTP_WRITE || mode == FL_SHUTDOWN)) {
+ if (chip->priv &&
+ (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE
+ || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) {
/*
* OK. We have possibility for contention on the write/erase
* operations which are global to the real chip and not per
@@ -859,6 +886,14 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
return ret;
}
spin_lock(&shared->lock);
+
+ /* We should not own chip if it is already
+ * in FL_SYNCING state. Put contender and retry. */
+ if (chip->state == FL_SYNCING) {
+ put_chip(map, contender, contender->start);
+ spin_unlock(contender->mutex);
+ goto retry;
+ }
spin_unlock(contender->mutex);
}
@@ -1012,7 +1047,7 @@ static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
static int __xipram xip_wait_for_operation(
struct map_info *map, struct flchip *chip,
- unsigned long adr, unsigned int chip_op_time )
+ unsigned long adr, unsigned int chip_op_time_max)
{
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
@@ -1021,7 +1056,7 @@ static int __xipram xip_wait_for_operation(
flstate_t oldstate, newstate;
start = xip_currtime();
- usec = chip_op_time * 8;
+ usec = chip_op_time_max;
if (usec == 0)
usec = 500000;
done = 0;
@@ -1131,8 +1166,8 @@ static int __xipram xip_wait_for_operation(
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
INVALIDATE_CACHED_RANGE(map, from, size)
-#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec) \
- xip_wait_for_operation(map, chip, cmd_adr, usec)
+#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \
+ xip_wait_for_operation(map, chip, cmd_adr, usec_max)
#else
@@ -1144,7 +1179,7 @@ static int __xipram xip_wait_for_operation(
static int inval_cache_and_wait_for_operation(
struct map_info *map, struct flchip *chip,
unsigned long cmd_adr, unsigned long inval_adr, int inval_len,
- unsigned int chip_op_time)
+ unsigned int chip_op_time, unsigned int chip_op_time_max)
{
struct cfi_private *cfi = map->fldrv_priv;
map_word status, status_OK = CMD(0x80);
@@ -1156,8 +1191,7 @@ static int inval_cache_and_wait_for_operation(
INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len);
spin_lock(chip->mutex);
- /* set our timeout to 8 times the expected delay */
- timeo = chip_op_time * 8;
+ timeo = chip_op_time_max;
if (!timeo)
timeo = 500000;
reset_timeo = timeo;
@@ -1217,8 +1251,8 @@ static int inval_cache_and_wait_for_operation(
#endif
-#define WAIT_TIMEOUT(map, chip, adr, udelay) \
- INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay);
+#define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \
+ INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max);
static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
@@ -1452,7 +1486,8 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
adr, map_bankwidth(map),
- chip->word_write_time);
+ chip->word_write_time,
+ chip->word_write_time_max);
if (ret) {
xip_enable(map, chip, adr);
printk(KERN_ERR "%s: word write error (status timeout)\n", map->name);
@@ -1623,7 +1658,7 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
chip->state = FL_WRITING_TO_BUFFER;
map_write(map, write_cmd, cmd_adr);
- ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0);
+ ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0);
if (ret) {
/* Argh. Not ready for write to buffer */
map_word Xstatus = map_read(map, cmd_adr);
@@ -1640,7 +1675,7 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
/* Figure out the number of words to write */
word_gap = (-adr & (map_bankwidth(map)-1));
- words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
+ words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map));
if (!word_gap) {
words--;
} else {
@@ -1692,7 +1727,8 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr,
initial_adr, initial_len,
- chip->buffer_write_time);
+ chip->buffer_write_time,
+ chip->buffer_write_time_max);
if (ret) {
map_write(map, CMD(0x70), cmd_adr);
chip->state = FL_STATUS;
@@ -1827,7 +1863,8 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
ret = INVAL_CACHE_AND_WAIT(map, chip, adr,
adr, len,
- chip->erase_time);
+ chip->erase_time,
+ chip->erase_time_max);
if (ret) {
map_write(map, CMD(0x70), adr);
chip->state = FL_STATUS;
@@ -2006,7 +2043,7 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip
*/
udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0;
- ret = WAIT_TIMEOUT(map, chip, adr, udelay);
+ ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100);
if (ret) {
map_write(map, CMD(0x70), adr);
chip->state = FL_STATUS;
diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c
index a972cc6be436..3e6f5d8609e8 100644
--- a/drivers/mtd/chips/cfi_cmdset_0002.c
+++ b/drivers/mtd/chips/cfi_cmdset_0002.c
@@ -13,6 +13,8 @@
* XIP support hooks by Vitaly Wool (based on code for Intel flash
* by Nicolas Pitre)
*
+ * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
+ *
* Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
*
* This code is GPL
@@ -43,6 +45,7 @@
#define MANUFACTURER_AMD 0x0001
#define MANUFACTURER_ATMEL 0x001F
+#define MANUFACTURER_MACRONIX 0x00C2
#define MANUFACTURER_SST 0x00BF
#define SST49LF004B 0x0060
#define SST49LF040B 0x0050
@@ -144,12 +147,44 @@ static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
if (((major << 8) | minor) < 0x3131) {
/* CFI version 1.0 => don't trust bootloc */
+
+ DEBUG(MTD_DEBUG_LEVEL1,
+ "%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
+ map->name, cfi->mfr, cfi->id);
+
+ /* AFAICS all 29LV400 with a bottom boot block have a device ID
+ * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
+ * These were badly detected as they have the 0x80 bit set
+ * so treat them as a special case.
+ */
+ if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
+
+ /* Macronix added CFI to their 2nd generation
+ * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
+ * Fujitsu, Spansion, EON, ESI and older Macronix)
+ * has CFI.
+ *
+ * Therefore also check the manufacturer.
+ * This reduces the risk of false detection due to
+ * the 8-bit device ID.
+ */
+ (cfi->mfr == MANUFACTURER_MACRONIX)) {
+ DEBUG(MTD_DEBUG_LEVEL1,
+ "%s: Macronix MX29LV400C with bottom boot block"
+ " detected\n", map->name);
+ extp->TopBottom = 2; /* bottom boot */
+ } else
if (cfi->id & 0x80) {
printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
extp->TopBottom = 3; /* top boot */
} else {
extp->TopBottom = 2; /* bottom boot */
}
+
+ DEBUG(MTD_DEBUG_LEVEL1,
+ "%s: AMD CFI PRI V%c.%c has no boot block field;"
+ " deduced %s from Device ID\n", map->name, major, minor,
+ extp->TopBottom == 2 ? "bottom" : "top");
}
}
#endif
@@ -178,10 +213,18 @@ static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
if (atmel_pri.Features & 0x02)
extp->EraseSuspend = 2;
- if (atmel_pri.BottomBoot)
- extp->TopBottom = 2;
- else
- extp->TopBottom = 3;
+ /* Some chips got it backwards... */
+ if (cfi->id == AT49BV6416) {
+ if (atmel_pri.BottomBoot)
+ extp->TopBottom = 3;
+ else
+ extp->TopBottom = 2;
+ } else {
+ if (atmel_pri.BottomBoot)
+ extp->TopBottom = 2;
+ else
+ extp->TopBottom = 3;
+ }
/* burst write mode not supported */
cfi->cfiq->BufWriteTimeoutTyp = 0;
@@ -243,6 +286,7 @@ static struct cfi_fixup cfi_fixup_table[] = {
{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
#ifdef AMD_BOOTLOC_BUG
{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
+ { MANUFACTURER_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock, NULL },
#endif
{ CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
diff --git a/drivers/mtd/chips/cfi_probe.c b/drivers/mtd/chips/cfi_probe.c
index c418e92e1d92..e63e6749429a 100644
--- a/drivers/mtd/chips/cfi_probe.c
+++ b/drivers/mtd/chips/cfi_probe.c
@@ -44,17 +44,14 @@ do { \
#define xip_enable(base, map, cfi) \
do { \
- cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \
- cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \
+ cfi_qry_mode_off(base, map, cfi); \
xip_allowed(base, map); \
} while (0)
#define xip_disable_qry(base, map, cfi) \
do { \
xip_disable(); \
- cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \
- cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \
- cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); \
+ cfi_qry_mode_on(base, map, cfi); \
} while (0)
#else
@@ -70,32 +67,6 @@ do { \
in: interleave,type,mode
ret: table index, <0 for error
*/
-static int __xipram qry_present(struct map_info *map, __u32 base,
- struct cfi_private *cfi)
-{
- int osf = cfi->interleave * cfi->device_type; // scale factor
- map_word val[3];
- map_word qry[3];
-
- qry[0] = cfi_build_cmd('Q', map, cfi);
- qry[1] = cfi_build_cmd('R', map, cfi);
- qry[2] = cfi_build_cmd('Y', map, cfi);
-
- val[0] = map_read(map, base + osf*0x10);
- val[1] = map_read(map, base + osf*0x11);
- val[2] = map_read(map, base + osf*0x12);
-
- if (!map_word_equal(map, qry[0], val[0]))
- return 0;
-
- if (!map_word_equal(map, qry[1], val[1]))
- return 0;
-
- if (!map_word_equal(map, qry[2], val[2]))
- return 0;
-
- return 1; // "QRY" found
-}
static int __xipram cfi_probe_chip(struct map_info *map, __u32 base,
unsigned long *chip_map, struct cfi_private *cfi)
@@ -116,11 +87,7 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base,
}
xip_disable();
- cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
- cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
- cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
-
- if (!qry_present(map,base,cfi)) {
+ if (!cfi_qry_mode_on(base, map, cfi)) {
xip_enable(base, map, cfi);
return 0;
}
@@ -141,14 +108,13 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base,
start = i << cfi->chipshift;
/* This chip should be in read mode if it's one
we've already touched. */
- if (qry_present(map, start, cfi)) {
+ if (cfi_qry_present(map, start, cfi)) {
/* Eep. This chip also had the QRY marker.
* Is it an alias for the new one? */
- cfi_send_gen_cmd(0xF0, 0, start, map, cfi, cfi->device_type, NULL);
- cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL);
+ cfi_qry_mode_off(start, map, cfi);
/* If the QRY marker goes away, it's an alias */
- if (!qry_present(map, start, cfi)) {
+ if (!cfi_qry_present(map, start, cfi)) {
xip_allowed(base, map);
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
map->name, base, start);
@@ -158,10 +124,9 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base,
* unfortunate. Stick the new chip in read mode
* too and if it's the same, assume it's an alias. */
/* FIXME: Use other modes to do a proper check */
- cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
- cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL);
+ cfi_qry_mode_off(base, map, cfi);
- if (qry_present(map, base, cfi)) {
+ if (cfi_qry_present(map, base, cfi)) {
xip_allowed(base, map);
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
map->name, base, start);
@@ -176,8 +141,7 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base,
cfi->numchips++;
/* Put it back into Read Mode */
- cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
- cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
+ cfi_qry_mode_off(base, map, cfi);
xip_allowed(base, map);
printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n",
@@ -237,9 +201,7 @@ static int __xipram cfi_chip_setup(struct map_info *map,
cfi_read_query(map, base + 0xf * ofs_factor);
/* Put it back into Read Mode */
- cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
- /* ... even if it's an Intel chip */
- cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
+ cfi_qry_mode_off(base, map, cfi);
xip_allowed(base, map);
/* Do any necessary byteswapping */
diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c
index 0ee457018016..34d40e25d312 100644
--- a/drivers/mtd/chips/cfi_util.c
+++ b/drivers/mtd/chips/cfi_util.c
@@ -24,6 +24,66 @@
#include <linux/mtd/cfi.h>
#include <linux/mtd/compatmac.h>
+int __xipram cfi_qry_present(struct map_info *map, __u32 base,
+ struct cfi_private *cfi)
+{
+ int osf = cfi->interleave * cfi->device_type; /* scale factor */
+ map_word val[3];
+ map_word qry[3];
+
+ qry[0] = cfi_build_cmd('Q', map, cfi);
+ qry[1] = cfi_build_cmd('R', map, cfi);
+ qry[2] = cfi_build_cmd('Y', map, cfi);
+
+ val[0] = map_read(map, base + osf*0x10);
+ val[1] = map_read(map, base + osf*0x11);
+ val[2] = map_read(map, base + osf*0x12);
+
+ if (!map_word_equal(map, qry[0], val[0]))
+ return 0;
+
+ if (!map_word_equal(map, qry[1], val[1]))
+ return 0;
+
+ if (!map_word_equal(map, qry[2], val[2]))
+ return 0;
+
+ return 1; /* "QRY" found */
+}
+EXPORT_SYMBOL_GPL(cfi_qry_present);
+
+int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
+ struct cfi_private *cfi)
+{
+ cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+ cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
+ if (cfi_qry_present(map, base, cfi))
+ return 1;
+ /* QRY not found probably we deal with some odd CFI chips */
+ /* Some revisions of some old Intel chips? */
+ cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+ cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
+ cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
+ if (cfi_qry_present(map, base, cfi))
+ return 1;
+ /* ST M29DW chips */
+ cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+ cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
+ if (cfi_qry_present(map, base, cfi))
+ return 1;
+ /* QRY not found */
+ return 0;
+}
+EXPORT_SYMBOL_GPL(cfi_qry_mode_on);
+
+void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
+ struct cfi_private *cfi)
+{
+ cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
+ cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
+}
+EXPORT_SYMBOL_GPL(cfi_qry_mode_off);
+
struct cfi_extquery *
__xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name)
{
@@ -48,8 +108,7 @@ __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* n
#endif
/* Switch it into Query Mode */
- cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
-
+ cfi_qry_mode_on(base, map, cfi);
/* Read in the Extended Query Table */
for (i=0; i<size; i++) {
((unsigned char *)extp)[i] =
@@ -57,8 +116,7 @@ __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* n
}
/* Make sure it returns to read mode */
- cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL);
- cfi_send_gen_cmd(0xff, 0, base, map, cfi, cfi->device_type, NULL);
+ cfi_qry_mode_off(base, map, cfi);
#ifdef CONFIG_MTD_XIP
(void) map_read(map, base);
diff --git a/drivers/mtd/chips/gen_probe.c b/drivers/mtd/chips/gen_probe.c
index f061885b2812..e2dc96441e05 100644
--- a/drivers/mtd/chips/gen_probe.c
+++ b/drivers/mtd/chips/gen_probe.c
@@ -111,7 +111,7 @@ static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chi
max_chips = 1;
}
- mapsize = sizeof(long) * ( (max_chips + BITS_PER_LONG-1) / BITS_PER_LONG );
+ mapsize = sizeof(long) * DIV_ROUND_UP(max_chips, BITS_PER_LONG);
chip_map = kzalloc(mapsize, GFP_KERNEL);
if (!chip_map) {
printk(KERN_WARNING "%s: kmalloc failed for CFI chip map\n", map->name);
diff --git a/drivers/mtd/cmdlinepart.c b/drivers/mtd/cmdlinepart.c
index 71bc07f149b7..50a340388e74 100644
--- a/drivers/mtd/cmdlinepart.c
+++ b/drivers/mtd/cmdlinepart.c
@@ -7,6 +7,7 @@
*
* mtdparts=<mtddef>[;<mtddef]
* <mtddef> := <mtd-id>:<partdef>[,<partdef>]
+ * where <mtd-id> is the name from the "cat /proc/mtd" command
* <partdef> := <size>[@offset][<name>][ro][lk]
* <mtd-id> := unique name used in mapping driver/device (mtd->name)
* <size> := standard linux memsize OR "-" to denote all remaining space
diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig
index 9c613f06623c..6fde0a2e3567 100644
--- a/drivers/mtd/devices/Kconfig
+++ b/drivers/mtd/devices/Kconfig
@@ -59,6 +59,27 @@ config MTD_DATAFLASH
Sometimes DataFlash chips are packaged inside MMC-format
cards; at this writing, the MMC stack won't handle those.
+config MTD_DATAFLASH_WRITE_VERIFY
+ bool "Verify DataFlash page writes"
+ depends on MTD_DATAFLASH
+ help
+ This adds an extra check when data is written to the flash.
+ It may help if you are verifying chip setup (timings etc) on
+ your board. There is a rare possibility that even though the
+ device thinks the write was successful, a bit could have been
+ flipped accidentally due to device wear or something else.
+
+config MTD_DATAFLASH_OTP
+ bool "DataFlash OTP support (Security Register)"
+ depends on MTD_DATAFLASH
+ select HAVE_MTD_OTP
+ help
+ Newer DataFlash chips (revisions C and D) support 128 bytes of
+ one-time-programmable (OTP) data. The first half may be written
+ (once) with up to 64 bytes of data, such as a serial number or
+ other key product data. The second half is programmed with a
+ unique-to-each-chip bit pattern at the factory.
+
config MTD_M25P80
tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)"
depends on SPI_MASTER && EXPERIMENTAL
diff --git a/drivers/mtd/devices/m25p80.c b/drivers/mtd/devices/m25p80.c
index b35c3333e210..76a76751da36 100644
--- a/drivers/mtd/devices/m25p80.c
+++ b/drivers/mtd/devices/m25p80.c
@@ -39,6 +39,7 @@
#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
+#define OPCODE_BE 0xc7 /* Erase whole flash block */
#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
#define OPCODE_RDID 0x9f /* Read JEDEC ID */
@@ -161,6 +162,31 @@ static int wait_till_ready(struct m25p *flash)
return 1;
}
+/*
+ * Erase the whole flash memory
+ *
+ * Returns 0 if successful, non-zero otherwise.
+ */
+static int erase_block(struct m25p *flash)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB\n",
+ flash->spi->dev.bus_id, __func__,
+ flash->mtd.size / 1024);
+
+ /* Wait until finished previous write command. */
+ if (wait_till_ready(flash))
+ return 1;
+
+ /* Send write enable, then erase commands. */
+ write_enable(flash);
+
+ /* Set up command buffer. */
+ flash->command[0] = OPCODE_BE;
+
+ spi_write(flash->spi, flash->command, 1);
+
+ return 0;
+}
/*
* Erase one sector of flash memory at offset ``offset'' which is any
@@ -229,15 +255,21 @@ static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
*/
/* now erase those sectors */
- while (len) {
- if (erase_sector(flash, addr)) {
- instr->state = MTD_ERASE_FAILED;
- mutex_unlock(&flash->lock);
- return -EIO;
- }
+ if (len == flash->mtd.size && erase_block(flash)) {
+ instr->state = MTD_ERASE_FAILED;
+ mutex_unlock(&flash->lock);
+ return -EIO;
+ } else {
+ while (len) {
+ if (erase_sector(flash, addr)) {
+ instr->state = MTD_ERASE_FAILED;
+ mutex_unlock(&flash->lock);
+ return -EIO;
+ }
- addr += mtd->erasesize;
- len -= mtd->erasesize;
+ addr += mtd->erasesize;
+ len -= mtd->erasesize;
+ }
}
mutex_unlock(&flash->lock);
@@ -437,6 +469,7 @@ struct flash_info {
* then a two byte device id.
*/
u32 jedec_id;
+ u16 ext_id;
/* The size listed here is what works with OPCODE_SE, which isn't
* necessarily called a "sector" by the vendor.
@@ -456,72 +489,75 @@ struct flash_info {
static struct flash_info __devinitdata m25p_data [] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
- { "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, },
- { "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, },
+ { "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K, },
+ { "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K, },
- { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, },
- { "at25df641", 0x1f4800, 64 * 1024, 128, SECT_4K, },
+ { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, },
+ { "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K, },
- { "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, },
- { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, },
- { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, },
- { "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, },
+ { "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K, },
+ { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, },
+ { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, },
+ { "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K, },
/* Spansion -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
- { "s25sl004a", 0x010212, 64 * 1024, 8, },
- { "s25sl008a", 0x010213, 64 * 1024, 16, },
- { "s25sl016a", 0x010214, 64 * 1024, 32, },
- { "s25sl032a", 0x010215, 64 * 1024, 64, },
- { "s25sl064a", 0x010216, 64 * 1024, 128, },
+ { "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
+ { "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
+ { "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
+ { "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
+ { "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
+ { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
+ { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
- { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, },
- { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, },
- { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, },
- { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, },
+ { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, },
+ { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, },
+ { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, },
+ { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, },
/* ST Microelectronics -- newer production may have feature updates */
- { "m25p05", 0x202010, 32 * 1024, 2, },
- { "m25p10", 0x202011, 32 * 1024, 4, },
- { "m25p20", 0x202012, 64 * 1024, 4, },
- { "m25p40", 0x202013, 64 * 1024, 8, },
- { "m25p80", 0, 64 * 1024, 16, },
- { "m25p16", 0x202015, 64 * 1024, 32, },
- { "m25p32", 0x202016, 64 * 1024, 64, },
- { "m25p64", 0x202017, 64 * 1024, 128, },
- { "m25p128", 0x202018, 256 * 1024, 64, },
-
- { "m45pe80", 0x204014, 64 * 1024, 16, },
- { "m45pe16", 0x204015, 64 * 1024, 32, },
-
- { "m25pe80", 0x208014, 64 * 1024, 16, },
- { "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, },
+ { "m25p05", 0x202010, 0, 32 * 1024, 2, },
+ { "m25p10", 0x202011, 0, 32 * 1024, 4, },
+ { "m25p20", 0x202012, 0, 64 * 1024, 4, },
+ { "m25p40", 0x202013, 0, 64 * 1024, 8, },
+ { "m25p80", 0, 0, 64 * 1024, 16, },
+ { "m25p16", 0x202015, 0, 64 * 1024, 32, },
+ { "m25p32", 0x202016, 0, 64 * 1024, 64, },
+ { "m25p64", 0x202017, 0, 64 * 1024, 128, },
+ { "m25p128", 0x202018, 0, 256 * 1024, 64, },
+
+ { "m45pe80", 0x204014, 0, 64 * 1024, 16, },
+ { "m45pe16", 0x204015, 0, 64 * 1024, 32, },
+
+ { "m25pe80", 0x208014, 0, 64 * 1024, 16, },
+ { "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K, },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
- { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, },
- { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, },
- { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, },
- { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, },
- { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, },
- { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, },
- { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, },
+ { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, },
+ { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, },
+ { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, },
+ { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, },
+ { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, },
+ { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, },
+ { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, },
};
static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
{
int tmp;
u8 code = OPCODE_RDID;
- u8 id[3];
+ u8 id[5];
u32 jedec;
+ u16 ext_jedec;
struct flash_info *info;
/* JEDEC also defines an optional "extended device information"
* string for after vendor-specific data, after the three bytes
* we use here. Supporting some chips might require using it.
*/
- tmp = spi_write_then_read(spi, &code, 1, id, 3);
+ tmp = spi_write_then_read(spi, &code, 1, id, 5);
if (tmp < 0) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
spi->dev.bus_id, tmp);
@@ -533,10 +569,14 @@ static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
jedec = jedec << 8;
jedec |= id[2];
+ ext_jedec = id[3] << 8 | id[4];
+
for (tmp = 0, info = m25p_data;
tmp < ARRAY_SIZE(m25p_data);
tmp++, info++) {
if (info->jedec_id == jedec)
+ if (ext_jedec != 0 && info->ext_id != ext_jedec)
+ continue;
return info;
}
dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
diff --git a/drivers/mtd/devices/mtd_dataflash.c b/drivers/mtd/devices/mtd_dataflash.c
index 8bd0dea6885f..6dd9aff8bb2d 100644
--- a/drivers/mtd/devices/mtd_dataflash.c
+++ b/drivers/mtd/devices/mtd_dataflash.c
@@ -30,12 +30,10 @@
* doesn't (yet) use these for any kind of i/o overlap or prefetching.
*
* Sometimes DataFlash is packaged in MMC-format cards, although the
- * MMC stack can't use SPI (yet), or distinguish between MMC and DataFlash
+ * MMC stack can't (yet?) distinguish between MMC and DataFlash
* protocols during enumeration.
*/
-#define CONFIG_DATAFLASH_WRITE_VERIFY
-
/* reads can bypass the buffers */
#define OP_READ_CONTINUOUS 0xE8
#define OP_READ_PAGE 0xD2
@@ -80,7 +78,8 @@
*/
#define OP_READ_ID 0x9F
#define OP_READ_SECURITY 0x77
-#define OP_WRITE_SECURITY 0x9A /* OTP bits */
+#define OP_WRITE_SECURITY_REVC 0x9A
+#define OP_WRITE_SECURITY 0x9B /* revision D */
struct dataflash {
@@ -402,7 +401,7 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
(void) dataflash_waitready(priv->spi);
-#ifdef CONFIG_DATAFLASH_WRITE_VERIFY
+#ifdef CONFIG_MTD_DATAFLASH_VERIFY_WRITE
/* (3) Compare to Buffer1 */
addr = pageaddr << priv->page_offset;
@@ -431,7 +430,7 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
} else
status = 0;
-#endif /* CONFIG_DATAFLASH_WRITE_VERIFY */
+#endif /* CONFIG_MTD_DATAFLASH_VERIFY_WRITE */
remaining = remaining - writelen;
pageaddr++;
@@ -451,16 +450,192 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
/* ......................................................................... */
+#ifdef CONFIG_MTD_DATAFLASH_OTP
+
+static int dataflash_get_otp_info(struct mtd_info *mtd,
+ struct otp_info *info, size_t len)
+{
+ /* Report both blocks as identical: bytes 0..64, locked.
+ * Unless the user block changed from all-ones, we can't
+ * tell whether it's still writable; so we assume it isn't.
+ */
+ info->start = 0;
+ info->length = 64;
+ info->locked = 1;
+ return sizeof(*info);
+}
+
+static ssize_t otp_read(struct spi_device *spi, unsigned base,
+ uint8_t *buf, loff_t off, size_t len)
+{
+ struct spi_message m;
+ size_t l;
+ uint8_t *scratch;
+ struct spi_transfer t;
+ int status;
+
+ if (off > 64)
+ return -EINVAL;
+
+ if ((off + len) > 64)
+ len = 64 - off;
+ if (len == 0)
+ return len;
+
+ spi_message_init(&m);
+
+ l = 4 + base + off + len;
+ scratch = kzalloc(l, GFP_KERNEL);
+ if (!scratch)
+ return -ENOMEM;
+
+ /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
+ * IN: ignore 4 bytes, data bytes 0..N (max 127)
+ */
+ scratch[0] = OP_READ_SECURITY;
+
+ memset(&t, 0, sizeof t);
+ t.tx_buf = scratch;
+ t.rx_buf = scratch;
+ t.len = l;
+ spi_message_add_tail(&t, &m);
+
+ dataflash_waitready(spi);
+
+ status = spi_sync(spi, &m);
+ if (status >= 0) {
+ memcpy(buf, scratch + 4 + base + off, len);
+ status = len;
+ }
+
+ kfree(scratch);
+ return status;
+}
+
+static int dataflash_read_fact_otp(struct mtd_info *mtd,
+ loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+ struct dataflash *priv = (struct dataflash *)mtd->priv;
+ int status;
+
+ /* 64 bytes, from 0..63 ... start at 64 on-chip */
+ mutex_lock(&priv->lock);
+ status = otp_read(priv->spi, 64, buf, from, len);
+ mutex_unlock(&priv->lock);
+
+ if (status < 0)
+ return status;
+ *retlen = status;
+ return 0;
+}
+
+static int dataflash_read_user_otp(struct mtd_info *mtd,
+ loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+ struct dataflash *priv = (struct dataflash *)mtd->priv;
+ int status;
+
+ /* 64 bytes, from 0..63 ... start at 0 on-chip */
+ mutex_lock(&priv->lock);
+ status = otp_read(priv->spi, 0, buf, from, len);
+ mutex_unlock(&priv->lock);
+
+ if (status < 0)
+ return status;
+ *retlen = status;
+ return 0;
+}
+
+static int dataflash_write_user_otp(struct mtd_info *mtd,
+ loff_t from, size_t len, size_t *retlen, u_char *buf)
+{
+ struct spi_message m;
+ const size_t l = 4 + 64;
+ uint8_t *scratch;
+ struct spi_transfer t;
+ struct dataflash *priv = (struct dataflash *)mtd->priv;
+ int status;
+
+ if (len > 64)
+ return -EINVAL;
+
+ /* Strictly speaking, we *could* truncate the write ... but
+ * let's not do that for the only write that's ever possible.
+ */
+ if ((from + len) > 64)
+ return -EINVAL;
+
+ /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
+ * IN: ignore all
+ */
+ scratch = kzalloc(l, GFP_KERNEL);
+ if (!scratch)
+ return -ENOMEM;
+ scratch[0] = OP_WRITE_SECURITY;
+ memcpy(scratch + 4 + from, buf, len);
+
+ spi_message_init(&m);
+
+ memset(&t, 0, sizeof t);
+ t.tx_buf = scratch;
+ t.len = l;
+ spi_message_add_tail(&t, &m);
+
+ /* Write the OTP bits, if they've not yet been written.
+ * This modifies SRAM buffer1.
+ */
+ mutex_lock(&priv->lock);
+ dataflash_waitready(priv->spi);
+ status = spi_sync(priv->spi, &m);
+ mutex_unlock(&priv->lock);
+
+ kfree(scratch);
+
+ if (status >= 0) {
+ status = 0;
+ *retlen = len;
+ }
+ return status;
+}
+
+static char *otp_setup(struct mtd_info *device, char revision)
+{
+ device->get_fact_prot_info = dataflash_get_otp_info;
+ device->read_fact_prot_reg = dataflash_read_fact_otp;
+ device->get_user_prot_info = dataflash_get_otp_info;
+ device->read_user_prot_reg = dataflash_read_user_otp;
+
+ /* rev c parts (at45db321c and at45db1281 only!) use a
+ * different write procedure; not (yet?) implemented.
+ */
+ if (revision > 'c')
+ device->write_user_prot_reg = dataflash_write_user_otp;
+
+ return ", OTP";
+}
+
+#else
+
+static char *otp_setup(struct mtd_info *device, char revision)
+{
+ return " (OTP)";
+}
+
+#endif
+
+/* ......................................................................... */
+
/*
* Register DataFlash device with MTD subsystem.
*/
static int __devinit
-add_dataflash(struct spi_device *spi, char *name,
- int nr_pages, int pagesize, int pageoffset)
+add_dataflash_otp(struct spi_device *spi, char *name,
+ int nr_pages, int pagesize, int pageoffset, char revision)
{
struct dataflash *priv;
struct mtd_info *device;
struct flash_platform_data *pdata = spi->dev.platform_data;
+ char *otp_tag = "";
priv = kzalloc(sizeof *priv, GFP_KERNEL);
if (!priv)
@@ -489,8 +664,12 @@ add_dataflash(struct spi_device *spi, char *name,
device->write = dataflash_write;
device->priv = priv;
- dev_info(&spi->dev, "%s (%d KBytes) pagesize %d bytes\n",
- name, DIV_ROUND_UP(device->size, 1024), pagesize);
+ if (revision >= 'c')
+ otp_tag = otp_setup(device, revision);
+
+ dev_info(&spi->dev, "%s (%d KBytes) pagesize %d bytes%s\n",
+ name, DIV_ROUND_UP(device->size, 1024),
+ pagesize, otp_tag);
dev_set_drvdata(&spi->dev, priv);
if (mtd_has_partitions()) {
@@ -519,6 +698,14 @@ add_dataflash(struct spi_device *spi, char *name,
return add_mtd_device(device) == 1 ? -ENODEV : 0;
}
+static inline int __devinit
+add_dataflash(struct spi_device *spi, char *name,
+ int nr_pages, int pagesize, int pageoffset)
+{
+ return add_dataflash_otp(spi, name, nr_pages, pagesize,
+ pageoffset, 0);
+}
+
struct flash_info {
char *name;
@@ -664,13 +851,16 @@ static int __devinit dataflash_probe(struct spi_device *spi)
* Try to detect dataflash by JEDEC ID.
* If it succeeds we know we have either a C or D part.
* D will support power of 2 pagesize option.
+ * Both support the security register, though with different
+ * write procedures.
*/
info = jedec_probe(spi);
if (IS_ERR(info))
return PTR_ERR(info);
if (info != NULL)
- return add_dataflash(spi, info->name, info->nr_pages,
- info->pagesize, info->pageoffset);
+ return add_dataflash_otp(spi, info->name, info->nr_pages,
+ info->pagesize, info->pageoffset,
+ (info->flags & SUP_POW2PS) ? 'd' : 'c');
/*
* Older chips support only legacy commands, identifing
diff --git a/drivers/mtd/inftlcore.c b/drivers/mtd/inftlcore.c
index c4f9d3378b24..50ce13887f63 100644
--- a/drivers/mtd/inftlcore.c
+++ b/drivers/mtd/inftlcore.c
@@ -388,6 +388,10 @@ static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned
if (thisEUN == targetEUN)
break;
+ /* Unlink the last block from the chain. */
+ inftl->PUtable[prevEUN] = BLOCK_NIL;
+
+ /* Now try to erase it. */
if (INFTL_formatblock(inftl, thisEUN) < 0) {
/*
* Could not erase : mark block as reserved.
@@ -396,7 +400,6 @@ static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned
} else {
/* Correctly erased : mark it as free */
inftl->PUtable[thisEUN] = BLOCK_FREE;
- inftl->PUtable[prevEUN] = BLOCK_NIL;
inftl->numfreeEUNs++;
}
}
diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig
index df8e00bba07b..5ea169362164 100644
--- a/drivers/mtd/maps/Kconfig
+++ b/drivers/mtd/maps/Kconfig
@@ -332,30 +332,6 @@ config MTD_CFI_FLAGADM
Mapping for the Flaga digital module. If you don't have one, ignore
this setting.
-config MTD_WALNUT
- tristate "Flash device mapped on IBM 405GP Walnut"
- depends on MTD_JEDECPROBE && WALNUT && !PPC_MERGE
- help
- This enables access routines for the flash chips on the IBM 405GP
- Walnut board. If you have one of these boards and would like to
- use the flash chips on it, say 'Y'.
-
-config MTD_EBONY
- tristate "Flash devices mapped on IBM 440GP Ebony"
- depends on MTD_JEDECPROBE && EBONY && !PPC_MERGE
- help
- This enables access routines for the flash chips on the IBM 440GP
- Ebony board. If you have one of these boards and would like to
- use the flash chips on it, say 'Y'.
-
-config MTD_OCOTEA
- tristate "Flash devices mapped on IBM 440GX Ocotea"
- depends on MTD_CFI && OCOTEA && !PPC_MERGE
- help
- This enables access routines for the flash chips on the IBM 440GX
- Ocotea board. If you have one of these boards and would like to
- use the flash chips on it, say 'Y'.
-
config MTD_REDWOOD
tristate "CFI Flash devices mapped on IBM Redwood"
depends on MTD_CFI && ( REDWOOD_4 || REDWOOD_5 || REDWOOD_6 )
@@ -458,13 +434,6 @@ config MTD_CEIVA
PhotoMax Digital Picture Frame.
If you have such a device, say 'Y'.
-config MTD_NOR_TOTO
- tristate "NOR Flash device on TOTO board"
- depends on ARCH_OMAP && OMAP_TOTO
- help
- This enables access to the NOR flash on the Texas Instruments
- TOTO board.
-
config MTD_H720X
tristate "Hynix evaluation board mappings"
depends on MTD_CFI && ( ARCH_H7201 || ARCH_H7202 )
@@ -522,7 +491,7 @@ config MTD_BFIN_ASYNC
config MTD_UCLINUX
tristate "Generic uClinux RAM/ROM filesystem support"
- depends on MTD_PARTITIONS && !MMU
+ depends on MTD_PARTITIONS && MTD_RAM && !MMU
help
Map driver to support image based filesystems for uClinux.
diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile
index 6cda6df973e5..6d9ba35caf11 100644
--- a/drivers/mtd/maps/Makefile
+++ b/drivers/mtd/maps/Makefile
@@ -50,12 +50,8 @@ obj-$(CONFIG_MTD_REDWOOD) += redwood.o
obj-$(CONFIG_MTD_UCLINUX) += uclinux.o
obj-$(CONFIG_MTD_NETtel) += nettel.o
obj-$(CONFIG_MTD_SCB2_FLASH) += scb2_flash.o
-obj-$(CONFIG_MTD_EBONY) += ebony.o
-obj-$(CONFIG_MTD_OCOTEA) += ocotea.o
-obj-$(CONFIG_MTD_WALNUT) += walnut.o
obj-$(CONFIG_MTD_H720X) += h720x-flash.o
obj-$(CONFIG_MTD_SBC8240) += sbc8240.o
-obj-$(CONFIG_MTD_NOR_TOTO) += omap-toto-flash.o
obj-$(CONFIG_MTD_IXP4XX) += ixp4xx.o
obj-$(CONFIG_MTD_IXP2000) += ixp2000.o
obj-$(CONFIG_MTD_WRSBC8260) += wr_sbc82xx_flash.o
diff --git a/drivers/mtd/maps/ebony.c b/drivers/mtd/maps/ebony.c
deleted file mode 100644
index d92b7c70d3ed..000000000000
--- a/drivers/mtd/maps/ebony.c
+++ /dev/null
@@ -1,163 +0,0 @@
-/*
- * Mapping for Ebony user flash
- *
- * Matt Porter <mporter@kernel.crashing.org>
- *
- * Copyright 2002-2004 MontaVista Software Inc.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 of the License, or (at your
- * option) any later version.
- */
-
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/init.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/map.h>
-#include <linux/mtd/partitions.h>
-#include <asm/io.h>
-#include <asm/ibm44x.h>
-#include <platforms/4xx/ebony.h>
-
-static struct mtd_info *flash;
-
-static struct map_info ebony_small_map = {
- .name = "Ebony small flash",
- .size = EBONY_SMALL_FLASH_SIZE,
- .bankwidth = 1,
-};
-
-static struct map_info ebony_large_map = {
- .name = "Ebony large flash",
- .size = EBONY_LARGE_FLASH_SIZE,
- .bankwidth = 1,
-};
-
-static struct mtd_partition ebony_small_partitions[] = {
- {
- .name = "OpenBIOS",
- .offset = 0x0,
- .size = 0x80000,
- }
-};
-
-static struct mtd_partition ebony_large_partitions[] = {
- {
- .name = "fs",
- .offset = 0,
- .size = 0x380000,
- },
- {
- .name = "firmware",
- .offset = 0x380000,
- .size = 0x80000,
- }
-};
-
-int __init init_ebony(void)
-{
- u8 fpga0_reg;
- u8 __iomem *fpga0_adr;
- unsigned long long small_flash_base, large_flash_base;
-
- fpga0_adr = ioremap64(EBONY_FPGA_ADDR, 16);
- if (!fpga0_adr)
- return -ENOMEM;
-
- fpga0_reg = readb(fpga0_adr);
- iounmap(fpga0_adr);
-
- if (EBONY_BOOT_SMALL_FLASH(fpga0_reg) &&
- !EBONY_FLASH_SEL(fpga0_reg))
- small_flash_base = EBONY_SMALL_FLASH_HIGH2;
- else if (EBONY_BOOT_SMALL_FLASH(fpga0_reg) &&
- EBONY_FLASH_SEL(fpga0_reg))
- small_flash_base = EBONY_SMALL_FLASH_HIGH1;
- else if (!EBONY_BOOT_SMALL_FLASH(fpga0_reg) &&
- !EBONY_FLASH_SEL(fpga0_reg))
- small_flash_base = EBONY_SMALL_FLASH_LOW2;
- else
- small_flash_base = EBONY_SMALL_FLASH_LOW1;
-
- if (EBONY_BOOT_SMALL_FLASH(fpga0_reg) &&
- !EBONY_ONBRD_FLASH_EN(fpga0_reg))
- large_flash_base = EBONY_LARGE_FLASH_LOW;
- else
- large_flash_base = EBONY_LARGE_FLASH_HIGH;
-
- ebony_small_map.phys = small_flash_base;
- ebony_small_map.virt = ioremap64(small_flash_base,
- ebony_small_map.size);
-
- if (!ebony_small_map.virt) {
- printk("Failed to ioremap flash\n");
- return -EIO;
- }
-
- simple_map_init(&ebony_small_map);
-
- flash = do_map_probe("jedec_probe", &ebony_small_map);
- if (flash) {
- flash->owner = THIS_MODULE;
- add_mtd_partitions(flash, ebony_small_partitions,
- ARRAY_SIZE(ebony_small_partitions));
- } else {
- printk("map probe failed for flash\n");
- iounmap(ebony_small_map.virt);
- return -ENXIO;
- }
-
- ebony_large_map.phys = large_flash_base;
- ebony_large_map.virt = ioremap64(large_flash_base,
- ebony_large_map.size);
-
- if (!ebony_large_map.virt) {
- printk("Failed to ioremap flash\n");
- iounmap(ebony_small_map.virt);
- return -EIO;
- }
-
- simple_map_init(&ebony_large_map);
-
- flash = do_map_probe("jedec_probe", &ebony_large_map);
- if (flash) {
- flash->owner = THIS_MODULE;
- add_mtd_partitions(flash, ebony_large_partitions,
- ARRAY_SIZE(ebony_large_partitions));
- } else {
- printk("map probe failed for flash\n");
- iounmap(ebony_small_map.virt);
- iounmap(ebony_large_map.virt);
- return -ENXIO;
- }
-
- return 0;
-}
-
-static void __exit cleanup_ebony(void)
-{
- if (flash) {
- del_mtd_partitions(flash);
- map_destroy(flash);
- }
-
- if (ebony_small_map.virt) {
- iounmap(ebony_small_map.virt);
- ebony_small_map.virt = NULL;
- }
-
- if (ebony_large_map.virt) {
- iounmap(ebony_large_map.virt);
- ebony_large_map.virt = NULL;
- }
-}
-
-module_init(init_ebony);
-module_exit(cleanup_ebony);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
-MODULE_DESCRIPTION("MTD map and partitions for IBM 440GP Ebony boards");
diff --git a/drivers/mtd/maps/ocotea.c b/drivers/mtd/maps/ocotea.c
deleted file mode 100644
index 5522eac8c980..000000000000
--- a/drivers/mtd/maps/ocotea.c
+++ /dev/null
@@ -1,154 +0,0 @@
-/*
- * Mapping for Ocotea user flash
- *
- * Matt Porter <mporter@kernel.crashing.org>
- *
- * Copyright 2002-2004 MontaVista Software Inc.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 of the License, or (at your
- * option) any later version.
- */
-
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/init.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/map.h>
-#include <linux/mtd/partitions.h>
-#include <asm/io.h>
-#include <asm/ibm44x.h>
-#include <platforms/4xx/ocotea.h>
-
-static struct mtd_info *flash;
-
-static struct map_info ocotea_small_map = {
- .name = "Ocotea small flash",
- .size = OCOTEA_SMALL_FLASH_SIZE,
- .buswidth = 1,
-};
-
-static struct map_info ocotea_large_map = {
- .name = "Ocotea large flash",
- .size = OCOTEA_LARGE_FLASH_SIZE,
- .buswidth = 1,
-};
-
-static struct mtd_partition ocotea_small_partitions[] = {
- {
- .name = "pibs",
- .offset = 0x0,
- .size = 0x100000,
- }
-};
-
-static struct mtd_partition ocotea_large_partitions[] = {
- {
- .name = "fs",
- .offset = 0,
- .size = 0x300000,
- },
- {
- .name = "firmware",
- .offset = 0x300000,
- .size = 0x100000,
- }
-};
-
-int __init init_ocotea(void)
-{
- u8 fpga0_reg;
- u8 *fpga0_adr;
- unsigned long long small_flash_base, large_flash_base;
-
- fpga0_adr = ioremap64(OCOTEA_FPGA_ADDR, 16);
- if (!fpga0_adr)
- return -ENOMEM;
-
- fpga0_reg = readb((unsigned long)fpga0_adr);
- iounmap(fpga0_adr);
-
- if (OCOTEA_BOOT_LARGE_FLASH(fpga0_reg)) {
- small_flash_base = OCOTEA_SMALL_FLASH_HIGH;
- large_flash_base = OCOTEA_LARGE_FLASH_LOW;
- }
- else {
- small_flash_base = OCOTEA_SMALL_FLASH_LOW;
- large_flash_base = OCOTEA_LARGE_FLASH_HIGH;
- }
-
- ocotea_small_map.phys = small_flash_base;
- ocotea_small_map.virt = ioremap64(small_flash_base,
- ocotea_small_map.size);
-
- if (!ocotea_small_map.virt) {
- printk("Failed to ioremap flash\n");
- return -EIO;
- }
-
- simple_map_init(&ocotea_small_map);
-
- flash = do_map_probe("map_rom", &ocotea_small_map);
- if (flash) {
- flash->owner = THIS_MODULE;
- add_mtd_partitions(flash, ocotea_small_partitions,
- ARRAY_SIZE(ocotea_small_partitions));
- } else {
- printk("map probe failed for flash\n");
- iounmap(ocotea_small_map.virt);
- return -ENXIO;
- }
-
- ocotea_large_map.phys = large_flash_base;
- ocotea_large_map.virt = ioremap64(large_flash_base,
- ocotea_large_map.size);
-
- if (!ocotea_large_map.virt) {
- printk("Failed to ioremap flash\n");
- iounmap(ocotea_small_map.virt);
- return -EIO;
- }
-
- simple_map_init(&ocotea_large_map);
-
- flash = do_map_probe("cfi_probe", &ocotea_large_map);
- if (flash) {
- flash->owner = THIS_MODULE;
- add_mtd_partitions(flash, ocotea_large_partitions,
- ARRAY_SIZE(ocotea_large_partitions));
- } else {
- printk("map probe failed for flash\n");
- iounmap(ocotea_small_map.virt);
- iounmap(ocotea_large_map.virt);
- return -ENXIO;
- }
-
- return 0;
-}
-
-static void __exit cleanup_ocotea(void)
-{
- if (flash) {
- del_mtd_partitions(flash);
- map_destroy(flash);
- }
-
- if (ocotea_small_map.virt) {
- iounmap((void *)ocotea_small_map.virt);
- ocotea_small_map.virt = 0;
- }
-
- if (ocotea_large_map.virt) {
- iounmap((void *)ocotea_large_map.virt);
- ocotea_large_map.virt = 0;
- }
-}
-
-module_init(init_ocotea);
-module_exit(cleanup_ocotea);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
-MODULE_DESCRIPTION("MTD map and partitions for IBM 440GX Ocotea boards");
diff --git a/drivers/mtd/maps/omap-toto-flash.c b/drivers/mtd/maps/omap-toto-flash.c
deleted file mode 100644
index 0a60ebbc2175..000000000000
--- a/drivers/mtd/maps/omap-toto-flash.c
+++ /dev/null
@@ -1,133 +0,0 @@
-/*
- * NOR Flash memory access on TI Toto board
- *
- * jzhang@ti.com (C) 2003 Texas Instruments.
- *
- * (C) 2002 MontVista Software, Inc.
- */
-
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/errno.h>
-#include <linux/init.h>
-#include <linux/slab.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/map.h>
-#include <linux/mtd/partitions.h>
-
-#include <asm/hardware.h>
-#include <asm/io.h>
-
-
-#ifndef CONFIG_ARCH_OMAP
-#error This is for OMAP architecture only
-#endif
-
-//these lines need be moved to a hardware header file
-#define OMAP_TOTO_FLASH_BASE 0xd8000000
-#define OMAP_TOTO_FLASH_SIZE 0x80000
-
-static struct map_info omap_toto_map_flash = {
- .name = "OMAP Toto flash",
- .bankwidth = 2,
- .virt = (void __iomem *)OMAP_TOTO_FLASH_BASE,
-};
-
-
-static struct mtd_partition toto_flash_partitions[] = {
- {
- .name = "BootLoader",
- .size = 0x00040000, /* hopefully u-boot will stay 128k + 128*/
- .offset = 0,
- .mask_flags = MTD_WRITEABLE, /* force read-only */
- }, {
- .name = "ReservedSpace",
- .size = 0x00030000,
- .offset = MTDPART_OFS_APPEND,
- //mask_flags: MTD_WRITEABLE, /* force read-only */
- }, {
- .name = "EnvArea", /* bottom 64KiB for env vars */
- .size = MTDPART_SIZ_FULL,
- .offset = MTDPART_OFS_APPEND,
- }
-};
-
-static struct mtd_partition *parsed_parts;
-
-static struct mtd_info *flash_mtd;
-
-static int __init init_flash (void)
-{
-
- struct mtd_partition *parts;
- int nb_parts = 0;
- int parsed_nr_parts = 0;
- const char *part_type;
-
- /*
- * Static partition definition selection
- */
- part_type = "static";
-
- parts = toto_flash_partitions;
- nb_parts = ARRAY_SIZE(toto_flash_partitions);
- omap_toto_map_flash.size = OMAP_TOTO_FLASH_SIZE;
- omap_toto_map_flash.phys = virt_to_phys(OMAP_TOTO_FLASH_BASE);
-
- simple_map_init(&omap_toto_map_flash);
- /*
- * Now let's probe for the actual flash. Do it here since
- * specific machine settings might have been set above.
- */
- printk(KERN_NOTICE "OMAP toto flash: probing %d-bit flash bus\n",
- omap_toto_map_flash.bankwidth*8);
- flash_mtd = do_map_probe("jedec_probe", &omap_toto_map_flash);
- if (!flash_mtd)
- return -ENXIO;
-
- if (parsed_nr_parts > 0) {
- parts = parsed_parts;
- nb_parts = parsed_nr_parts;
- }
-
- if (nb_parts == 0) {
- printk(KERN_NOTICE "OMAP toto flash: no partition info available,"
- "registering whole flash at once\n");
- if (add_mtd_device(flash_mtd)){
- return -ENXIO;
- }
- } else {
- printk(KERN_NOTICE "Using %s partition definition\n",
- part_type);
- return add_mtd_partitions(flash_mtd, parts, nb_parts);
- }
- return 0;
-}
-
-int __init omap_toto_mtd_init(void)
-{
- int status;
-
- if (status = init_flash()) {
- printk(KERN_ERR "OMAP Toto Flash: unable to init map for toto flash\n");
- }
- return status;
-}
-
-static void __exit omap_toto_mtd_cleanup(void)
-{
- if (flash_mtd) {
- del_mtd_partitions(flash_mtd);
- map_destroy(flash_mtd);
- kfree(parsed_parts);
- }
-}
-
-module_init(omap_toto_mtd_init);
-module_exit(omap_toto_mtd_cleanup);
-
-MODULE_AUTHOR("Jian Zhang");
-MODULE_DESCRIPTION("OMAP Toto board map driver");
-MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/maps/pci.c b/drivers/mtd/maps/pci.c
index 5c6a25c90380..48f4cf5cb9d1 100644
--- a/drivers/mtd/maps/pci.c
+++ b/drivers/mtd/maps/pci.c
@@ -203,15 +203,8 @@ intel_dc21285_init(struct pci_dev *dev, struct map_pci_info *map)
* not enabled, should we be allocating a new resource for it
* or simply enabling it?
*/
- if (!(pci_resource_flags(dev, PCI_ROM_RESOURCE) &
- IORESOURCE_ROM_ENABLE)) {
- u32 val;
- pci_resource_flags(dev, PCI_ROM_RESOURCE) |= IORESOURCE_ROM_ENABLE;
- pci_read_config_dword(dev, PCI_ROM_ADDRESS, &val);
- val |= PCI_ROM_ADDRESS_ENABLE;
- pci_write_config_dword(dev, PCI_ROM_ADDRESS, val);
- printk("%s: enabling expansion ROM\n", pci_name(dev));
- }
+ pci_enable_rom(dev);
+ printk("%s: enabling expansion ROM\n", pci_name(dev));
}
if (!len || !base)
@@ -232,18 +225,13 @@ intel_dc21285_init(struct pci_dev *dev, struct map_pci_info *map)
static void
intel_dc21285_exit(struct pci_dev *dev, struct map_pci_info *map)
{
- u32 val;
-
if (map->base)
iounmap(map->base);
/*
* We need to undo the PCI BAR2/PCI ROM BAR address alteration.
*/
- pci_resource_flags(dev, PCI_ROM_RESOURCE) &= ~IORESOURCE_ROM_ENABLE;
- pci_read_config_dword(dev, PCI_ROM_ADDRESS, &val);
- val &= ~PCI_ROM_ADDRESS_ENABLE;
- pci_write_config_dword(dev, PCI_ROM_ADDRESS, val);
+ pci_disable_rom(dev);
}
static unsigned long
diff --git a/drivers/mtd/maps/physmap_of.c b/drivers/mtd/maps/physmap_of.c
index 49acd4171893..5fcfec034a94 100644
--- a/drivers/mtd/maps/physmap_of.c
+++ b/drivers/mtd/maps/physmap_of.c
@@ -230,8 +230,7 @@ static int __devinit of_flash_probe(struct of_device *dev,
#ifdef CONFIG_MTD_OF_PARTS
if (err == 0) {
- err = of_mtd_parse_partitions(&dev->dev, info->mtd,
- dp, &info->parts);
+ err = of_mtd_parse_partitions(&dev->dev, dp, &info->parts);
if (err < 0)
return err;
}
diff --git a/drivers/mtd/maps/walnut.c b/drivers/mtd/maps/walnut.c
deleted file mode 100644
index e243476c8171..000000000000
--- a/drivers/mtd/maps/walnut.c
+++ /dev/null
@@ -1,122 +0,0 @@
-/*
- * Mapping for Walnut flash
- * (used ebony.c as a "framework")
- *
- * Heikki Lindholm <holindho@infradead.org>
- *
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 of the License, or (at your
- * option) any later version.
- */
-
-#include <linux/module.h>
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/init.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/map.h>
-#include <linux/mtd/partitions.h>
-#include <asm/io.h>
-#include <asm/ibm4xx.h>
-#include <platforms/4xx/walnut.h>
-
-/* these should be in platforms/4xx/walnut.h ? */
-#define WALNUT_FLASH_ONBD_N(x) (x & 0x02)
-#define WALNUT_FLASH_SRAM_SEL(x) (x & 0x01)
-#define WALNUT_FLASH_LOW 0xFFF00000
-#define WALNUT_FLASH_HIGH 0xFFF80000
-#define WALNUT_FLASH_SIZE 0x80000
-
-static struct mtd_info *flash;
-
-static struct map_info walnut_map = {
- .name = "Walnut flash",
- .size = WALNUT_FLASH_SIZE,
- .bankwidth = 1,
-};
-
-/* Actually, OpenBIOS is the last 128 KiB of the flash - better
- * partitioning could be made */
-static struct mtd_partition walnut_partitions[] = {
- {
- .name = "OpenBIOS",
- .offset = 0x0,
- .size = WALNUT_FLASH_SIZE,
- /*.mask_flags = MTD_WRITEABLE, */ /* force read-only */
- }
-};
-
-int __init init_walnut(void)
-{
- u8 fpga_brds1;
- void *fpga_brds1_adr;
- void *fpga_status_adr;
- unsigned long flash_base;
-
- /* this should already be mapped (platform/4xx/walnut.c) */
- fpga_status_adr = ioremap(WALNUT_FPGA_BASE, 8);
- if (!fpga_status_adr)
- return -ENOMEM;
-
- fpga_brds1_adr = fpga_status_adr+5;
- fpga_brds1 = readb(fpga_brds1_adr);
- /* iounmap(fpga_status_adr); */
-
- if (WALNUT_FLASH_ONBD_N(fpga_brds1)) {
- printk("The on-board flash is disabled (U79 sw 5)!");
- iounmap(fpga_status_adr);
- return -EIO;
- }
- if (WALNUT_FLASH_SRAM_SEL(fpga_brds1))
- flash_base = WALNUT_FLASH_LOW;
- else
- flash_base = WALNUT_FLASH_HIGH;
-
- walnut_map.phys = flash_base;
- walnut_map.virt =
- (void __iomem *)ioremap(flash_base, walnut_map.size);
-
- if (!walnut_map.virt) {
- printk("Failed to ioremap flash.\n");
- iounmap(fpga_status_adr);
- return -EIO;
- }
-
- simple_map_init(&walnut_map);
-
- flash = do_map_probe("jedec_probe", &walnut_map);
- if (flash) {
- flash->owner = THIS_MODULE;
- add_mtd_partitions(flash, walnut_partitions,
- ARRAY_SIZE(walnut_partitions));
- } else {
- printk("map probe failed for flash\n");
- iounmap(fpga_status_adr);
- return -ENXIO;
- }
-
- iounmap(fpga_status_adr);
- return 0;
-}
-
-static void __exit cleanup_walnut(void)
-{
- if (flash) {
- del_mtd_partitions(flash);
- map_destroy(flash);
- }
-
- if (walnut_map.virt) {
- iounmap((void *)walnut_map.virt);
- walnut_map.virt = 0;
- }
-}
-
-module_init(init_walnut);
-module_exit(cleanup_walnut);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Heikki Lindholm <holindho@infradead.org>");
-MODULE_DESCRIPTION("MTD map and partitions for IBM 405GP Walnut boards");
diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c
index 1c74762dec89..963840e9b5bf 100644
--- a/drivers/mtd/mtdchar.c
+++ b/drivers/mtd/mtdchar.c
@@ -348,7 +348,7 @@ static void mtdchar_erase_callback (struct erase_info *instr)
wake_up((wait_queue_head_t *)instr->priv);
}
-#if defined(CONFIG_MTD_OTP) || defined(CONFIG_MTD_ONENAND_OTP)
+#ifdef CONFIG_HAVE_MTD_OTP
static int otp_select_filemode(struct mtd_file_info *mfi, int mode)
{
struct mtd_info *mtd = mfi->mtd;
@@ -665,7 +665,7 @@ static int mtd_ioctl(struct inode *inode, struct file *file,
break;
}
-#if defined(CONFIG_MTD_OTP) || defined(CONFIG_MTD_ONENAND_OTP)
+#ifdef CONFIG_HAVE_MTD_OTP
case OTPSELECT:
{
int mode;
diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c
index 2972a5edb73d..789842d0e6f2 100644
--- a/drivers/mtd/mtdconcat.c
+++ b/drivers/mtd/mtdconcat.c
@@ -444,7 +444,7 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
return -EINVAL;
}
- instr->fail_addr = 0xffffffff;
+ instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
/* make a local copy of instr to avoid modifying the caller's struct */
erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
@@ -493,7 +493,7 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
/* sanity check: should never happen since
* block alignment has been checked above */
BUG_ON(err == -EINVAL);
- if (erase->fail_addr != 0xffffffff)
+ if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr = erase->fail_addr + offset;
break;
}
diff --git a/drivers/mtd/mtdoops.c b/drivers/mtd/mtdoops.c
index 5a680e1e61f1..aebb3b27edbd 100644
--- a/drivers/mtd/mtdoops.c
+++ b/drivers/mtd/mtdoops.c
@@ -33,6 +33,7 @@
#include <linux/interrupt.h>
#include <linux/mtd/mtd.h>
+#define MTDOOPS_KERNMSG_MAGIC 0x5d005d00
#define OOPS_PAGE_SIZE 4096
static struct mtdoops_context {
@@ -99,7 +100,7 @@ static void mtdoops_inc_counter(struct mtdoops_context *cxt)
int ret;
cxt->nextpage++;
- if (cxt->nextpage > cxt->oops_pages)
+ if (cxt->nextpage >= cxt->oops_pages)
cxt->nextpage = 0;
cxt->nextcount++;
if (cxt->nextcount == 0xffffffff)
@@ -141,7 +142,7 @@ static void mtdoops_workfunc_erase(struct work_struct *work)
mod = (cxt->nextpage * OOPS_PAGE_SIZE) % mtd->erasesize;
if (mod != 0) {
cxt->nextpage = cxt->nextpage + ((mtd->erasesize - mod) / OOPS_PAGE_SIZE);
- if (cxt->nextpage > cxt->oops_pages)
+ if (cxt->nextpage >= cxt->oops_pages)
cxt->nextpage = 0;
}
@@ -158,7 +159,7 @@ badblock:
cxt->nextpage * OOPS_PAGE_SIZE);
i++;
cxt->nextpage = cxt->nextpage + (mtd->erasesize / OOPS_PAGE_SIZE);
- if (cxt->nextpage > cxt->oops_pages)
+ if (cxt->nextpage >= cxt->oops_pages)
cxt->nextpage = 0;
if (i == (cxt->oops_pages / (mtd->erasesize / OOPS_PAGE_SIZE))) {
printk(KERN_ERR "mtdoops: All blocks bad!\n");
@@ -224,40 +225,40 @@ static void find_next_position(struct mtdoops_context *cxt)
{
struct mtd_info *mtd = cxt->mtd;
int ret, page, maxpos = 0;
- u32 count, maxcount = 0xffffffff;
+ u32 count[2], maxcount = 0xffffffff;
size_t retlen;
for (page = 0; page < cxt->oops_pages; page++) {
- ret = mtd->read(mtd, page * OOPS_PAGE_SIZE, 4, &retlen, (u_char *) &count);
- if ((retlen != 4) || ((ret < 0) && (ret != -EUCLEAN))) {
- printk(KERN_ERR "mtdoops: Read failure at %d (%td of 4 read)"
+ ret = mtd->read(mtd, page * OOPS_PAGE_SIZE, 8, &retlen, (u_char *) &count[0]);
+ if ((retlen != 8) || ((ret < 0) && (ret != -EUCLEAN))) {
+ printk(KERN_ERR "mtdoops: Read failure at %d (%td of 8 read)"
", err %d.\n", page * OOPS_PAGE_SIZE, retlen, ret);
continue;
}
- if (count == 0xffffffff)
+ if (count[1] != MTDOOPS_KERNMSG_MAGIC)
+ continue;
+ if (count[0] == 0xffffffff)
continue;
if (maxcount == 0xffffffff) {
- maxcount = count;
+ maxcount = count[0];
maxpos = page;
- } else if ((count < 0x40000000) && (maxcount > 0xc0000000)) {
- maxcount = count;
+ } else if ((count[0] < 0x40000000) && (maxcount > 0xc0000000)) {
+ maxcount = count[0];
maxpos = page;
- } else if ((count > maxcount) && (count < 0xc0000000)) {
- maxcount = count;
+ } else if ((count[0] > maxcount) && (count[0] < 0xc0000000)) {
+ maxcount = count[0];
maxpos = page;
- } else if ((count > maxcount) && (count > 0xc0000000)
+ } else if ((count[0] > maxcount) && (count[0] > 0xc0000000)
&& (maxcount > 0x80000000)) {
- maxcount = count;
+ maxcount = count[0];
maxpos = page;
}
}
if (maxcount == 0xffffffff) {
cxt->nextpage = 0;
cxt->nextcount = 1;
- cxt->ready = 1;
- printk(KERN_DEBUG "mtdoops: Ready %d, %d (first init)\n",
- cxt->nextpage, cxt->nextcount);
+ schedule_work(&cxt->work_erase);
return;
}
@@ -358,8 +359,9 @@ mtdoops_console_write(struct console *co, const char *s, unsigned int count)
if (cxt->writecount == 0) {
u32 *stamp = cxt->oops_buf;
- *stamp = cxt->nextcount;
- cxt->writecount = 4;
+ *stamp++ = cxt->nextcount;
+ *stamp = MTDOOPS_KERNMSG_MAGIC;
+ cxt->writecount = 8;
}
if ((count + cxt->writecount) > OOPS_PAGE_SIZE)
diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c
index 9a06dc93ee0d..3728913fa5fa 100644
--- a/drivers/mtd/mtdpart.c
+++ b/drivers/mtd/mtdpart.c
@@ -214,7 +214,7 @@ static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
instr->addr += part->offset;
ret = part->master->erase(part->master, instr);
if (ret) {
- if (instr->fail_addr != 0xffffffff)
+ if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr -= part->offset;
instr->addr -= part->offset;
}
@@ -226,7 +226,7 @@ void mtd_erase_callback(struct erase_info *instr)
if (instr->mtd->erase == part_erase) {
struct mtd_part *part = PART(instr->mtd);
- if (instr->fail_addr != 0xffffffff)
+ if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr -= part->offset;
instr->addr -= part->offset;
}
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 41f361c49b32..1c2e9450d663 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -56,6 +56,12 @@ config MTD_NAND_H1900
help
This enables the driver for the iPAQ h1900 flash.
+config MTD_NAND_GPIO
+ tristate "GPIO NAND Flash driver"
+ depends on GENERIC_GPIO && ARM
+ help
+ This enables a GPIO based NAND flash driver.
+
config MTD_NAND_SPIA
tristate "NAND Flash device on SPIA board"
depends on ARCH_P720T
@@ -68,12 +74,6 @@ config MTD_NAND_AMS_DELTA
help
Support for NAND flash on Amstrad E3 (Delta).
-config MTD_NAND_TOTO
- tristate "NAND Flash device on TOTO board"
- depends on ARCH_OMAP && BROKEN
- help
- Support for NAND flash on Texas Instruments Toto platform.
-
config MTD_NAND_TS7250
tristate "NAND Flash device on TS-7250 board"
depends on MACH_TS72XX
@@ -163,13 +163,6 @@ config MTD_NAND_S3C2410_HWECC
incorrect ECC generation, and if using these, the default of
software ECC is preferable.
-config MTD_NAND_NDFC
- tristate "NDFC NanD Flash Controller"
- depends on 4xx && !PPC_MERGE
- select MTD_NAND_ECC_SMC
- help
- NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
-
config MTD_NAND_S3C2410_CLKSTOP
bool "S3C2410 NAND IDLE clock stop"
depends on MTD_NAND_S3C2410
@@ -340,6 +333,13 @@ config MTD_NAND_PXA3xx
This enables the driver for the NAND flash device found on
PXA3xx processors
+config MTD_NAND_PXA3xx_BUILTIN
+ bool "Use builtin definitions for some NAND chips (deprecated)"
+ depends on MTD_NAND_PXA3xx
+ help
+ This enables builtin definitions for some NAND chips. This
+ is deprecated in favor of platform specific data.
+
config MTD_NAND_CM_X270
tristate "Support for NAND Flash on CM-X270 modules"
depends on MTD_NAND && MACH_ARMCORE
@@ -400,10 +400,24 @@ config MTD_NAND_FSL_ELBC
config MTD_NAND_FSL_UPM
tristate "Support for NAND on Freescale UPM"
- depends on MTD_NAND && OF_GPIO && (PPC_83xx || PPC_85xx)
+ depends on MTD_NAND && (PPC_83xx || PPC_85xx)
select FSL_LBC
help
Enables support for NAND Flash chips wired onto Freescale PowerPC
processor localbus with User-Programmable Machine support.
+config MTD_NAND_MXC
+ tristate "MXC NAND support"
+ depends on ARCH_MX2
+ help
+ This enables the driver for the NAND flash controller on the
+ MXC processors.
+
+config MTD_NAND_SH_FLCTL
+ tristate "Support for NAND on Renesas SuperH FLCTL"
+ depends on MTD_NAND && SUPERH && CPU_SUBTYPE_SH7723
+ help
+ Several Renesas SuperH CPU has FLCTL. This option enables support
+ for NAND Flash using FLCTL. This driver support SH7723.
+
endif # MTD_NAND
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index b786c5da82da..b661586afbfc 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -8,7 +8,6 @@ obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o
obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o
obj-$(CONFIG_MTD_NAND_SPIA) += spia.o
obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o
-obj-$(CONFIG_MTD_NAND_TOTO) += toto.o
obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o
obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o
obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o
@@ -24,6 +23,7 @@ obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o
obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o
obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o
+obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o
obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o
@@ -34,5 +34,7 @@ obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o
obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o
obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o
obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o
+obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o
+obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o
nand-objs := nand_base.o nand_bbt.o
diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c
index 3387e0d5076b..c98c1570a40b 100644
--- a/drivers/mtd/nand/atmel_nand.c
+++ b/drivers/mtd/nand/atmel_nand.c
@@ -174,48 +174,6 @@ static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
}
/*
- * write oob for small pages
- */
-static int atmel_nand_write_oob_512(struct mtd_info *mtd,
- struct nand_chip *chip, int page)
-{
- int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
- int eccsize = chip->ecc.size, length = mtd->oobsize;
- int len, pos, status = 0;
- const uint8_t *bufpoi = chip->oob_poi;
-
- pos = eccsize + chunk;
-
- chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
- len = min_t(int, length, chunk);
- chip->write_buf(mtd, bufpoi, len);
- bufpoi += len;
- length -= len;
- if (length > 0)
- chip->write_buf(mtd, bufpoi, length);
-
- chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
- status = chip->waitfunc(mtd, chip);
-
- return status & NAND_STATUS_FAIL ? -EIO : 0;
-
-}
-
-/*
- * read oob for small pages
- */
-static int atmel_nand_read_oob_512(struct mtd_info *mtd,
- struct nand_chip *chip, int page, int sndcmd)
-{
- if (sndcmd) {
- chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
- sndcmd = 0;
- }
- chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
- return sndcmd;
-}
-
-/*
* Calculate HW ECC
*
* function called after a write
@@ -235,14 +193,14 @@ static int atmel_nand_calculate(struct mtd_info *mtd,
/* get the first 2 ECC bytes */
ecc_value = ecc_readl(host->ecc, PR);
- ecc_code[eccpos[0]] = ecc_value & 0xFF;
- ecc_code[eccpos[1]] = (ecc_value >> 8) & 0xFF;
+ ecc_code[0] = ecc_value & 0xFF;
+ ecc_code[1] = (ecc_value >> 8) & 0xFF;
/* get the last 2 ECC bytes */
ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
- ecc_code[eccpos[2]] = ecc_value & 0xFF;
- ecc_code[eccpos[3]] = (ecc_value >> 8) & 0xFF;
+ ecc_code[2] = ecc_value & 0xFF;
+ ecc_code[3] = (ecc_value >> 8) & 0xFF;
return 0;
}
@@ -476,14 +434,12 @@ static int __init atmel_nand_probe(struct platform_device *pdev)
res = -EIO;
goto err_ecc_ioremap;
}
- nand_chip->ecc.mode = NAND_ECC_HW_SYNDROME;
+ nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.calculate = atmel_nand_calculate;
nand_chip->ecc.correct = atmel_nand_correct;
nand_chip->ecc.hwctl = atmel_nand_hwctl;
nand_chip->ecc.read_page = atmel_nand_read_page;
nand_chip->ecc.bytes = 4;
- nand_chip->ecc.prepad = 0;
- nand_chip->ecc.postpad = 0;
}
nand_chip->chip_delay = 20; /* 20us command delay time */
@@ -514,7 +470,7 @@ static int __init atmel_nand_probe(struct platform_device *pdev)
goto err_scan_ident;
}
- if (nand_chip->ecc.mode == NAND_ECC_HW_SYNDROME) {
+ if (nand_chip->ecc.mode == NAND_ECC_HW) {
/* ECC is calculated for the whole page (1 step) */
nand_chip->ecc.size = mtd->writesize;
@@ -522,8 +478,6 @@ static int __init atmel_nand_probe(struct platform_device *pdev)
switch (mtd->writesize) {
case 512:
nand_chip->ecc.layout = &atmel_oobinfo_small;
- nand_chip->ecc.read_oob = atmel_nand_read_oob_512;
- nand_chip->ecc.write_oob = atmel_nand_write_oob_512;
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
break;
case 1024:
diff --git a/drivers/mtd/nand/cs553x_nand.c b/drivers/mtd/nand/cs553x_nand.c
index 3370a800fd36..9f1b451005ca 100644
--- a/drivers/mtd/nand/cs553x_nand.c
+++ b/drivers/mtd/nand/cs553x_nand.c
@@ -289,8 +289,10 @@ static int __init cs553x_init(void)
int i;
uint64_t val;
+#ifdef CONFIG_MTD_PARTITIONS
int mtd_parts_nb = 0;
struct mtd_partition *mtd_parts = NULL;
+#endif
/* If the CPU isn't a Geode GX or LX, abort */
if (!is_geode())
diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c
index 98ad3cefcaf4..4aa5bd6158da 100644
--- a/drivers/mtd/nand/fsl_elbc_nand.c
+++ b/drivers/mtd/nand/fsl_elbc_nand.c
@@ -918,8 +918,7 @@ static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
#ifdef CONFIG_MTD_OF_PARTS
if (ret == 0) {
- ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
- node, &parts);
+ ret = of_mtd_parse_partitions(priv->dev, node, &parts);
if (ret < 0)
goto err;
}
diff --git a/drivers/mtd/nand/fsl_upm.c b/drivers/mtd/nand/fsl_upm.c
index 1ebfd87f00b4..024e3fffd4bb 100644
--- a/drivers/mtd/nand/fsl_upm.c
+++ b/drivers/mtd/nand/fsl_upm.c
@@ -13,6 +13,7 @@
#include <linux/kernel.h>
#include <linux/module.h>
+#include <linux/delay.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
@@ -36,8 +37,6 @@ struct fsl_upm_nand {
uint8_t upm_cmd_offset;
void __iomem *io_base;
int rnb_gpio;
- const uint32_t *wait_pattern;
- const uint32_t *wait_write;
int chip_delay;
};
@@ -61,10 +60,11 @@ static void fun_wait_rnb(struct fsl_upm_nand *fun)
if (fun->rnb_gpio >= 0) {
while (--cnt && !fun_chip_ready(&fun->mtd))
cpu_relax();
+ if (!cnt)
+ dev_err(fun->dev, "tired waiting for RNB\n");
+ } else {
+ ndelay(100);
}
-
- if (!cnt)
- dev_err(fun->dev, "tired waiting for RNB\n");
}
static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
@@ -89,8 +89,7 @@ static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
fsl_upm_run_pattern(&fun->upm, fun->io_base, cmd);
- if (fun->wait_pattern)
- fun_wait_rnb(fun);
+ fun_wait_rnb(fun);
}
static uint8_t fun_read_byte(struct mtd_info *mtd)
@@ -116,14 +115,16 @@ static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
for (i = 0; i < len; i++) {
out_8(fun->chip.IO_ADDR_W, buf[i]);
- if (fun->wait_write)
- fun_wait_rnb(fun);
+ fun_wait_rnb(fun);
}
}
-static int __devinit fun_chip_init(struct fsl_upm_nand *fun)
+static int __devinit fun_chip_init(struct fsl_upm_nand *fun,
+ const struct device_node *upm_np,
+ const struct resource *io_res)
{
int ret;
+ struct device_node *flash_np;
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_types[] = { "cmdlinepart", NULL, };
#endif
@@ -143,18 +144,37 @@ static int __devinit fun_chip_init(struct fsl_upm_nand *fun)
fun->mtd.priv = &fun->chip;
fun->mtd.owner = THIS_MODULE;
+ flash_np = of_get_next_child(upm_np, NULL);
+ if (!flash_np)
+ return -ENODEV;
+
+ fun->mtd.name = kasprintf(GFP_KERNEL, "%x.%s", io_res->start,
+ flash_np->name);
+ if (!fun->mtd.name) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
ret = nand_scan(&fun->mtd, 1);
if (ret)
- return ret;
-
- fun->mtd.name = fun->dev->bus_id;
+ goto err;
#ifdef CONFIG_MTD_PARTITIONS
ret = parse_mtd_partitions(&fun->mtd, part_types, &fun->parts, 0);
+
+#ifdef CONFIG_MTD_OF_PARTS
+ if (ret == 0)
+ ret = of_mtd_parse_partitions(fun->dev, &fun->mtd,
+ flash_np, &fun->parts);
+#endif
if (ret > 0)
- return add_mtd_partitions(&fun->mtd, fun->parts, ret);
+ ret = add_mtd_partitions(&fun->mtd, fun->parts, ret);
+ else
#endif
- return add_mtd_device(&fun->mtd);
+ ret = add_mtd_device(&fun->mtd);
+err:
+ of_node_put(flash_np);
+ return ret;
}
static int __devinit fun_probe(struct of_device *ofdev,
@@ -211,6 +231,12 @@ static int __devinit fun_probe(struct of_device *ofdev,
goto err2;
}
+ prop = of_get_property(ofdev->node, "chip-delay", NULL);
+ if (prop)
+ fun->chip_delay = *prop;
+ else
+ fun->chip_delay = 50;
+
fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start,
io_res.end - io_res.start + 1);
if (!fun->io_base) {
@@ -220,17 +246,8 @@ static int __devinit fun_probe(struct of_device *ofdev,
fun->dev = &ofdev->dev;
fun->last_ctrl = NAND_CLE;
- fun->wait_pattern = of_get_property(ofdev->node, "fsl,wait-pattern",
- NULL);
- fun->wait_write = of_get_property(ofdev->node, "fsl,wait-write", NULL);
-
- prop = of_get_property(ofdev->node, "chip-delay", NULL);
- if (prop)
- fun->chip_delay = *prop;
- else
- fun->chip_delay = 50;
- ret = fun_chip_init(fun);
+ ret = fun_chip_init(fun, ofdev->node, &io_res);
if (ret)
goto err2;
@@ -251,6 +268,7 @@ static int __devexit fun_remove(struct of_device *ofdev)
struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
nand_release(&fun->mtd);
+ kfree(fun->mtd.name);
if (fun->rnb_gpio >= 0)
gpio_free(fun->rnb_gpio);
diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/gpio.c
new file mode 100644
index 000000000000..8f902e75aa85
--- /dev/null
+++ b/drivers/mtd/nand/gpio.c
@@ -0,0 +1,375 @@
+/*
+ * drivers/mtd/nand/gpio.c
+ *
+ * Updated, and converted to generic GPIO based driver by Russell King.
+ *
+ * Written by Ben Dooks <ben@simtec.co.uk>
+ * Based on 2.4 version by Mark Whittaker
+ *
+ * © 2004 Simtec Electronics
+ *
+ * Device driver for NAND connected via GPIO
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/gpio.h>
+#include <linux/io.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand-gpio.h>
+
+struct gpiomtd {
+ void __iomem *io_sync;
+ struct mtd_info mtd_info;
+ struct nand_chip nand_chip;
+ struct gpio_nand_platdata plat;
+};
+
+#define gpio_nand_getpriv(x) container_of(x, struct gpiomtd, mtd_info)
+
+
+#ifdef CONFIG_ARM
+/* gpio_nand_dosync()
+ *
+ * Make sure the GPIO state changes occur in-order with writes to NAND
+ * memory region.
+ * Needed on PXA due to bus-reordering within the SoC itself (see section on
+ * I/O ordering in PXA manual (section 2.3, p35)
+ */
+static void gpio_nand_dosync(struct gpiomtd *gpiomtd)
+{
+ unsigned long tmp;
+
+ if (gpiomtd->io_sync) {
+ /*
+ * Linux memory barriers don't cater for what's required here.
+ * What's required is what's here - a read from a separate
+ * region with a dependency on that read.
+ */
+ tmp = readl(gpiomtd->io_sync);
+ asm volatile("mov %1, %0\n" : "=r" (tmp) : "r" (tmp));
+ }
+}
+#else
+static inline void gpio_nand_dosync(struct gpiomtd *gpiomtd) {}
+#endif
+
+static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+ struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd);
+
+ gpio_nand_dosync(gpiomtd);
+
+ if (ctrl & NAND_CTRL_CHANGE) {
+ gpio_set_value(gpiomtd->plat.gpio_nce, !(ctrl & NAND_NCE));
+ gpio_set_value(gpiomtd->plat.gpio_cle, !!(ctrl & NAND_CLE));
+ gpio_set_value(gpiomtd->plat.gpio_ale, !!(ctrl & NAND_ALE));
+ gpio_nand_dosync(gpiomtd);
+ }
+ if (cmd == NAND_CMD_NONE)
+ return;
+
+ writeb(cmd, gpiomtd->nand_chip.IO_ADDR_W);
+ gpio_nand_dosync(gpiomtd);
+}
+
+static void gpio_nand_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+
+ writesb(this->IO_ADDR_W, buf, len);
+}
+
+static void gpio_nand_readbuf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+
+ readsb(this->IO_ADDR_R, buf, len);
+}
+
+static int gpio_nand_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ unsigned char read, *p = (unsigned char *) buf;
+ int i, err = 0;
+
+ for (i = 0; i < len; i++) {
+ read = readb(this->IO_ADDR_R);
+ if (read != p[i]) {
+ pr_debug("%s: err at %d (read %04x vs %04x)\n",
+ __func__, i, read, p[i]);
+ err = -EFAULT;
+ }
+ }
+ return err;
+}
+
+static void gpio_nand_writebuf16(struct mtd_info *mtd, const u_char *buf,
+ int len)
+{
+ struct nand_chip *this = mtd->priv;
+
+ if (IS_ALIGNED((unsigned long)buf, 2)) {
+ writesw(this->IO_ADDR_W, buf, len>>1);
+ } else {
+ int i;
+ unsigned short *ptr = (unsigned short *)buf;
+
+ for (i = 0; i < len; i += 2, ptr++)
+ writew(*ptr, this->IO_ADDR_W);
+ }
+}
+
+static void gpio_nand_readbuf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+
+ if (IS_ALIGNED((unsigned long)buf, 2)) {
+ readsw(this->IO_ADDR_R, buf, len>>1);
+ } else {
+ int i;
+ unsigned short *ptr = (unsigned short *)buf;
+
+ for (i = 0; i < len; i += 2, ptr++)
+ *ptr = readw(this->IO_ADDR_R);
+ }
+}
+
+static int gpio_nand_verifybuf16(struct mtd_info *mtd, const u_char *buf,
+ int len)
+{
+ struct nand_chip *this = mtd->priv;
+ unsigned short read, *p = (unsigned short *) buf;
+ int i, err = 0;
+ len >>= 1;
+
+ for (i = 0; i < len; i++) {
+ read = readw(this->IO_ADDR_R);
+ if (read != p[i]) {
+ pr_debug("%s: err at %d (read %04x vs %04x)\n",
+ __func__, i, read, p[i]);
+ err = -EFAULT;
+ }
+ }
+ return err;
+}
+
+
+static int gpio_nand_devready(struct mtd_info *mtd)
+{
+ struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd);
+ return gpio_get_value(gpiomtd->plat.gpio_rdy);
+}
+
+static int __devexit gpio_nand_remove(struct platform_device *dev)
+{
+ struct gpiomtd *gpiomtd = platform_get_drvdata(dev);
+ struct resource *res;
+
+ nand_release(&gpiomtd->mtd_info);
+
+ res = platform_get_resource(dev, IORESOURCE_MEM, 1);
+ iounmap(gpiomtd->io_sync);
+ if (res)
+ release_mem_region(res->start, res->end - res->start + 1);
+
+ res = platform_get_resource(dev, IORESOURCE_MEM, 0);
+ iounmap(gpiomtd->nand_chip.IO_ADDR_R);
+ release_mem_region(res->start, res->end - res->start + 1);
+
+ if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
+ gpio_set_value(gpiomtd->plat.gpio_nwp, 0);
+ gpio_set_value(gpiomtd->plat.gpio_nce, 1);
+
+ gpio_free(gpiomtd->plat.gpio_cle);
+ gpio_free(gpiomtd->plat.gpio_ale);
+ gpio_free(gpiomtd->plat.gpio_nce);
+ if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
+ gpio_free(gpiomtd->plat.gpio_nwp);
+ gpio_free(gpiomtd->plat.gpio_rdy);
+
+ kfree(gpiomtd);
+
+ return 0;
+}
+
+static void __iomem *request_and_remap(struct resource *res, size_t size,
+ const char *name, int *err)
+{
+ void __iomem *ptr;
+
+ if (!request_mem_region(res->start, res->end - res->start + 1, name)) {
+ *err = -EBUSY;
+ return NULL;
+ }
+
+ ptr = ioremap(res->start, size);
+ if (!ptr) {
+ release_mem_region(res->start, res->end - res->start + 1);
+ *err = -ENOMEM;
+ }
+ return ptr;
+}
+
+static int __devinit gpio_nand_probe(struct platform_device *dev)
+{
+ struct gpiomtd *gpiomtd;
+ struct nand_chip *this;
+ struct resource *res0, *res1;
+ int ret;
+
+ if (!dev->dev.platform_data)
+ return -EINVAL;
+
+ res0 = platform_get_resource(dev, IORESOURCE_MEM, 0);
+ if (!res0)
+ return -EINVAL;
+
+ gpiomtd = kzalloc(sizeof(*gpiomtd), GFP_KERNEL);
+ if (gpiomtd == NULL) {
+ dev_err(&dev->dev, "failed to create NAND MTD\n");
+ return -ENOMEM;
+ }
+
+ this = &gpiomtd->nand_chip;
+ this->IO_ADDR_R = request_and_remap(res0, 2, "NAND", &ret);
+ if (!this->IO_ADDR_R) {
+ dev_err(&dev->dev, "unable to map NAND\n");
+ goto err_map;
+ }
+
+ res1 = platform_get_resource(dev, IORESOURCE_MEM, 1);
+ if (res1) {
+ gpiomtd->io_sync = request_and_remap(res1, 4, "NAND sync", &ret);
+ if (!gpiomtd->io_sync) {
+ dev_err(&dev->dev, "unable to map sync NAND\n");
+ goto err_sync;
+ }
+ }
+
+ memcpy(&gpiomtd->plat, dev->dev.platform_data, sizeof(gpiomtd->plat));
+
+ ret = gpio_request(gpiomtd->plat.gpio_nce, "NAND NCE");
+ if (ret)
+ goto err_nce;
+ gpio_direction_output(gpiomtd->plat.gpio_nce, 1);
+ if (gpio_is_valid(gpiomtd->plat.gpio_nwp)) {
+ ret = gpio_request(gpiomtd->plat.gpio_nwp, "NAND NWP");
+ if (ret)
+ goto err_nwp;
+ gpio_direction_output(gpiomtd->plat.gpio_nwp, 1);
+ }
+ ret = gpio_request(gpiomtd->plat.gpio_ale, "NAND ALE");
+ if (ret)
+ goto err_ale;
+ gpio_direction_output(gpiomtd->plat.gpio_ale, 0);
+ ret = gpio_request(gpiomtd->plat.gpio_cle, "NAND CLE");
+ if (ret)
+ goto err_cle;
+ gpio_direction_output(gpiomtd->plat.gpio_cle, 0);
+ ret = gpio_request(gpiomtd->plat.gpio_rdy, "NAND RDY");
+ if (ret)
+ goto err_rdy;
+ gpio_direction_input(gpiomtd->plat.gpio_rdy);
+
+
+ this->IO_ADDR_W = this->IO_ADDR_R;
+ this->ecc.mode = NAND_ECC_SOFT;
+ this->options = gpiomtd->plat.options;
+ this->chip_delay = gpiomtd->plat.chip_delay;
+
+ /* install our routines */
+ this->cmd_ctrl = gpio_nand_cmd_ctrl;
+ this->dev_ready = gpio_nand_devready;
+
+ if (this->options & NAND_BUSWIDTH_16) {
+ this->read_buf = gpio_nand_readbuf16;
+ this->write_buf = gpio_nand_writebuf16;
+ this->verify_buf = gpio_nand_verifybuf16;
+ } else {
+ this->read_buf = gpio_nand_readbuf;
+ this->write_buf = gpio_nand_writebuf;
+ this->verify_buf = gpio_nand_verifybuf;
+ }
+
+ /* set the mtd private data for the nand driver */
+ gpiomtd->mtd_info.priv = this;
+ gpiomtd->mtd_info.owner = THIS_MODULE;
+
+ if (nand_scan(&gpiomtd->mtd_info, 1)) {
+ dev_err(&dev->dev, "no nand chips found?\n");
+ ret = -ENXIO;
+ goto err_wp;
+ }
+
+ if (gpiomtd->plat.adjust_parts)
+ gpiomtd->plat.adjust_parts(&gpiomtd->plat,
+ gpiomtd->mtd_info.size);
+
+ add_mtd_partitions(&gpiomtd->mtd_info, gpiomtd->plat.parts,
+ gpiomtd->plat.num_parts);
+ platform_set_drvdata(dev, gpiomtd);
+
+ return 0;
+
+err_wp:
+ if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
+ gpio_set_value(gpiomtd->plat.gpio_nwp, 0);
+ gpio_free(gpiomtd->plat.gpio_rdy);
+err_rdy:
+ gpio_free(gpiomtd->plat.gpio_cle);
+err_cle:
+ gpio_free(gpiomtd->plat.gpio_ale);
+err_ale:
+ if (gpio_is_valid(gpiomtd->plat.gpio_nwp))
+ gpio_free(gpiomtd->plat.gpio_nwp);
+err_nwp:
+ gpio_free(gpiomtd->plat.gpio_nce);
+err_nce:
+ iounmap(gpiomtd->io_sync);
+ if (res1)
+ release_mem_region(res1->start, res1->end - res1->start + 1);
+err_sync:
+ iounmap(gpiomtd->nand_chip.IO_ADDR_R);
+ release_mem_region(res0->start, res0->end - res0->start + 1);
+err_map:
+ kfree(gpiomtd);
+ return ret;
+}
+
+static struct platform_driver gpio_nand_driver = {
+ .probe = gpio_nand_probe,
+ .remove = gpio_nand_remove,
+ .driver = {
+ .name = "gpio-nand",
+ },
+};
+
+static int __init gpio_nand_init(void)
+{
+ printk(KERN_INFO "GPIO NAND driver, © 2004 Simtec Electronics\n");
+
+ return platform_driver_register(&gpio_nand_driver);
+}
+
+static void __exit gpio_nand_exit(void)
+{
+ platform_driver_unregister(&gpio_nand_driver);
+}
+
+module_init(gpio_nand_init);
+module_exit(gpio_nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
+MODULE_DESCRIPTION("GPIO NAND Driver");
diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c
new file mode 100644
index 000000000000..21fd4f1c4806
--- /dev/null
+++ b/drivers/mtd/nand/mxc_nand.c
@@ -0,0 +1,1077 @@
+/*
+ * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
+ * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
+ * MA 02110-1301, USA.
+ */
+
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/interrupt.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/io.h>
+
+#include <asm/mach/flash.h>
+#include <mach/mxc_nand.h>
+
+#define DRIVER_NAME "mxc_nand"
+
+/* Addresses for NFC registers */
+#define NFC_BUF_SIZE 0xE00
+#define NFC_BUF_ADDR 0xE04
+#define NFC_FLASH_ADDR 0xE06
+#define NFC_FLASH_CMD 0xE08
+#define NFC_CONFIG 0xE0A
+#define NFC_ECC_STATUS_RESULT 0xE0C
+#define NFC_RSLTMAIN_AREA 0xE0E
+#define NFC_RSLTSPARE_AREA 0xE10
+#define NFC_WRPROT 0xE12
+#define NFC_UNLOCKSTART_BLKADDR 0xE14
+#define NFC_UNLOCKEND_BLKADDR 0xE16
+#define NFC_NF_WRPRST 0xE18
+#define NFC_CONFIG1 0xE1A
+#define NFC_CONFIG2 0xE1C
+
+/* Addresses for NFC RAM BUFFER Main area 0 */
+#define MAIN_AREA0 0x000
+#define MAIN_AREA1 0x200
+#define MAIN_AREA2 0x400
+#define MAIN_AREA3 0x600
+
+/* Addresses for NFC SPARE BUFFER Spare area 0 */
+#define SPARE_AREA0 0x800
+#define SPARE_AREA1 0x810
+#define SPARE_AREA2 0x820
+#define SPARE_AREA3 0x830
+
+/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
+ * for Command operation */
+#define NFC_CMD 0x1
+
+/* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
+ * for Address operation */
+#define NFC_ADDR 0x2
+
+/* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
+ * for Input operation */
+#define NFC_INPUT 0x4
+
+/* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
+ * for Data Output operation */
+#define NFC_OUTPUT 0x8
+
+/* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
+ * for Read ID operation */
+#define NFC_ID 0x10
+
+/* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
+ * for Read Status operation */
+#define NFC_STATUS 0x20
+
+/* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
+ * Status operation */
+#define NFC_INT 0x8000
+
+#define NFC_SP_EN (1 << 2)
+#define NFC_ECC_EN (1 << 3)
+#define NFC_INT_MSK (1 << 4)
+#define NFC_BIG (1 << 5)
+#define NFC_RST (1 << 6)
+#define NFC_CE (1 << 7)
+#define NFC_ONE_CYCLE (1 << 8)
+
+struct mxc_nand_host {
+ struct mtd_info mtd;
+ struct nand_chip nand;
+ struct mtd_partition *parts;
+ struct device *dev;
+
+ void __iomem *regs;
+ int spare_only;
+ int status_request;
+ int pagesize_2k;
+ uint16_t col_addr;
+ struct clk *clk;
+ int clk_act;
+ int irq;
+
+ wait_queue_head_t irq_waitq;
+};
+
+/* Define delays in microsec for NAND device operations */
+#define TROP_US_DELAY 2000
+/* Macros to get byte and bit positions of ECC */
+#define COLPOS(x) ((x) >> 3)
+#define BITPOS(x) ((x) & 0xf)
+
+/* Define single bit Error positions in Main & Spare area */
+#define MAIN_SINGLEBIT_ERROR 0x4
+#define SPARE_SINGLEBIT_ERROR 0x1
+
+/* OOB placement block for use with hardware ecc generation */
+static struct nand_ecclayout nand_hw_eccoob_8 = {
+ .eccbytes = 5,
+ .eccpos = {6, 7, 8, 9, 10},
+ .oobfree = {{0, 5}, {11, 5}, }
+};
+
+static struct nand_ecclayout nand_hw_eccoob_16 = {
+ .eccbytes = 5,
+ .eccpos = {6, 7, 8, 9, 10},
+ .oobfree = {{0, 6}, {12, 4}, }
+};
+
+#ifdef CONFIG_MTD_PARTITIONS
+static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
+#endif
+
+static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
+{
+ struct mxc_nand_host *host = dev_id;
+
+ uint16_t tmp;
+
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp |= NFC_INT_MSK; /* Disable interrupt */
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ wake_up(&host->irq_waitq);
+
+ return IRQ_HANDLED;
+}
+
+/* This function polls the NANDFC to wait for the basic operation to
+ * complete by checking the INT bit of config2 register.
+ */
+static void wait_op_done(struct mxc_nand_host *host, int max_retries,
+ uint16_t param, int useirq)
+{
+ uint32_t tmp;
+
+ if (useirq) {
+ if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
+
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_INT_MSK; /* Enable interrupt */
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ wait_event(host->irq_waitq,
+ readw(host->regs + NFC_CONFIG2) & NFC_INT);
+
+ tmp = readw(host->regs + NFC_CONFIG2);
+ tmp &= ~NFC_INT;
+ writew(tmp, host->regs + NFC_CONFIG2);
+ }
+ } else {
+ while (max_retries-- > 0) {
+ if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
+ tmp = readw(host->regs + NFC_CONFIG2);
+ tmp &= ~NFC_INT;
+ writew(tmp, host->regs + NFC_CONFIG2);
+ break;
+ }
+ udelay(1);
+ }
+ if (max_retries <= 0)
+ DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
+ __func__, param);
+ }
+}
+
+/* This function issues the specified command to the NAND device and
+ * waits for completion. */
+static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
+
+ writew(cmd, host->regs + NFC_FLASH_CMD);
+ writew(NFC_CMD, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, cmd, useirq);
+}
+
+/* This function sends an address (or partial address) to the
+ * NAND device. The address is used to select the source/destination for
+ * a NAND command. */
+static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
+
+ writew(addr, host->regs + NFC_FLASH_ADDR);
+ writew(NFC_ADDR, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, addr, islast);
+}
+
+/* This function requests the NANDFC to initate the transfer
+ * of data currently in the NANDFC RAM buffer to the NAND device. */
+static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
+ int spare_only)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
+
+ /* NANDFC buffer 0 is used for page read/write */
+ writew(buf_id, host->regs + NFC_BUF_ADDR);
+
+ /* Configure spare or page+spare access */
+ if (!host->pagesize_2k) {
+ uint16_t config1 = readw(host->regs + NFC_CONFIG1);
+ if (spare_only)
+ config1 |= NFC_SP_EN;
+ else
+ config1 &= ~(NFC_SP_EN);
+ writew(config1, host->regs + NFC_CONFIG1);
+ }
+
+ writew(NFC_INPUT, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, spare_only, true);
+}
+
+/* Requests NANDFC to initated the transfer of data from the
+ * NAND device into in the NANDFC ram buffer. */
+static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
+ int spare_only)
+{
+ DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
+
+ /* NANDFC buffer 0 is used for page read/write */
+ writew(buf_id, host->regs + NFC_BUF_ADDR);
+
+ /* Configure spare or page+spare access */
+ if (!host->pagesize_2k) {
+ uint32_t config1 = readw(host->regs + NFC_CONFIG1);
+ if (spare_only)
+ config1 |= NFC_SP_EN;
+ else
+ config1 &= ~NFC_SP_EN;
+ writew(config1, host->regs + NFC_CONFIG1);
+ }
+
+ writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, spare_only, true);
+}
+
+/* Request the NANDFC to perform a read of the NAND device ID. */
+static void send_read_id(struct mxc_nand_host *host)
+{
+ struct nand_chip *this = &host->nand;
+ uint16_t tmp;
+
+ /* NANDFC buffer 0 is used for device ID output */
+ writew(0x0, host->regs + NFC_BUF_ADDR);
+
+ /* Read ID into main buffer */
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_SP_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ writew(NFC_ID, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, 0, true);
+
+ if (this->options & NAND_BUSWIDTH_16) {
+ void __iomem *main_buf = host->regs + MAIN_AREA0;
+ /* compress the ID info */
+ writeb(readb(main_buf + 2), main_buf + 1);
+ writeb(readb(main_buf + 4), main_buf + 2);
+ writeb(readb(main_buf + 6), main_buf + 3);
+ writeb(readb(main_buf + 8), main_buf + 4);
+ writeb(readb(main_buf + 10), main_buf + 5);
+ }
+}
+
+/* This function requests the NANDFC to perform a read of the
+ * NAND device status and returns the current status. */
+static uint16_t get_dev_status(struct mxc_nand_host *host)
+{
+ void __iomem *main_buf = host->regs + MAIN_AREA1;
+ uint32_t store;
+ uint16_t ret, tmp;
+ /* Issue status request to NAND device */
+
+ /* store the main area1 first word, later do recovery */
+ store = readl(main_buf);
+ /* NANDFC buffer 1 is used for device status to prevent
+ * corruption of read/write buffer on status requests. */
+ writew(1, host->regs + NFC_BUF_ADDR);
+
+ /* Read status into main buffer */
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_SP_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ writew(NFC_STATUS, host->regs + NFC_CONFIG2);
+
+ /* Wait for operation to complete */
+ wait_op_done(host, TROP_US_DELAY, 0, true);
+
+ /* Status is placed in first word of main buffer */
+ /* get status, then recovery area 1 data */
+ ret = readw(main_buf);
+ writel(store, main_buf);
+
+ return ret;
+}
+
+/* This functions is used by upper layer to checks if device is ready */
+static int mxc_nand_dev_ready(struct mtd_info *mtd)
+{
+ /*
+ * NFC handles R/B internally. Therefore, this function
+ * always returns status as ready.
+ */
+ return 1;
+}
+
+static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ /*
+ * If HW ECC is enabled, we turn it on during init. There is
+ * no need to enable again here.
+ */
+}
+
+static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+
+ /*
+ * 1-Bit errors are automatically corrected in HW. No need for
+ * additional correction. 2-Bit errors cannot be corrected by
+ * HW ECC, so we need to return failure
+ */
+ uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
+
+ if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+ u_char *ecc_code)
+{
+ return 0;
+}
+
+static u_char mxc_nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+ uint8_t ret = 0;
+ uint16_t col, rd_word;
+ uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;
+ uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;
+
+ /* Check for status request */
+ if (host->status_request)
+ return get_dev_status(host) & 0xFF;
+
+ /* Get column for 16-bit access */
+ col = host->col_addr >> 1;
+
+ /* If we are accessing the spare region */
+ if (host->spare_only)
+ rd_word = readw(&spare_buf[col]);
+ else
+ rd_word = readw(&main_buf[col]);
+
+ /* Pick upper/lower byte of word from RAM buffer */
+ if (host->col_addr & 0x1)
+ ret = (rd_word >> 8) & 0xFF;
+ else
+ ret = rd_word & 0xFF;
+
+ /* Update saved column address */
+ host->col_addr++;
+
+ return ret;
+}
+
+static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+ uint16_t col, rd_word, ret;
+ uint16_t __iomem *p;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_read_word(col = %d)\n", host->col_addr);
+
+ col = host->col_addr;
+ /* Adjust saved column address */
+ if (col < mtd->writesize && host->spare_only)
+ col += mtd->writesize;
+
+ if (col < mtd->writesize)
+ p = (host->regs + MAIN_AREA0) + (col >> 1);
+ else
+ p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
+
+ if (col & 1) {
+ rd_word = readw(p);
+ ret = (rd_word >> 8) & 0xff;
+ rd_word = readw(&p[1]);
+ ret |= (rd_word << 8) & 0xff00;
+
+ } else
+ ret = readw(p);
+
+ /* Update saved column address */
+ host->col_addr = col + 2;
+
+ return ret;
+}
+
+/* Write data of length len to buffer buf. The data to be
+ * written on NAND Flash is first copied to RAMbuffer. After the Data Input
+ * Operation by the NFC, the data is written to NAND Flash */
+static void mxc_nand_write_buf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+ int n, col, i = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
+ len);
+
+ col = host->col_addr;
+
+ /* Adjust saved column address */
+ if (col < mtd->writesize && host->spare_only)
+ col += mtd->writesize;
+
+ n = mtd->writesize + mtd->oobsize - col;
+ n = min(len, n);
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
+
+ while (n) {
+ void __iomem *p;
+
+ if (col < mtd->writesize)
+ p = host->regs + MAIN_AREA0 + (col & ~3);
+ else
+ p = host->regs + SPARE_AREA0 -
+ mtd->writesize + (col & ~3);
+
+ DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
+ __LINE__, p);
+
+ if (((col | (int)&buf[i]) & 3) || n < 16) {
+ uint32_t data = 0;
+
+ if (col & 3 || n < 4)
+ data = readl(p);
+
+ switch (col & 3) {
+ case 0:
+ if (n) {
+ data = (data & 0xffffff00) |
+ (buf[i++] << 0);
+ n--;
+ col++;
+ }
+ case 1:
+ if (n) {
+ data = (data & 0xffff00ff) |
+ (buf[i++] << 8);
+ n--;
+ col++;
+ }
+ case 2:
+ if (n) {
+ data = (data & 0xff00ffff) |
+ (buf[i++] << 16);
+ n--;
+ col++;
+ }
+ case 3:
+ if (n) {
+ data = (data & 0x00ffffff) |
+ (buf[i++] << 24);
+ n--;
+ col++;
+ }
+ }
+
+ writel(data, p);
+ } else {
+ int m = mtd->writesize - col;
+
+ if (col >= mtd->writesize)
+ m += mtd->oobsize;
+
+ m = min(n, m) & ~3;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
+ __func__, __LINE__, n, m, i, col);
+
+ memcpy(p, &buf[i], m);
+ col += m;
+ i += m;
+ n -= m;
+ }
+ }
+ /* Update saved column address */
+ host->col_addr = col;
+}
+
+/* Read the data buffer from the NAND Flash. To read the data from NAND
+ * Flash first the data output cycle is initiated by the NFC, which copies
+ * the data to RAMbuffer. This data of length len is then copied to buffer buf.
+ */
+static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+ int n, col, i = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
+
+ col = host->col_addr;
+
+ /* Adjust saved column address */
+ if (col < mtd->writesize && host->spare_only)
+ col += mtd->writesize;
+
+ n = mtd->writesize + mtd->oobsize - col;
+ n = min(len, n);
+
+ while (n) {
+ void __iomem *p;
+
+ if (col < mtd->writesize)
+ p = host->regs + MAIN_AREA0 + (col & ~3);
+ else
+ p = host->regs + SPARE_AREA0 -
+ mtd->writesize + (col & ~3);
+
+ if (((col | (int)&buf[i]) & 3) || n < 16) {
+ uint32_t data;
+
+ data = readl(p);
+ switch (col & 3) {
+ case 0:
+ if (n) {
+ buf[i++] = (uint8_t) (data);
+ n--;
+ col++;
+ }
+ case 1:
+ if (n) {
+ buf[i++] = (uint8_t) (data >> 8);
+ n--;
+ col++;
+ }
+ case 2:
+ if (n) {
+ buf[i++] = (uint8_t) (data >> 16);
+ n--;
+ col++;
+ }
+ case 3:
+ if (n) {
+ buf[i++] = (uint8_t) (data >> 24);
+ n--;
+ col++;
+ }
+ }
+ } else {
+ int m = mtd->writesize - col;
+
+ if (col >= mtd->writesize)
+ m += mtd->oobsize;
+
+ m = min(n, m) & ~3;
+ memcpy(&buf[i], p, m);
+ col += m;
+ i += m;
+ n -= m;
+ }
+ }
+ /* Update saved column address */
+ host->col_addr = col;
+
+}
+
+/* Used by the upper layer to verify the data in NAND Flash
+ * with the data in the buf. */
+static int mxc_nand_verify_buf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ return -EFAULT;
+}
+
+/* This function is used by upper layer for select and
+ * deselect of the NAND chip */
+static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+
+#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
+ if (chip > 0) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "ERROR: Illegal chip select (chip = %d)\n", chip);
+ return;
+ }
+
+ if (chip == -1) {
+ writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE,
+ host->regs + NFC_CONFIG1);
+ return;
+ }
+
+ writew(readw(host->regs + NFC_CONFIG1) | NFC_CE,
+ host->regs + NFC_CONFIG1);
+#endif
+
+ switch (chip) {
+ case -1:
+ /* Disable the NFC clock */
+ if (host->clk_act) {
+ clk_disable(host->clk);
+ host->clk_act = 0;
+ }
+ break;
+ case 0:
+ /* Enable the NFC clock */
+ if (!host->clk_act) {
+ clk_enable(host->clk);
+ host->clk_act = 1;
+ }
+ break;
+
+ default:
+ break;
+ }
+}
+
+/* Used by the upper layer to write command to NAND Flash for
+ * different operations to be carried out on NAND Flash */
+static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
+ int column, int page_addr)
+{
+ struct nand_chip *nand_chip = mtd->priv;
+ struct mxc_nand_host *host = nand_chip->priv;
+ int useirq = true;
+
+ DEBUG(MTD_DEBUG_LEVEL3,
+ "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
+ command, column, page_addr);
+
+ /* Reset command state information */
+ host->status_request = false;
+
+ /* Command pre-processing step */
+ switch (command) {
+
+ case NAND_CMD_STATUS:
+ host->col_addr = 0;
+ host->status_request = true;
+ break;
+
+ case NAND_CMD_READ0:
+ host->col_addr = column;
+ host->spare_only = false;
+ useirq = false;
+ break;
+
+ case NAND_CMD_READOOB:
+ host->col_addr = column;
+ host->spare_only = true;
+ useirq = false;
+ if (host->pagesize_2k)
+ command = NAND_CMD_READ0; /* only READ0 is valid */
+ break;
+
+ case NAND_CMD_SEQIN:
+ if (column >= mtd->writesize) {
+ /*
+ * FIXME: before send SEQIN command for write OOB,
+ * We must read one page out.
+ * For K9F1GXX has no READ1 command to set current HW
+ * pointer to spare area, we must write the whole page
+ * including OOB together.
+ */
+ if (host->pagesize_2k)
+ /* call ourself to read a page */
+ mxc_nand_command(mtd, NAND_CMD_READ0, 0,
+ page_addr);
+
+ host->col_addr = column - mtd->writesize;
+ host->spare_only = true;
+
+ /* Set program pointer to spare region */
+ if (!host->pagesize_2k)
+ send_cmd(host, NAND_CMD_READOOB, false);
+ } else {
+ host->spare_only = false;
+ host->col_addr = column;
+
+ /* Set program pointer to page start */
+ if (!host->pagesize_2k)
+ send_cmd(host, NAND_CMD_READ0, false);
+ }
+ useirq = false;
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ send_prog_page(host, 0, host->spare_only);
+
+ if (host->pagesize_2k) {
+ /* data in 4 areas datas */
+ send_prog_page(host, 1, host->spare_only);
+ send_prog_page(host, 2, host->spare_only);
+ send_prog_page(host, 3, host->spare_only);
+ }
+
+ break;
+
+ case NAND_CMD_ERASE1:
+ useirq = false;
+ break;
+ }
+
+ /* Write out the command to the device. */
+ send_cmd(host, command, useirq);
+
+ /* Write out column address, if necessary */
+ if (column != -1) {
+ /*
+ * MXC NANDFC can only perform full page+spare or
+ * spare-only read/write. When the upper layers
+ * layers perform a read/write buf operation,
+ * we will used the saved column adress to index into
+ * the full page.
+ */
+ send_addr(host, 0, page_addr == -1);
+ if (host->pagesize_2k)
+ /* another col addr cycle for 2k page */
+ send_addr(host, 0, false);
+ }
+
+ /* Write out page address, if necessary */
+ if (page_addr != -1) {
+ /* paddr_0 - p_addr_7 */
+ send_addr(host, (page_addr & 0xff), false);
+
+ if (host->pagesize_2k) {
+ send_addr(host, (page_addr >> 8) & 0xFF, false);
+ if (mtd->size >= 0x40000000)
+ send_addr(host, (page_addr >> 16) & 0xff, true);
+ } else {
+ /* One more address cycle for higher density devices */
+ if (mtd->size >= 0x4000000) {
+ /* paddr_8 - paddr_15 */
+ send_addr(host, (page_addr >> 8) & 0xff, false);
+ send_addr(host, (page_addr >> 16) & 0xff, true);
+ } else
+ /* paddr_8 - paddr_15 */
+ send_addr(host, (page_addr >> 8) & 0xff, true);
+ }
+ }
+
+ /* Command post-processing step */
+ switch (command) {
+
+ case NAND_CMD_RESET:
+ break;
+
+ case NAND_CMD_READOOB:
+ case NAND_CMD_READ0:
+ if (host->pagesize_2k) {
+ /* send read confirm command */
+ send_cmd(host, NAND_CMD_READSTART, true);
+ /* read for each AREA */
+ send_read_page(host, 0, host->spare_only);
+ send_read_page(host, 1, host->spare_only);
+ send_read_page(host, 2, host->spare_only);
+ send_read_page(host, 3, host->spare_only);
+ } else
+ send_read_page(host, 0, host->spare_only);
+ break;
+
+ case NAND_CMD_READID:
+ send_read_id(host);
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ break;
+
+ case NAND_CMD_STATUS:
+ break;
+
+ case NAND_CMD_ERASE2:
+ break;
+ }
+}
+
+static int __init mxcnd_probe(struct platform_device *pdev)
+{
+ struct nand_chip *this;
+ struct mtd_info *mtd;
+ struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
+ struct mxc_nand_host *host;
+ struct resource *res;
+ uint16_t tmp;
+ int err = 0, nr_parts = 0;
+
+ /* Allocate memory for MTD device structure and private data */
+ host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL);
+ if (!host)
+ return -ENOMEM;
+
+ host->dev = &pdev->dev;
+ /* structures must be linked */
+ this = &host->nand;
+ mtd = &host->mtd;
+ mtd->priv = this;
+ mtd->owner = THIS_MODULE;
+
+ /* 50 us command delay time */
+ this->chip_delay = 5;
+
+ this->priv = host;
+ this->dev_ready = mxc_nand_dev_ready;
+ this->cmdfunc = mxc_nand_command;
+ this->select_chip = mxc_nand_select_chip;
+ this->read_byte = mxc_nand_read_byte;
+ this->read_word = mxc_nand_read_word;
+ this->write_buf = mxc_nand_write_buf;
+ this->read_buf = mxc_nand_read_buf;
+ this->verify_buf = mxc_nand_verify_buf;
+
+ host->clk = clk_get(&pdev->dev, "nfc_clk");
+ if (IS_ERR(host->clk))
+ goto eclk;
+
+ clk_enable(host->clk);
+ host->clk_act = 1;
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res) {
+ err = -ENODEV;
+ goto eres;
+ }
+
+ host->regs = ioremap(res->start, res->end - res->start + 1);
+ if (!host->regs) {
+ err = -EIO;
+ goto eres;
+ }
+
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp |= NFC_INT_MSK;
+ writew(tmp, host->regs + NFC_CONFIG1);
+
+ init_waitqueue_head(&host->irq_waitq);
+
+ host->irq = platform_get_irq(pdev, 0);
+
+ err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host);
+ if (err)
+ goto eirq;
+
+ if (pdata->hw_ecc) {
+ this->ecc.calculate = mxc_nand_calculate_ecc;
+ this->ecc.hwctl = mxc_nand_enable_hwecc;
+ this->ecc.correct = mxc_nand_correct_data;
+ this->ecc.mode = NAND_ECC_HW;
+ this->ecc.size = 512;
+ this->ecc.bytes = 3;
+ this->ecc.layout = &nand_hw_eccoob_8;
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp |= NFC_ECC_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+ } else {
+ this->ecc.size = 512;
+ this->ecc.bytes = 3;
+ this->ecc.layout = &nand_hw_eccoob_8;
+ this->ecc.mode = NAND_ECC_SOFT;
+ tmp = readw(host->regs + NFC_CONFIG1);
+ tmp &= ~NFC_ECC_EN;
+ writew(tmp, host->regs + NFC_CONFIG1);
+ }
+
+ /* Reset NAND */
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* preset operation */
+ /* Unlock the internal RAM Buffer */
+ writew(0x2, host->regs + NFC_CONFIG);
+
+ /* Blocks to be unlocked */
+ writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
+ writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
+
+ /* Unlock Block Command for given address range */
+ writew(0x4, host->regs + NFC_WRPROT);
+
+ /* NAND bus width determines access funtions used by upper layer */
+ if (pdata->width == 2) {
+ this->options |= NAND_BUSWIDTH_16;
+ this->ecc.layout = &nand_hw_eccoob_16;
+ }
+
+ host->pagesize_2k = 0;
+
+ /* Scan to find existence of the device */
+ if (nand_scan(mtd, 1)) {
+ DEBUG(MTD_DEBUG_LEVEL0,
+ "MXC_ND: Unable to find any NAND device.\n");
+ err = -ENXIO;
+ goto escan;
+ }
+
+ /* Register the partitions */
+#ifdef CONFIG_MTD_PARTITIONS
+ nr_parts =
+ parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
+ if (nr_parts > 0)
+ add_mtd_partitions(mtd, host->parts, nr_parts);
+ else
+#endif
+ {
+ pr_info("Registering %s as whole device\n", mtd->name);
+ add_mtd_device(mtd);
+ }
+
+ platform_set_drvdata(pdev, host);
+
+ return 0;
+
+escan:
+ free_irq(host->irq, NULL);
+eirq:
+ iounmap(host->regs);
+eres:
+ clk_put(host->clk);
+eclk:
+ kfree(host);
+
+ return err;
+}
+
+static int __devexit mxcnd_remove(struct platform_device *pdev)
+{
+ struct mxc_nand_host *host = platform_get_drvdata(pdev);
+
+ clk_put(host->clk);
+
+ platform_set_drvdata(pdev, NULL);
+
+ nand_release(&host->mtd);
+ free_irq(host->irq, NULL);
+ iounmap(host->regs);
+ kfree(host);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
+{
+ struct mtd_info *info = platform_get_drvdata(pdev);
+ int ret = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
+ if (info)
+ ret = info->suspend(info);
+
+ /* Disable the NFC clock */
+ clk_disable(nfc_clk); /* FIXME */
+
+ return ret;
+}
+
+static int mxcnd_resume(struct platform_device *pdev)
+{
+ struct mtd_info *info = platform_get_drvdata(pdev);
+ int ret = 0;
+
+ DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
+ /* Enable the NFC clock */
+ clk_enable(nfc_clk); /* FIXME */
+
+ if (info)
+ info->resume(info);
+
+ return ret;
+}
+
+#else
+# define mxcnd_suspend NULL
+# define mxcnd_resume NULL
+#endif /* CONFIG_PM */
+
+static struct platform_driver mxcnd_driver = {
+ .driver = {
+ .name = DRIVER_NAME,
+ },
+ .remove = __exit_p(mxcnd_remove),
+ .suspend = mxcnd_suspend,
+ .resume = mxcnd_resume,
+};
+
+static int __init mxc_nd_init(void)
+{
+ /* Register the device driver structure. */
+ pr_info("MXC MTD nand Driver\n");
+ if (platform_driver_probe(&mxcnd_driver, mxcnd_probe) != 0) {
+ printk(KERN_ERR "Driver register failed for mxcnd_driver\n");
+ return -ENODEV;
+ }
+ return 0;
+}
+
+static void __exit mxc_nd_cleanup(void)
+{
+ /* Unregister the device structure */
+ platform_driver_unregister(&mxcnd_driver);
+}
+
+module_init(mxc_nd_init);
+module_exit(mxc_nd_cleanup);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("MXC NAND MTD driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
index d1129bae6c27..0a9c9cd33f96 100644
--- a/drivers/mtd/nand/nand_base.c
+++ b/drivers/mtd/nand/nand_base.c
@@ -801,9 +801,9 @@ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
* nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
* @mtd: mtd info structure
* @chip: nand chip info structure
- * @dataofs offset of requested data within the page
- * @readlen data length
- * @buf: buffer to store read data
+ * @data_offs: offset of requested data within the page
+ * @readlen: data length
+ * @bufpoi: buffer to store read data
*/
static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
{
@@ -2042,7 +2042,7 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
return -EINVAL;
}
- instr->fail_addr = 0xffffffff;
+ instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
/* Grab the lock and see if the device is available */
nand_get_device(chip, mtd, FL_ERASING);
@@ -2318,6 +2318,12 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
/* Select the device */
chip->select_chip(mtd, 0);
+ /*
+ * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
+ * after power-up
+ */
+ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
/* Send the command for reading device ID */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
@@ -2488,6 +2494,8 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips)
/* Check for a chip array */
for (i = 1; i < maxchips; i++) {
chip->select_chip(mtd, i);
+ /* See comment in nand_get_flash_type for reset */
+ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Send the command for reading device ID */
chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c
index 918a806a8471..868147acce2c 100644
--- a/drivers/mtd/nand/nand_ecc.c
+++ b/drivers/mtd/nand/nand_ecc.c
@@ -1,13 +1,18 @@
/*
- * This file contains an ECC algorithm from Toshiba that detects and
- * corrects 1 bit errors in a 256 byte block of data.
+ * This file contains an ECC algorithm that detects and corrects 1 bit
+ * errors in a 256 byte block of data.
*
* drivers/mtd/nand/nand_ecc.c
*
- * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
- * Toshiba America Electronics Components, Inc.
+ * Copyright © 2008 Koninklijke Philips Electronics NV.
+ * Author: Frans Meulenbroeks
*
- * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
+ * Completely replaces the previous ECC implementation which was written by:
+ * Steven J. Hill (sjhill@realitydiluted.com)
+ * Thomas Gleixner (tglx@linutronix.de)
+ *
+ * Information on how this algorithm works and how it was developed
+ * can be found in Documentation/mtd/nand_ecc.txt
*
* This file is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
@@ -23,174 +28,475 @@
* with this file; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
- * As a special exception, if other files instantiate templates or use
- * macros or inline functions from these files, or you compile these
- * files and link them with other works to produce a work based on these
- * files, these files do not by themselves cause the resulting work to be
- * covered by the GNU General Public License. However the source code for
- * these files must still be made available in accordance with section (3)
- * of the GNU General Public License.
- *
- * This exception does not invalidate any other reasons why a work based on
- * this file might be covered by the GNU General Public License.
*/
+/*
+ * The STANDALONE macro is useful when running the code outside the kernel
+ * e.g. when running the code in a testbed or a benchmark program.
+ * When STANDALONE is used, the module related macros are commented out
+ * as well as the linux include files.
+ * Instead a private definition of mtd_info is given to satisfy the compiler
+ * (the code does not use mtd_info, so the code does not care)
+ */
+#ifndef STANDALONE
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
+#include <asm/byteorder.h>
+#else
+#include <stdint.h>
+struct mtd_info;
+#define EXPORT_SYMBOL(x) /* x */
+
+#define MODULE_LICENSE(x) /* x */
+#define MODULE_AUTHOR(x) /* x */
+#define MODULE_DESCRIPTION(x) /* x */
+
+#define printk printf
+#define KERN_ERR ""
+#endif
+
+/*
+ * invparity is a 256 byte table that contains the odd parity
+ * for each byte. So if the number of bits in a byte is even,
+ * the array element is 1, and when the number of bits is odd
+ * the array eleemnt is 0.
+ */
+static const char invparity[256] = {
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+ 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
+};
+
+/*
+ * bitsperbyte contains the number of bits per byte
+ * this is only used for testing and repairing parity
+ * (a precalculated value slightly improves performance)
+ */
+static const char bitsperbyte[256] = {
+ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
+};
/*
- * Pre-calculated 256-way 1 byte column parity
+ * addressbits is a lookup table to filter out the bits from the xor-ed
+ * ecc data that identify the faulty location.
+ * this is only used for repairing parity
+ * see the comments in nand_correct_data for more details
*/
-static const u_char nand_ecc_precalc_table[] = {
- 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
- 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
- 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
- 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
- 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
- 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
- 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
- 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
- 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
- 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
- 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
- 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
- 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
- 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
- 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
- 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+static const char addressbits[256] = {
+ 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
+ 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
+ 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
+ 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
+ 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
+ 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
+ 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
+ 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
+ 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
+ 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
+ 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
+ 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
+ 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
+ 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
+ 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
+ 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
+ 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
+ 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
+ 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
+ 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
+ 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
+ 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
+ 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
+ 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
+ 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
+ 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
+ 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
+ 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
+ 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
+ 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
+ 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
+ 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
};
/**
- * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
+ * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
+ * block
* @mtd: MTD block structure
- * @dat: raw data
- * @ecc_code: buffer for ECC
+ * @buf: input buffer with raw data
+ * @code: output buffer with ECC
*/
-int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
- u_char *ecc_code)
+int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
+ unsigned char *code)
{
- uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
int i;
+ const uint32_t *bp = (uint32_t *)buf;
+ /* 256 or 512 bytes/ecc */
+ const uint32_t eccsize_mult =
+ (((struct nand_chip *)mtd->priv)->ecc.size) >> 8;
+ uint32_t cur; /* current value in buffer */
+ /* rp0..rp15..rp17 are the various accumulated parities (per byte) */
+ uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
+ uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
+ uint32_t uninitialized_var(rp17); /* to make compiler happy */
+ uint32_t par; /* the cumulative parity for all data */
+ uint32_t tmppar; /* the cumulative parity for this iteration;
+ for rp12, rp14 and rp16 at the end of the
+ loop */
+
+ par = 0;
+ rp4 = 0;
+ rp6 = 0;
+ rp8 = 0;
+ rp10 = 0;
+ rp12 = 0;
+ rp14 = 0;
+ rp16 = 0;
+
+ /*
+ * The loop is unrolled a number of times;
+ * This avoids if statements to decide on which rp value to update
+ * Also we process the data by longwords.
+ * Note: passing unaligned data might give a performance penalty.
+ * It is assumed that the buffers are aligned.
+ * tmppar is the cumulative sum of this iteration.
+ * needed for calculating rp12, rp14, rp16 and par
+ * also used as a performance improvement for rp6, rp8 and rp10
+ */
+ for (i = 0; i < eccsize_mult << 2; i++) {
+ cur = *bp++;
+ tmppar = cur;
+ rp4 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp6 ^= tmppar;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp4 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp8 ^= tmppar;
- /* Initialize variables */
- reg1 = reg2 = reg3 = 0;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp4 ^= cur;
+ rp6 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp6 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp4 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp10 ^= tmppar;
- /* Build up column parity */
- for(i = 0; i < 256; i++) {
- /* Get CP0 - CP5 from table */
- idx = nand_ecc_precalc_table[*dat++];
- reg1 ^= (idx & 0x3f);
+ cur = *bp++;
+ tmppar ^= cur;
+ rp4 ^= cur;
+ rp6 ^= cur;
+ rp8 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp6 ^= cur;
+ rp8 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp4 ^= cur;
+ rp8 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp8 ^= cur;
- /* All bit XOR = 1 ? */
- if (idx & 0x40) {
- reg3 ^= (uint8_t) i;
- reg2 ^= ~((uint8_t) i);
- }
+ cur = *bp++;
+ tmppar ^= cur;
+ rp4 ^= cur;
+ rp6 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp6 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+ rp4 ^= cur;
+ cur = *bp++;
+ tmppar ^= cur;
+
+ par ^= tmppar;
+ if ((i & 0x1) == 0)
+ rp12 ^= tmppar;
+ if ((i & 0x2) == 0)
+ rp14 ^= tmppar;
+ if (eccsize_mult == 2 && (i & 0x4) == 0)
+ rp16 ^= tmppar;
}
- /* Create non-inverted ECC code from line parity */
- tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */
- tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
- tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
- tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
- tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
- tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
- tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
- tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
-
- tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */
- tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
- tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
- tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
- tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
- tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
- tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
- tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
-
- /* Calculate final ECC code */
-#ifdef CONFIG_MTD_NAND_ECC_SMC
- ecc_code[0] = ~tmp2;
- ecc_code[1] = ~tmp1;
+ /*
+ * handle the fact that we use longword operations
+ * we'll bring rp4..rp14..rp16 back to single byte entities by
+ * shifting and xoring first fold the upper and lower 16 bits,
+ * then the upper and lower 8 bits.
+ */
+ rp4 ^= (rp4 >> 16);
+ rp4 ^= (rp4 >> 8);
+ rp4 &= 0xff;
+ rp6 ^= (rp6 >> 16);
+ rp6 ^= (rp6 >> 8);
+ rp6 &= 0xff;
+ rp8 ^= (rp8 >> 16);
+ rp8 ^= (rp8 >> 8);
+ rp8 &= 0xff;
+ rp10 ^= (rp10 >> 16);
+ rp10 ^= (rp10 >> 8);
+ rp10 &= 0xff;
+ rp12 ^= (rp12 >> 16);
+ rp12 ^= (rp12 >> 8);
+ rp12 &= 0xff;
+ rp14 ^= (rp14 >> 16);
+ rp14 ^= (rp14 >> 8);
+ rp14 &= 0xff;
+ if (eccsize_mult == 2) {
+ rp16 ^= (rp16 >> 16);
+ rp16 ^= (rp16 >> 8);
+ rp16 &= 0xff;
+ }
+
+ /*
+ * we also need to calculate the row parity for rp0..rp3
+ * This is present in par, because par is now
+ * rp3 rp3 rp2 rp2 in little endian and
+ * rp2 rp2 rp3 rp3 in big endian
+ * as well as
+ * rp1 rp0 rp1 rp0 in little endian and
+ * rp0 rp1 rp0 rp1 in big endian
+ * First calculate rp2 and rp3
+ */
+#ifdef __BIG_ENDIAN
+ rp2 = (par >> 16);
+ rp2 ^= (rp2 >> 8);
+ rp2 &= 0xff;
+ rp3 = par & 0xffff;
+ rp3 ^= (rp3 >> 8);
+ rp3 &= 0xff;
#else
- ecc_code[0] = ~tmp1;
- ecc_code[1] = ~tmp2;
+ rp3 = (par >> 16);
+ rp3 ^= (rp3 >> 8);
+ rp3 &= 0xff;
+ rp2 = par & 0xffff;
+ rp2 ^= (rp2 >> 8);
+ rp2 &= 0xff;
#endif
- ecc_code[2] = ((~reg1) << 2) | 0x03;
- return 0;
-}
-EXPORT_SYMBOL(nand_calculate_ecc);
+ /* reduce par to 16 bits then calculate rp1 and rp0 */
+ par ^= (par >> 16);
+#ifdef __BIG_ENDIAN
+ rp0 = (par >> 8) & 0xff;
+ rp1 = (par & 0xff);
+#else
+ rp1 = (par >> 8) & 0xff;
+ rp0 = (par & 0xff);
+#endif
-static inline int countbits(uint32_t byte)
-{
- int res = 0;
+ /* finally reduce par to 8 bits */
+ par ^= (par >> 8);
+ par &= 0xff;
- for (;byte; byte >>= 1)
- res += byte & 0x01;
- return res;
+ /*
+ * and calculate rp5..rp15..rp17
+ * note that par = rp4 ^ rp5 and due to the commutative property
+ * of the ^ operator we can say:
+ * rp5 = (par ^ rp4);
+ * The & 0xff seems superfluous, but benchmarking learned that
+ * leaving it out gives slightly worse results. No idea why, probably
+ * it has to do with the way the pipeline in pentium is organized.
+ */
+ rp5 = (par ^ rp4) & 0xff;
+ rp7 = (par ^ rp6) & 0xff;
+ rp9 = (par ^ rp8) & 0xff;
+ rp11 = (par ^ rp10) & 0xff;
+ rp13 = (par ^ rp12) & 0xff;
+ rp15 = (par ^ rp14) & 0xff;
+ if (eccsize_mult == 2)
+ rp17 = (par ^ rp16) & 0xff;
+
+ /*
+ * Finally calculate the ecc bits.
+ * Again here it might seem that there are performance optimisations
+ * possible, but benchmarks showed that on the system this is developed
+ * the code below is the fastest
+ */
+#ifdef CONFIG_MTD_NAND_ECC_SMC
+ code[0] =
+ (invparity[rp7] << 7) |
+ (invparity[rp6] << 6) |
+ (invparity[rp5] << 5) |
+ (invparity[rp4] << 4) |
+ (invparity[rp3] << 3) |
+ (invparity[rp2] << 2) |
+ (invparity[rp1] << 1) |
+ (invparity[rp0]);
+ code[1] =
+ (invparity[rp15] << 7) |
+ (invparity[rp14] << 6) |
+ (invparity[rp13] << 5) |
+ (invparity[rp12] << 4) |
+ (invparity[rp11] << 3) |
+ (invparity[rp10] << 2) |
+ (invparity[rp9] << 1) |
+ (invparity[rp8]);
+#else
+ code[1] =
+ (invparity[rp7] << 7) |
+ (invparity[rp6] << 6) |
+ (invparity[rp5] << 5) |
+ (invparity[rp4] << 4) |
+ (invparity[rp3] << 3) |
+ (invparity[rp2] << 2) |
+ (invparity[rp1] << 1) |
+ (invparity[rp0]);
+ code[0] =
+ (invparity[rp15] << 7) |
+ (invparity[rp14] << 6) |
+ (invparity[rp13] << 5) |
+ (invparity[rp12] << 4) |
+ (invparity[rp11] << 3) |
+ (invparity[rp10] << 2) |
+ (invparity[rp9] << 1) |
+ (invparity[rp8]);
+#endif
+ if (eccsize_mult == 1)
+ code[2] =
+ (invparity[par & 0xf0] << 7) |
+ (invparity[par & 0x0f] << 6) |
+ (invparity[par & 0xcc] << 5) |
+ (invparity[par & 0x33] << 4) |
+ (invparity[par & 0xaa] << 3) |
+ (invparity[par & 0x55] << 2) |
+ 3;
+ else
+ code[2] =
+ (invparity[par & 0xf0] << 7) |
+ (invparity[par & 0x0f] << 6) |
+ (invparity[par & 0xcc] << 5) |
+ (invparity[par & 0x33] << 4) |
+ (invparity[par & 0xaa] << 3) |
+ (invparity[par & 0x55] << 2) |
+ (invparity[rp17] << 1) |
+ (invparity[rp16] << 0);
+ return 0;
}
+EXPORT_SYMBOL(nand_calculate_ecc);
/**
* nand_correct_data - [NAND Interface] Detect and correct bit error(s)
* @mtd: MTD block structure
- * @dat: raw data read from the chip
+ * @buf: raw data read from the chip
* @read_ecc: ECC from the chip
* @calc_ecc: the ECC calculated from raw data
*
- * Detect and correct a 1 bit error for 256 byte block
+ * Detect and correct a 1 bit error for 256/512 byte block
*/
-int nand_correct_data(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
+int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+ unsigned char *read_ecc, unsigned char *calc_ecc)
{
- uint8_t s0, s1, s2;
+ unsigned char b0, b1, b2;
+ unsigned char byte_addr, bit_addr;
+ /* 256 or 512 bytes/ecc */
+ const uint32_t eccsize_mult =
+ (((struct nand_chip *)mtd->priv)->ecc.size) >> 8;
+ /*
+ * b0 to b2 indicate which bit is faulty (if any)
+ * we might need the xor result more than once,
+ * so keep them in a local var
+ */
#ifdef CONFIG_MTD_NAND_ECC_SMC
- s0 = calc_ecc[0] ^ read_ecc[0];
- s1 = calc_ecc[1] ^ read_ecc[1];
- s2 = calc_ecc[2] ^ read_ecc[2];
+ b0 = read_ecc[0] ^ calc_ecc[0];
+ b1 = read_ecc[1] ^ calc_ecc[1];
#else
- s1 = calc_ecc[0] ^ read_ecc[0];
- s0 = calc_ecc[1] ^ read_ecc[1];
- s2 = calc_ecc[2] ^ read_ecc[2];
+ b0 = read_ecc[1] ^ calc_ecc[1];
+ b1 = read_ecc[0] ^ calc_ecc[0];
#endif
- if ((s0 | s1 | s2) == 0)
- return 0;
-
- /* Check for a single bit error */
- if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
- ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
- ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
+ b2 = read_ecc[2] ^ calc_ecc[2];
- uint32_t byteoffs, bitnum;
+ /* check if there are any bitfaults */
- byteoffs = (s1 << 0) & 0x80;
- byteoffs |= (s1 << 1) & 0x40;
- byteoffs |= (s1 << 2) & 0x20;
- byteoffs |= (s1 << 3) & 0x10;
+ /* repeated if statements are slightly more efficient than switch ... */
+ /* ordered in order of likelihood */
- byteoffs |= (s0 >> 4) & 0x08;
- byteoffs |= (s0 >> 3) & 0x04;
- byteoffs |= (s0 >> 2) & 0x02;
- byteoffs |= (s0 >> 1) & 0x01;
-
- bitnum = (s2 >> 5) & 0x04;
- bitnum |= (s2 >> 4) & 0x02;
- bitnum |= (s2 >> 3) & 0x01;
-
- dat[byteoffs] ^= (1 << bitnum);
+ if ((b0 | b1 | b2) == 0)
+ return 0; /* no error */
+ if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
+ (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
+ ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
+ (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
+ /* single bit error */
+ /*
+ * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
+ * byte, cp 5/3/1 indicate the faulty bit.
+ * A lookup table (called addressbits) is used to filter
+ * the bits from the byte they are in.
+ * A marginal optimisation is possible by having three
+ * different lookup tables.
+ * One as we have now (for b0), one for b2
+ * (that would avoid the >> 1), and one for b1 (with all values
+ * << 4). However it was felt that introducing two more tables
+ * hardly justify the gain.
+ *
+ * The b2 shift is there to get rid of the lowest two bits.
+ * We could also do addressbits[b2] >> 1 but for the
+ * performace it does not make any difference
+ */
+ if (eccsize_mult == 1)
+ byte_addr = (addressbits[b1] << 4) + addressbits[b0];
+ else
+ byte_addr = (addressbits[b2 & 0x3] << 8) +
+ (addressbits[b1] << 4) + addressbits[b0];
+ bit_addr = addressbits[b2 >> 2];
+ /* flip the bit */
+ buf[byte_addr] ^= (1 << bit_addr);
return 1;
- }
- if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
- return 1;
+ }
+ /* count nr of bits; use table lookup, faster than calculating it */
+ if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
+ return 1; /* error in ecc data; no action needed */
- return -EBADMSG;
+ printk(KERN_ERR "uncorrectable error : ");
+ return -1;
}
EXPORT_SYMBOL(nand_correct_data);
MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
+MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
MODULE_DESCRIPTION("Generic NAND ECC support");
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c
index 556e8131ecdc..ae7c57781a68 100644
--- a/drivers/mtd/nand/nandsim.c
+++ b/drivers/mtd/nand/nandsim.c
@@ -38,7 +38,6 @@
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/random.h>
-#include <asm/div64.h>
/* Default simulator parameters values */
#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c
index a64ad15b8fdd..c0fa9c9edf08 100644
--- a/drivers/mtd/nand/pxa3xx_nand.c
+++ b/drivers/mtd/nand/pxa3xx_nand.c
@@ -115,55 +115,11 @@ enum {
STATE_PIO_WRITING,
};
-struct pxa3xx_nand_timing {
- unsigned int tCH; /* Enable signal hold time */
- unsigned int tCS; /* Enable signal setup time */
- unsigned int tWH; /* ND_nWE high duration */
- unsigned int tWP; /* ND_nWE pulse time */
- unsigned int tRH; /* ND_nRE high duration */
- unsigned int tRP; /* ND_nRE pulse width */
- unsigned int tR; /* ND_nWE high to ND_nRE low for read */
- unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */
- unsigned int tAR; /* ND_ALE low to ND_nRE low delay */
-};
-
-struct pxa3xx_nand_cmdset {
- uint16_t read1;
- uint16_t read2;
- uint16_t program;
- uint16_t read_status;
- uint16_t read_id;
- uint16_t erase;
- uint16_t reset;
- uint16_t lock;
- uint16_t unlock;
- uint16_t lock_status;
-};
-
-struct pxa3xx_nand_flash {
- struct pxa3xx_nand_timing *timing; /* NAND Flash timing */
- struct pxa3xx_nand_cmdset *cmdset;
-
- uint32_t page_per_block;/* Pages per block (PG_PER_BLK) */
- uint32_t page_size; /* Page size in bytes (PAGE_SZ) */
- uint32_t flash_width; /* Width of Flash memory (DWIDTH_M) */
- uint32_t dfc_width; /* Width of flash controller(DWIDTH_C) */
- uint32_t num_blocks; /* Number of physical blocks in Flash */
- uint32_t chip_id;
-
- /* NOTE: these are automatically calculated, do not define */
- size_t oob_size;
- size_t read_id_bytes;
-
- unsigned int col_addr_cycles;
- unsigned int row_addr_cycles;
-};
-
struct pxa3xx_nand_info {
struct nand_chip nand_chip;
struct platform_device *pdev;
- struct pxa3xx_nand_flash *flash_info;
+ const struct pxa3xx_nand_flash *flash_info;
struct clk *clk;
void __iomem *mmio_base;
@@ -202,12 +158,20 @@ struct pxa3xx_nand_info {
uint32_t ndcb0;
uint32_t ndcb1;
uint32_t ndcb2;
+
+ /* calculated from pxa3xx_nand_flash data */
+ size_t oob_size;
+ size_t read_id_bytes;
+
+ unsigned int col_addr_cycles;
+ unsigned int row_addr_cycles;
};
static int use_dma = 1;
module_param(use_dma, bool, 0444);
MODULE_PARM_DESC(use_dma, "enable DMA for data transfering to/from NAND HW");
+#ifdef CONFIG_MTD_NAND_PXA3xx_BUILTIN
static struct pxa3xx_nand_cmdset smallpage_cmdset = {
.read1 = 0x0000,
.read2 = 0x0050,
@@ -291,11 +255,35 @@ static struct pxa3xx_nand_flash micron1GbX16 = {
.chip_id = 0xb12c,
};
+static struct pxa3xx_nand_timing stm2GbX16_timing = {
+ .tCH = 10,
+ .tCS = 35,
+ .tWH = 15,
+ .tWP = 25,
+ .tRH = 15,
+ .tRP = 25,
+ .tR = 25000,
+ .tWHR = 60,
+ .tAR = 10,
+};
+
+static struct pxa3xx_nand_flash stm2GbX16 = {
+ .timing = &stm2GbX16_timing,
+ .page_per_block = 64,
+ .page_size = 2048,
+ .flash_width = 16,
+ .dfc_width = 16,
+ .num_blocks = 2048,
+ .chip_id = 0xba20,
+};
+
static struct pxa3xx_nand_flash *builtin_flash_types[] = {
&samsung512MbX16,
&micron1GbX8,
&micron1GbX16,
+ &stm2GbX16,
};
+#endif /* CONFIG_MTD_NAND_PXA3xx_BUILTIN */
#define NDTR0_tCH(c) (min((c), 7) << 19)
#define NDTR0_tCS(c) (min((c), 7) << 16)
@@ -312,7 +300,7 @@ static struct pxa3xx_nand_flash *builtin_flash_types[] = {
#define ns2cycle(ns, clk) (int)(((ns) * (clk / 1000000) / 1000) + 1)
static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info,
- struct pxa3xx_nand_timing *t)
+ const struct pxa3xx_nand_timing *t)
{
unsigned long nand_clk = clk_get_rate(info->clk);
uint32_t ndtr0, ndtr1;
@@ -354,8 +342,8 @@ static int wait_for_event(struct pxa3xx_nand_info *info, uint32_t event)
static int prepare_read_prog_cmd(struct pxa3xx_nand_info *info,
uint16_t cmd, int column, int page_addr)
{
- struct pxa3xx_nand_flash *f = info->flash_info;
- struct pxa3xx_nand_cmdset *cmdset = f->cmdset;
+ const struct pxa3xx_nand_flash *f = info->flash_info;
+ const struct pxa3xx_nand_cmdset *cmdset = f->cmdset;
/* calculate data size */
switch (f->page_size) {
@@ -373,14 +361,14 @@ static int prepare_read_prog_cmd(struct pxa3xx_nand_info *info,
info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0);
info->ndcb1 = 0;
info->ndcb2 = 0;
- info->ndcb0 |= NDCB0_ADDR_CYC(f->row_addr_cycles + f->col_addr_cycles);
+ info->ndcb0 |= NDCB0_ADDR_CYC(info->row_addr_cycles + info->col_addr_cycles);
- if (f->col_addr_cycles == 2) {
+ if (info->col_addr_cycles == 2) {
/* large block, 2 cycles for column address
* row address starts from 3rd cycle
*/
info->ndcb1 |= (page_addr << 16) | (column & 0xffff);
- if (f->row_addr_cycles == 3)
+ if (info->row_addr_cycles == 3)
info->ndcb2 = (page_addr >> 16) & 0xff;
} else
/* small block, 1 cycles for column address
@@ -406,7 +394,7 @@ static int prepare_erase_cmd(struct pxa3xx_nand_info *info,
static int prepare_other_cmd(struct pxa3xx_nand_info *info, uint16_t cmd)
{
- struct pxa3xx_nand_cmdset *cmdset = info->flash_info->cmdset;
+ const struct pxa3xx_nand_cmdset *cmdset = info->flash_info->cmdset;
info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0);
info->ndcb1 = 0;
@@ -641,8 +629,8 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct pxa3xx_nand_info *info = mtd->priv;
- struct pxa3xx_nand_flash *flash_info = info->flash_info;
- struct pxa3xx_nand_cmdset *cmdset = flash_info->cmdset;
+ const struct pxa3xx_nand_flash *flash_info = info->flash_info;
+ const struct pxa3xx_nand_cmdset *cmdset = flash_info->cmdset;
int ret;
info->use_dma = (use_dma) ? 1 : 0;
@@ -720,7 +708,7 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
info->use_dma = 0; /* force PIO read */
info->buf_start = 0;
info->buf_count = (command == NAND_CMD_READID) ?
- flash_info->read_id_bytes : 1;
+ info->read_id_bytes : 1;
if (prepare_other_cmd(info, (command == NAND_CMD_READID) ?
cmdset->read_id : cmdset->read_status))
@@ -861,8 +849,8 @@ static int pxa3xx_nand_ecc_correct(struct mtd_info *mtd,
static int __readid(struct pxa3xx_nand_info *info, uint32_t *id)
{
- struct pxa3xx_nand_flash *f = info->flash_info;
- struct pxa3xx_nand_cmdset *cmdset = f->cmdset;
+ const struct pxa3xx_nand_flash *f = info->flash_info;
+ const struct pxa3xx_nand_cmdset *cmdset = f->cmdset;
uint32_t ndcr;
uint8_t id_buff[8];
@@ -891,7 +879,7 @@ fail_timeout:
}
static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info,
- struct pxa3xx_nand_flash *f)
+ const struct pxa3xx_nand_flash *f)
{
struct platform_device *pdev = info->pdev;
struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data;
@@ -904,25 +892,25 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info,
return -EINVAL;
/* calculate flash information */
- f->oob_size = (f->page_size == 2048) ? 64 : 16;
- f->read_id_bytes = (f->page_size == 2048) ? 4 : 2;
+ info->oob_size = (f->page_size == 2048) ? 64 : 16;
+ info->read_id_bytes = (f->page_size == 2048) ? 4 : 2;
/* calculate addressing information */
- f->col_addr_cycles = (f->page_size == 2048) ? 2 : 1;
+ info->col_addr_cycles = (f->page_size == 2048) ? 2 : 1;
if (f->num_blocks * f->page_per_block > 65536)
- f->row_addr_cycles = 3;
+ info->row_addr_cycles = 3;
else
- f->row_addr_cycles = 2;
+ info->row_addr_cycles = 2;
ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
- ndcr |= (f->col_addr_cycles == 2) ? NDCR_RA_START : 0;
+ ndcr |= (info->col_addr_cycles == 2) ? NDCR_RA_START : 0;
ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0;
ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0;
ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0;
ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0;
- ndcr |= NDCR_RD_ID_CNT(f->read_id_bytes);
+ ndcr |= NDCR_RD_ID_CNT(info->read_id_bytes);
ndcr |= NDCR_SPARE_EN; /* enable spare by default */
info->reg_ndcr = ndcr;
@@ -932,12 +920,27 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info,
return 0;
}
-static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info)
+static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info,
+ const struct pxa3xx_nand_platform_data *pdata)
{
- struct pxa3xx_nand_flash *f;
- uint32_t id;
+ const struct pxa3xx_nand_flash *f;
+ uint32_t id = -1;
int i;
+ for (i = 0; i<pdata->num_flash; ++i) {
+ f = pdata->flash + i;
+
+ if (pxa3xx_nand_config_flash(info, f))
+ continue;
+
+ if (__readid(info, &id))
+ continue;
+
+ if (id == f->chip_id)
+ return 0;
+ }
+
+#ifdef CONFIG_MTD_NAND_PXA3xx_BUILTIN
for (i = 0; i < ARRAY_SIZE(builtin_flash_types); i++) {
f = builtin_flash_types[i];
@@ -951,7 +954,11 @@ static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info)
if (id == f->chip_id)
return 0;
}
+#endif
+ dev_warn(&info->pdev->dev,
+ "failed to detect configured nand flash; found %04x instead of\n",
+ id);
return -ENODEV;
}
@@ -1014,7 +1021,7 @@ static struct nand_ecclayout hw_largepage_ecclayout = {
static void pxa3xx_nand_init_mtd(struct mtd_info *mtd,
struct pxa3xx_nand_info *info)
{
- struct pxa3xx_nand_flash *f = info->flash_info;
+ const struct pxa3xx_nand_flash *f = info->flash_info;
struct nand_chip *this = &info->nand_chip;
this->options = (f->flash_width == 16) ? NAND_BUSWIDTH_16: 0;
@@ -1135,7 +1142,7 @@ static int pxa3xx_nand_probe(struct platform_device *pdev)
goto fail_free_buf;
}
- ret = pxa3xx_nand_detect_flash(info);
+ ret = pxa3xx_nand_detect_flash(info, pdata);
if (ret) {
dev_err(&pdev->dev, "failed to detect flash\n");
ret = -ENODEV;
diff --git a/drivers/mtd/nand/sh_flctl.c b/drivers/mtd/nand/sh_flctl.c
new file mode 100644
index 000000000000..821acb08ff1c
--- /dev/null
+++ b/drivers/mtd/nand/sh_flctl.c
@@ -0,0 +1,878 @@
+/*
+ * SuperH FLCTL nand controller
+ *
+ * Copyright © 2008 Renesas Solutions Corp.
+ * Copyright © 2008 Atom Create Engineering Co., Ltd.
+ *
+ * Based on fsl_elbc_nand.c, Copyright © 2006-2007 Freescale Semiconductor
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/platform_device.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/sh_flctl.h>
+
+static struct nand_ecclayout flctl_4secc_oob_16 = {
+ .eccbytes = 10,
+ .eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
+ .oobfree = {
+ {.offset = 12,
+ . length = 4} },
+};
+
+static struct nand_ecclayout flctl_4secc_oob_64 = {
+ .eccbytes = 10,
+ .eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57},
+ .oobfree = {
+ {.offset = 60,
+ . length = 4} },
+};
+
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr flctl_4secc_smallpage = {
+ .options = NAND_BBT_SCAN2NDPAGE,
+ .offs = 11,
+ .len = 1,
+ .pattern = scan_ff_pattern,
+};
+
+static struct nand_bbt_descr flctl_4secc_largepage = {
+ .options = 0,
+ .offs = 58,
+ .len = 2,
+ .pattern = scan_ff_pattern,
+};
+
+static void empty_fifo(struct sh_flctl *flctl)
+{
+ writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */
+ writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */
+}
+
+static void start_translation(struct sh_flctl *flctl)
+{
+ writeb(TRSTRT, FLTRCR(flctl));
+}
+
+static void wait_completion(struct sh_flctl *flctl)
+{
+ uint32_t timeout = LOOP_TIMEOUT_MAX;
+
+ while (timeout--) {
+ if (readb(FLTRCR(flctl)) & TREND) {
+ writeb(0x0, FLTRCR(flctl));
+ return;
+ }
+ udelay(1);
+ }
+
+ printk(KERN_ERR "wait_completion(): Timeout occured \n");
+ writeb(0x0, FLTRCR(flctl));
+}
+
+static void set_addr(struct mtd_info *mtd, int column, int page_addr)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+ uint32_t addr = 0;
+
+ if (column == -1) {
+ addr = page_addr; /* ERASE1 */
+ } else if (page_addr != -1) {
+ /* SEQIN, READ0, etc.. */
+ if (flctl->page_size) {
+ addr = column & 0x0FFF;
+ addr |= (page_addr & 0xff) << 16;
+ addr |= ((page_addr >> 8) & 0xff) << 24;
+ /* big than 128MB */
+ if (flctl->rw_ADRCNT == ADRCNT2_E) {
+ uint32_t addr2;
+ addr2 = (page_addr >> 16) & 0xff;
+ writel(addr2, FLADR2(flctl));
+ }
+ } else {
+ addr = column;
+ addr |= (page_addr & 0xff) << 8;
+ addr |= ((page_addr >> 8) & 0xff) << 16;
+ addr |= ((page_addr >> 16) & 0xff) << 24;
+ }
+ }
+ writel(addr, FLADR(flctl));
+}
+
+static void wait_rfifo_ready(struct sh_flctl *flctl)
+{
+ uint32_t timeout = LOOP_TIMEOUT_MAX;
+
+ while (timeout--) {
+ uint32_t val;
+ /* check FIFO */
+ val = readl(FLDTCNTR(flctl)) >> 16;
+ if (val & 0xFF)
+ return;
+ udelay(1);
+ }
+ printk(KERN_ERR "wait_rfifo_ready(): Timeout occured \n");
+}
+
+static void wait_wfifo_ready(struct sh_flctl *flctl)
+{
+ uint32_t len, timeout = LOOP_TIMEOUT_MAX;
+
+ while (timeout--) {
+ /* check FIFO */
+ len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
+ if (len >= 4)
+ return;
+ udelay(1);
+ }
+ printk(KERN_ERR "wait_wfifo_ready(): Timeout occured \n");
+}
+
+static int wait_recfifo_ready(struct sh_flctl *flctl)
+{
+ uint32_t timeout = LOOP_TIMEOUT_MAX;
+ int checked[4];
+ void __iomem *ecc_reg[4];
+ int i;
+ uint32_t data, size;
+
+ memset(checked, 0, sizeof(checked));
+
+ while (timeout--) {
+ size = readl(FLDTCNTR(flctl)) >> 24;
+ if (size & 0xFF)
+ return 0; /* success */
+
+ if (readl(FL4ECCCR(flctl)) & _4ECCFA)
+ return 1; /* can't correct */
+
+ udelay(1);
+ if (!(readl(FL4ECCCR(flctl)) & _4ECCEND))
+ continue;
+
+ /* start error correction */
+ ecc_reg[0] = FL4ECCRESULT0(flctl);
+ ecc_reg[1] = FL4ECCRESULT1(flctl);
+ ecc_reg[2] = FL4ECCRESULT2(flctl);
+ ecc_reg[3] = FL4ECCRESULT3(flctl);
+
+ for (i = 0; i < 3; i++) {
+ data = readl(ecc_reg[i]);
+ if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) {
+ uint8_t org;
+ int index;
+
+ index = data >> 16;
+ org = flctl->done_buff[index];
+ flctl->done_buff[index] = org ^ (data & 0xFF);
+ checked[i] = 1;
+ }
+ }
+
+ writel(0, FL4ECCCR(flctl));
+ }
+
+ printk(KERN_ERR "wait_recfifo_ready(): Timeout occured \n");
+ return 1; /* timeout */
+}
+
+static void wait_wecfifo_ready(struct sh_flctl *flctl)
+{
+ uint32_t timeout = LOOP_TIMEOUT_MAX;
+ uint32_t len;
+
+ while (timeout--) {
+ /* check FLECFIFO */
+ len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
+ if (len >= 4)
+ return;
+ udelay(1);
+ }
+ printk(KERN_ERR "wait_wecfifo_ready(): Timeout occured \n");
+}
+
+static void read_datareg(struct sh_flctl *flctl, int offset)
+{
+ unsigned long data;
+ unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
+
+ wait_completion(flctl);
+
+ data = readl(FLDATAR(flctl));
+ *buf = le32_to_cpu(data);
+}
+
+static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
+{
+ int i, len_4align;
+ unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
+ void *fifo_addr = (void *)FLDTFIFO(flctl);
+
+ len_4align = (rlen + 3) / 4;
+
+ for (i = 0; i < len_4align; i++) {
+ wait_rfifo_ready(flctl);
+ buf[i] = readl(fifo_addr);
+ buf[i] = be32_to_cpu(buf[i]);
+ }
+}
+
+static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff)
+{
+ int i;
+ unsigned long *ecc_buf = (unsigned long *)buff;
+ void *fifo_addr = (void *)FLECFIFO(flctl);
+
+ for (i = 0; i < 4; i++) {
+ if (wait_recfifo_ready(flctl))
+ return 1;
+ ecc_buf[i] = readl(fifo_addr);
+ ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
+ }
+
+ return 0;
+}
+
+static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
+{
+ int i, len_4align;
+ unsigned long *data = (unsigned long *)&flctl->done_buff[offset];
+ void *fifo_addr = (void *)FLDTFIFO(flctl);
+
+ len_4align = (rlen + 3) / 4;
+ for (i = 0; i < len_4align; i++) {
+ wait_wfifo_ready(flctl);
+ writel(cpu_to_be32(data[i]), fifo_addr);
+ }
+}
+
+static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+ uint32_t flcmncr_val = readl(FLCMNCR(flctl));
+ uint32_t flcmdcr_val, addr_len_bytes = 0;
+
+ /* Set SNAND bit if page size is 2048byte */
+ if (flctl->page_size)
+ flcmncr_val |= SNAND_E;
+ else
+ flcmncr_val &= ~SNAND_E;
+
+ /* default FLCMDCR val */
+ flcmdcr_val = DOCMD1_E | DOADR_E;
+
+ /* Set for FLCMDCR */
+ switch (cmd) {
+ case NAND_CMD_ERASE1:
+ addr_len_bytes = flctl->erase_ADRCNT;
+ flcmdcr_val |= DOCMD2_E;
+ break;
+ case NAND_CMD_READ0:
+ case NAND_CMD_READOOB:
+ addr_len_bytes = flctl->rw_ADRCNT;
+ flcmdcr_val |= CDSRC_E;
+ break;
+ case NAND_CMD_SEQIN:
+ /* This case is that cmd is READ0 or READ1 or READ00 */
+ flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */
+ break;
+ case NAND_CMD_PAGEPROG:
+ addr_len_bytes = flctl->rw_ADRCNT;
+ flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
+ break;
+ case NAND_CMD_READID:
+ flcmncr_val &= ~SNAND_E;
+ addr_len_bytes = ADRCNT_1;
+ break;
+ case NAND_CMD_STATUS:
+ case NAND_CMD_RESET:
+ flcmncr_val &= ~SNAND_E;
+ flcmdcr_val &= ~(DOADR_E | DOSR_E);
+ break;
+ default:
+ break;
+ }
+
+ /* Set address bytes parameter */
+ flcmdcr_val |= addr_len_bytes;
+
+ /* Now actually write */
+ writel(flcmncr_val, FLCMNCR(flctl));
+ writel(flcmdcr_val, FLCMDCR(flctl));
+ writel(flcmcdr_val, FLCMCDR(flctl));
+}
+
+static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ uint8_t *p = buf;
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ chip->read_buf(mtd, p, eccsize);
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+ if (flctl->hwecc_cant_correct[i])
+ mtd->ecc_stats.failed++;
+ else
+ mtd->ecc_stats.corrected += 0;
+ }
+
+ return 0;
+}
+
+static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+ const uint8_t *buf)
+{
+ int i, eccsize = chip->ecc.size;
+ int eccbytes = chip->ecc.bytes;
+ int eccsteps = chip->ecc.steps;
+ const uint8_t *p = buf;
+
+ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+ chip->write_buf(mtd, p, eccsize);
+}
+
+static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+ int sector, page_sectors;
+
+ if (flctl->page_size)
+ page_sectors = 4;
+ else
+ page_sectors = 1;
+
+ writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
+ FLCMNCR(flctl));
+
+ set_cmd_regs(mtd, NAND_CMD_READ0,
+ (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
+
+ for (sector = 0; sector < page_sectors; sector++) {
+ int ret;
+
+ empty_fifo(flctl);
+ writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl));
+ writel(page_addr << 2 | sector, FLADR(flctl));
+
+ start_translation(flctl);
+ read_fiforeg(flctl, 512, 512 * sector);
+
+ ret = read_ecfiforeg(flctl,
+ &flctl->done_buff[mtd->writesize + 16 * sector]);
+
+ if (ret)
+ flctl->hwecc_cant_correct[sector] = 1;
+
+ writel(0x0, FL4ECCCR(flctl));
+ wait_completion(flctl);
+ }
+ writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
+ FLCMNCR(flctl));
+}
+
+static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+
+ set_cmd_regs(mtd, NAND_CMD_READ0,
+ (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
+
+ empty_fifo(flctl);
+ if (flctl->page_size) {
+ int i;
+ /* In case that the page size is 2k */
+ for (i = 0; i < 16 * 3; i++)
+ flctl->done_buff[i] = 0xFF;
+
+ set_addr(mtd, 3 * 528 + 512, page_addr);
+ writel(16, FLDTCNTR(flctl));
+
+ start_translation(flctl);
+ read_fiforeg(flctl, 16, 16 * 3);
+ wait_completion(flctl);
+ } else {
+ /* In case that the page size is 512b */
+ set_addr(mtd, 512, page_addr);
+ writel(16, FLDTCNTR(flctl));
+
+ start_translation(flctl);
+ read_fiforeg(flctl, 16, 0);
+ wait_completion(flctl);
+ }
+}
+
+static void execmd_write_page_sector(struct mtd_info *mtd)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+ int i, page_addr = flctl->seqin_page_addr;
+ int sector, page_sectors;
+
+ if (flctl->page_size)
+ page_sectors = 4;
+ else
+ page_sectors = 1;
+
+ writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
+
+ set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
+ (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
+
+ for (sector = 0; sector < page_sectors; sector++) {
+ empty_fifo(flctl);
+ writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl));
+ writel(page_addr << 2 | sector, FLADR(flctl));
+
+ start_translation(flctl);
+ write_fiforeg(flctl, 512, 512 * sector);
+
+ for (i = 0; i < 4; i++) {
+ wait_wecfifo_ready(flctl); /* wait for write ready */
+ writel(0xFFFFFFFF, FLECFIFO(flctl));
+ }
+ wait_completion(flctl);
+ }
+
+ writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
+}
+
+static void execmd_write_oob(struct mtd_info *mtd)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+ int page_addr = flctl->seqin_page_addr;
+ int sector, page_sectors;
+
+ if (flctl->page_size) {
+ sector = 3;
+ page_sectors = 4;
+ } else {
+ sector = 0;
+ page_sectors = 1;
+ }
+
+ set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
+ (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
+
+ for (; sector < page_sectors; sector++) {
+ empty_fifo(flctl);
+ set_addr(mtd, sector * 528 + 512, page_addr);
+ writel(16, FLDTCNTR(flctl)); /* set read size */
+
+ start_translation(flctl);
+ write_fiforeg(flctl, 16, 16 * sector);
+ wait_completion(flctl);
+ }
+}
+
+static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
+ int column, int page_addr)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+ uint32_t read_cmd = 0;
+
+ flctl->read_bytes = 0;
+ if (command != NAND_CMD_PAGEPROG)
+ flctl->index = 0;
+
+ switch (command) {
+ case NAND_CMD_READ1:
+ case NAND_CMD_READ0:
+ if (flctl->hwecc) {
+ /* read page with hwecc */
+ execmd_read_page_sector(mtd, page_addr);
+ break;
+ }
+ empty_fifo(flctl);
+ if (flctl->page_size)
+ set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
+ | command);
+ else
+ set_cmd_regs(mtd, command, command);
+
+ set_addr(mtd, 0, page_addr);
+
+ flctl->read_bytes = mtd->writesize + mtd->oobsize;
+ flctl->index += column;
+ goto read_normal_exit;
+
+ case NAND_CMD_READOOB:
+ if (flctl->hwecc) {
+ /* read page with hwecc */
+ execmd_read_oob(mtd, page_addr);
+ break;
+ }
+
+ empty_fifo(flctl);
+ if (flctl->page_size) {
+ set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
+ | NAND_CMD_READ0);
+ set_addr(mtd, mtd->writesize, page_addr);
+ } else {
+ set_cmd_regs(mtd, command, command);
+ set_addr(mtd, 0, page_addr);
+ }
+ flctl->read_bytes = mtd->oobsize;
+ goto read_normal_exit;
+
+ case NAND_CMD_READID:
+ empty_fifo(flctl);
+ set_cmd_regs(mtd, command, command);
+ set_addr(mtd, 0, 0);
+
+ flctl->read_bytes = 4;
+ writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
+ start_translation(flctl);
+ read_datareg(flctl, 0); /* read and end */
+ break;
+
+ case NAND_CMD_ERASE1:
+ flctl->erase1_page_addr = page_addr;
+ break;
+
+ case NAND_CMD_ERASE2:
+ set_cmd_regs(mtd, NAND_CMD_ERASE1,
+ (command << 8) | NAND_CMD_ERASE1);
+ set_addr(mtd, -1, flctl->erase1_page_addr);
+ start_translation(flctl);
+ wait_completion(flctl);
+ break;
+
+ case NAND_CMD_SEQIN:
+ if (!flctl->page_size) {
+ /* output read command */
+ if (column >= mtd->writesize) {
+ column -= mtd->writesize;
+ read_cmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ read_cmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ read_cmd = NAND_CMD_READ1;
+ }
+ }
+ flctl->seqin_column = column;
+ flctl->seqin_page_addr = page_addr;
+ flctl->seqin_read_cmd = read_cmd;
+ break;
+
+ case NAND_CMD_PAGEPROG:
+ empty_fifo(flctl);
+ if (!flctl->page_size) {
+ set_cmd_regs(mtd, NAND_CMD_SEQIN,
+ flctl->seqin_read_cmd);
+ set_addr(mtd, -1, -1);
+ writel(0, FLDTCNTR(flctl)); /* set 0 size */
+ start_translation(flctl);
+ wait_completion(flctl);
+ }
+ if (flctl->hwecc) {
+ /* write page with hwecc */
+ if (flctl->seqin_column == mtd->writesize)
+ execmd_write_oob(mtd);
+ else if (!flctl->seqin_column)
+ execmd_write_page_sector(mtd);
+ else
+ printk(KERN_ERR "Invalid address !?\n");
+ break;
+ }
+ set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
+ set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
+ writel(flctl->index, FLDTCNTR(flctl)); /* set write size */
+ start_translation(flctl);
+ write_fiforeg(flctl, flctl->index, 0);
+ wait_completion(flctl);
+ break;
+
+ case NAND_CMD_STATUS:
+ set_cmd_regs(mtd, command, command);
+ set_addr(mtd, -1, -1);
+
+ flctl->read_bytes = 1;
+ writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
+ start_translation(flctl);
+ read_datareg(flctl, 0); /* read and end */
+ break;
+
+ case NAND_CMD_RESET:
+ set_cmd_regs(mtd, command, command);
+ set_addr(mtd, -1, -1);
+
+ writel(0, FLDTCNTR(flctl)); /* set 0 size */
+ start_translation(flctl);
+ wait_completion(flctl);
+ break;
+
+ default:
+ break;
+ }
+ return;
+
+read_normal_exit:
+ writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
+ start_translation(flctl);
+ read_fiforeg(flctl, flctl->read_bytes, 0);
+ wait_completion(flctl);
+ return;
+}
+
+static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+ uint32_t flcmncr_val = readl(FLCMNCR(flctl));
+
+ switch (chipnr) {
+ case -1:
+ flcmncr_val &= ~CE0_ENABLE;
+ writel(flcmncr_val, FLCMNCR(flctl));
+ break;
+ case 0:
+ flcmncr_val |= CE0_ENABLE;
+ writel(flcmncr_val, FLCMNCR(flctl));
+ break;
+ default:
+ BUG();
+ }
+}
+
+static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+ int i, index = flctl->index;
+
+ for (i = 0; i < len; i++)
+ flctl->done_buff[index + i] = buf[i];
+ flctl->index += len;
+}
+
+static uint8_t flctl_read_byte(struct mtd_info *mtd)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+ int index = flctl->index;
+ uint8_t data;
+
+ data = flctl->done_buff[index];
+ flctl->index++;
+ return data;
+}
+
+static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ buf[i] = flctl_read_byte(mtd);
+}
+
+static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ if (buf[i] != flctl_read_byte(mtd))
+ return -EFAULT;
+ return 0;
+}
+
+static void flctl_register_init(struct sh_flctl *flctl, unsigned long val)
+{
+ writel(val, FLCMNCR(flctl));
+}
+
+static int flctl_chip_init_tail(struct mtd_info *mtd)
+{
+ struct sh_flctl *flctl = mtd_to_flctl(mtd);
+ struct nand_chip *chip = &flctl->chip;
+
+ if (mtd->writesize == 512) {
+ flctl->page_size = 0;
+ if (chip->chipsize > (32 << 20)) {
+ /* big than 32MB */
+ flctl->rw_ADRCNT = ADRCNT_4;
+ flctl->erase_ADRCNT = ADRCNT_3;
+ } else if (chip->chipsize > (2 << 16)) {
+ /* big than 128KB */
+ flctl->rw_ADRCNT = ADRCNT_3;
+ flctl->erase_ADRCNT = ADRCNT_2;
+ } else {
+ flctl->rw_ADRCNT = ADRCNT_2;
+ flctl->erase_ADRCNT = ADRCNT_1;
+ }
+ } else {
+ flctl->page_size = 1;
+ if (chip->chipsize > (128 << 20)) {
+ /* big than 128MB */
+ flctl->rw_ADRCNT = ADRCNT2_E;
+ flctl->erase_ADRCNT = ADRCNT_3;
+ } else if (chip->chipsize > (8 << 16)) {
+ /* big than 512KB */
+ flctl->rw_ADRCNT = ADRCNT_4;
+ flctl->erase_ADRCNT = ADRCNT_2;
+ } else {
+ flctl->rw_ADRCNT = ADRCNT_3;
+ flctl->erase_ADRCNT = ADRCNT_1;
+ }
+ }
+
+ if (flctl->hwecc) {
+ if (mtd->writesize == 512) {
+ chip->ecc.layout = &flctl_4secc_oob_16;
+ chip->badblock_pattern = &flctl_4secc_smallpage;
+ } else {
+ chip->ecc.layout = &flctl_4secc_oob_64;
+ chip->badblock_pattern = &flctl_4secc_largepage;
+ }
+
+ chip->ecc.size = 512;
+ chip->ecc.bytes = 10;
+ chip->ecc.read_page = flctl_read_page_hwecc;
+ chip->ecc.write_page = flctl_write_page_hwecc;
+ chip->ecc.mode = NAND_ECC_HW;
+
+ /* 4 symbols ECC enabled */
+ writel(readl(FLCMNCR(flctl)) | _4ECCEN | ECCPOS2 | ECCPOS_02,
+ FLCMNCR(flctl));
+ } else {
+ chip->ecc.mode = NAND_ECC_SOFT;
+ }
+
+ return 0;
+}
+
+static int __init flctl_probe(struct platform_device *pdev)
+{
+ struct resource *res;
+ struct sh_flctl *flctl;
+ struct mtd_info *flctl_mtd;
+ struct nand_chip *nand;
+ struct sh_flctl_platform_data *pdata;
+ int ret;
+
+ pdata = pdev->dev.platform_data;
+ if (pdata == NULL) {
+ printk(KERN_ERR "sh_flctl platform_data not found.\n");
+ return -ENODEV;
+ }
+
+ flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL);
+ if (!flctl) {
+ printk(KERN_ERR "Unable to allocate NAND MTD dev structure.\n");
+ return -ENOMEM;
+ }
+
+ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!res) {
+ printk(KERN_ERR "%s: resource not found.\n", __func__);
+ ret = -ENODEV;
+ goto err;
+ }
+
+ flctl->reg = ioremap(res->start, res->end - res->start + 1);
+ if (flctl->reg == NULL) {
+ printk(KERN_ERR "%s: ioremap error.\n", __func__);
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ platform_set_drvdata(pdev, flctl);
+ flctl_mtd = &flctl->mtd;
+ nand = &flctl->chip;
+ flctl_mtd->priv = nand;
+ flctl->hwecc = pdata->has_hwecc;
+
+ flctl_register_init(flctl, pdata->flcmncr_val);
+
+ nand->options = NAND_NO_AUTOINCR;
+
+ /* Set address of hardware control function */
+ /* 20 us command delay time */
+ nand->chip_delay = 20;
+
+ nand->read_byte = flctl_read_byte;
+ nand->write_buf = flctl_write_buf;
+ nand->read_buf = flctl_read_buf;
+ nand->verify_buf = flctl_verify_buf;
+ nand->select_chip = flctl_select_chip;
+ nand->cmdfunc = flctl_cmdfunc;
+
+ ret = nand_scan_ident(flctl_mtd, 1);
+ if (ret)
+ goto err;
+
+ ret = flctl_chip_init_tail(flctl_mtd);
+ if (ret)
+ goto err;
+
+ ret = nand_scan_tail(flctl_mtd);
+ if (ret)
+ goto err;
+
+ add_mtd_partitions(flctl_mtd, pdata->parts, pdata->nr_parts);
+
+ return 0;
+
+err:
+ kfree(flctl);
+ return ret;
+}
+
+static int __exit flctl_remove(struct platform_device *pdev)
+{
+ struct sh_flctl *flctl = platform_get_drvdata(pdev);
+
+ nand_release(&flctl->mtd);
+ kfree(flctl);
+
+ return 0;
+}
+
+static struct platform_driver flctl_driver = {
+ .probe = flctl_probe,
+ .remove = flctl_remove,
+ .driver = {
+ .name = "sh_flctl",
+ .owner = THIS_MODULE,
+ },
+};
+
+static int __init flctl_nand_init(void)
+{
+ return platform_driver_register(&flctl_driver);
+}
+
+static void __exit flctl_nand_cleanup(void)
+{
+ platform_driver_unregister(&flctl_driver);
+}
+
+module_init(flctl_nand_init);
+module_exit(flctl_nand_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Yoshihiro Shimoda");
+MODULE_DESCRIPTION("SuperH FLCTL driver");
+MODULE_ALIAS("platform:sh_flctl");
diff --git a/drivers/mtd/nand/toto.c b/drivers/mtd/nand/toto.c
deleted file mode 100644
index bbf492e6830d..000000000000
--- a/drivers/mtd/nand/toto.c
+++ /dev/null
@@ -1,206 +0,0 @@
-/*
- * drivers/mtd/nand/toto.c
- *
- * Copyright (c) 2003 Texas Instruments
- *
- * Derived from drivers/mtd/autcpu12.c
- *
- * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * Overview:
- * This is a device driver for the NAND flash device found on the
- * TI fido board. It supports 32MiB and 64MiB cards
- */
-
-#include <linux/slab.h>
-#include <linux/init.h>
-#include <linux/module.h>
-#include <linux/delay.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/nand.h>
-#include <linux/mtd/partitions.h>
-#include <asm/io.h>
-#include <asm/arch/hardware.h>
-#include <asm/sizes.h>
-#include <asm/arch/toto.h>
-#include <asm/arch-omap1510/hardware.h>
-#include <asm/arch/gpio.h>
-
-#define CONFIG_NAND_WORKAROUND 1
-
-/*
- * MTD structure for TOTO board
- */
-static struct mtd_info *toto_mtd = NULL;
-
-static unsigned long toto_io_base = OMAP_FLASH_1_BASE;
-
-/*
- * Define partitions for flash devices
- */
-
-static struct mtd_partition partition_info64M[] = {
- { .name = "toto kernel partition 1",
- .offset = 0,
- .size = 2 * SZ_1M },
- { .name = "toto file sys partition 2",
- .offset = 2 * SZ_1M,
- .size = 14 * SZ_1M },
- { .name = "toto user partition 3",
- .offset = 16 * SZ_1M,
- .size = 16 * SZ_1M },
- { .name = "toto devboard extra partition 4",
- .offset = 32 * SZ_1M,
- .size = 32 * SZ_1M },
-};
-
-static struct mtd_partition partition_info32M[] = {
- { .name = "toto kernel partition 1",
- .offset = 0,
- .size = 2 * SZ_1M },
- { .name = "toto file sys partition 2",
- .offset = 2 * SZ_1M,
- .size = 14 * SZ_1M },
- { .name = "toto user partition 3",
- .offset = 16 * SZ_1M,
- .size = 16 * SZ_1M },
-};
-
-#define NUM_PARTITIONS32M 3
-#define NUM_PARTITIONS64M 4
-
-/*
- * hardware specific access to control-lines
- *
- * ctrl:
- * NAND_NCE: bit 0 -> bit 14 (0x4000)
- * NAND_CLE: bit 1 -> bit 12 (0x1000)
- * NAND_ALE: bit 2 -> bit 1 (0x0002)
- */
-static void toto_hwcontrol(struct mtd_info *mtd, int cmd,
- unsigned int ctrl)
-{
- struct nand_chip *chip = mtd->priv;
-
- if (ctrl & NAND_CTRL_CHANGE) {
- unsigned long bits;
-
- /* hopefully enough time for tc make proceding write to clear */
- udelay(1);
-
- bits = (~ctrl & NAND_NCE) << 14;
- bits |= (ctrl & NAND_CLE) << 12;
- bits |= (ctrl & NAND_ALE) >> 1;
-
-#warning Wild guess as gpiosetout() is nowhere defined in the kernel source - tglx
- gpiosetout(0x5002, bits);
-
-#ifdef CONFIG_NAND_WORKAROUND
- /* "some" dev boards busted, blue wired to rts2 :( */
- rts2setout(2, (ctrl & NAND_CLE) << 1);
-#endif
- /* allow time to ensure gpio state to over take memory write */
- udelay(1);
- }
-
- if (cmd != NAND_CMD_NONE)
- writeb(cmd, chip->IO_ADDR_W);
-}
-
-/*
- * Main initialization routine
- */
-static int __init toto_init(void)
-{
- struct nand_chip *this;
- int err = 0;
-
- /* Allocate memory for MTD device structure and private data */
- toto_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
- if (!toto_mtd) {
- printk(KERN_WARNING "Unable to allocate toto NAND MTD device structure.\n");
- err = -ENOMEM;
- goto out;
- }
-
- /* Get pointer to private data */
- this = (struct nand_chip *)(&toto_mtd[1]);
-
- /* Initialize structures */
- memset(toto_mtd, 0, sizeof(struct mtd_info));
- memset(this, 0, sizeof(struct nand_chip));
-
- /* Link the private data with the MTD structure */
- toto_mtd->priv = this;
- toto_mtd->owner = THIS_MODULE;
-
- /* Set address of NAND IO lines */
- this->IO_ADDR_R = toto_io_base;
- this->IO_ADDR_W = toto_io_base;
- this->cmd_ctrl = toto_hwcontrol;
- this->dev_ready = NULL;
- /* 25 us command delay time */
- this->chip_delay = 30;
- this->ecc.mode = NAND_ECC_SOFT;
-
- /* Scan to find existance of the device */
- if (nand_scan(toto_mtd, 1)) {
- err = -ENXIO;
- goto out_mtd;
- }
-
- /* Register the partitions */
- switch (toto_mtd->size) {
- case SZ_64M:
- add_mtd_partitions(toto_mtd, partition_info64M, NUM_PARTITIONS64M);
- break;
- case SZ_32M:
- add_mtd_partitions(toto_mtd, partition_info32M, NUM_PARTITIONS32M);
- break;
- default:{
- printk(KERN_WARNING "Unsupported Nand device\n");
- err = -ENXIO;
- goto out_buf;
- }
- }
-
- gpioreserve(NAND_MASK); /* claim our gpios */
- archflashwp(0, 0); /* open up flash for writing */
-
- goto out;
-
- out_mtd:
- kfree(toto_mtd);
- out:
- return err;
-}
-
-module_init(toto_init);
-
-/*
- * Clean up routine
- */
-static void __exit toto_cleanup(void)
-{
- /* Release resources, unregister device */
- nand_release(toto_mtd);
-
- /* Free the MTD device structure */
- kfree(toto_mtd);
-
- /* stop flash writes */
- archflashwp(0, 1);
-
- /* release gpios to system */
- gpiorelease(NAND_MASK);
-}
-
-module_exit(toto_cleanup);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Richard Woodruff <r-woodruff2@ti.com>");
-MODULE_DESCRIPTION("Glue layer for NAND flash on toto board");
diff --git a/drivers/mtd/ofpart.c b/drivers/mtd/ofpart.c
index 4f80c2fd89af..9e45b3f39c0e 100644
--- a/drivers/mtd/ofpart.c
+++ b/drivers/mtd/ofpart.c
@@ -20,7 +20,6 @@
#include <linux/mtd/partitions.h>
int __devinit of_mtd_parse_partitions(struct device *dev,
- struct mtd_info *mtd,
struct device_node *node,
struct mtd_partition **pparts)
{
diff --git a/drivers/mtd/onenand/Kconfig b/drivers/mtd/onenand/Kconfig
index cb41cbca64f7..79fa79e8f8de 100644
--- a/drivers/mtd/onenand/Kconfig
+++ b/drivers/mtd/onenand/Kconfig
@@ -27,8 +27,16 @@ config MTD_ONENAND_GENERIC
help
Support for OneNAND flash via platform device driver.
+config MTD_ONENAND_OMAP2
+ tristate "OneNAND on OMAP2/OMAP3 support"
+ depends on MTD_ONENAND && (ARCH_OMAP2 || ARCH_OMAP3)
+ help
+ Support for a OneNAND flash device connected to an OMAP2/OMAP3 CPU
+ via the GPMC memory controller.
+
config MTD_ONENAND_OTP
bool "OneNAND OTP Support"
+ select HAVE_MTD_OTP
help
One Block of the NAND Flash Array memory is reserved as
a One-Time Programmable Block memory area.
diff --git a/drivers/mtd/onenand/Makefile b/drivers/mtd/onenand/Makefile
index 4d2eacfd7e11..64b6cc61a520 100644
--- a/drivers/mtd/onenand/Makefile
+++ b/drivers/mtd/onenand/Makefile
@@ -7,6 +7,7 @@ obj-$(CONFIG_MTD_ONENAND) += onenand.o
# Board specific.
obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o
+obj-$(CONFIG_MTD_ONENAND_OMAP2) += omap2.o
# Simulator
obj-$(CONFIG_MTD_ONENAND_SIM) += onenand_sim.o
diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/onenand/omap2.c
new file mode 100644
index 000000000000..8387e05daae2
--- /dev/null
+++ b/drivers/mtd/onenand/omap2.c
@@ -0,0 +1,802 @@
+/*
+ * linux/drivers/mtd/onenand/omap2.c
+ *
+ * OneNAND driver for OMAP2 / OMAP3
+ *
+ * Copyright © 2005-2006 Nokia Corporation
+ *
+ * Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä
+ * IRQ and DMA support written by Timo Teras
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; see the file COPYING. If not, write to the Free Software
+ * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ */
+
+#include <linux/device.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+
+#include <asm/io.h>
+#include <asm/mach/flash.h>
+#include <asm/arch/gpmc.h>
+#include <asm/arch/onenand.h>
+#include <asm/arch/gpio.h>
+#include <asm/arch/gpmc.h>
+#include <asm/arch/pm.h>
+
+#include <linux/dma-mapping.h>
+#include <asm/dma-mapping.h>
+#include <asm/arch/dma.h>
+
+#include <asm/arch/board.h>
+
+#define DRIVER_NAME "omap2-onenand"
+
+#define ONENAND_IO_SIZE SZ_128K
+#define ONENAND_BUFRAM_SIZE (1024 * 5)
+
+struct omap2_onenand {
+ struct platform_device *pdev;
+ int gpmc_cs;
+ unsigned long phys_base;
+ int gpio_irq;
+ struct mtd_info mtd;
+ struct mtd_partition *parts;
+ struct onenand_chip onenand;
+ struct completion irq_done;
+ struct completion dma_done;
+ int dma_channel;
+ int freq;
+ int (*setup)(void __iomem *base, int freq);
+};
+
+static void omap2_onenand_dma_cb(int lch, u16 ch_status, void *data)
+{
+ struct omap2_onenand *c = data;
+
+ complete(&c->dma_done);
+}
+
+static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id)
+{
+ struct omap2_onenand *c = dev_id;
+
+ complete(&c->irq_done);
+
+ return IRQ_HANDLED;
+}
+
+static inline unsigned short read_reg(struct omap2_onenand *c, int reg)
+{
+ return readw(c->onenand.base + reg);
+}
+
+static inline void write_reg(struct omap2_onenand *c, unsigned short value,
+ int reg)
+{
+ writew(value, c->onenand.base + reg);
+}
+
+static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr)
+{
+ printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n",
+ msg, state, ctrl, intr);
+}
+
+static void wait_warn(char *msg, int state, unsigned int ctrl,
+ unsigned int intr)
+{
+ printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x "
+ "intr 0x%04x\n", msg, state, ctrl, intr);
+}
+
+static int omap2_onenand_wait(struct mtd_info *mtd, int state)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ unsigned int intr = 0;
+ unsigned int ctrl;
+ unsigned long timeout;
+ u32 syscfg;
+
+ if (state == FL_RESETING) {
+ int i;
+
+ for (i = 0; i < 20; i++) {
+ udelay(1);
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ if (intr & ONENAND_INT_MASTER)
+ break;
+ }
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ wait_err("controller error", state, ctrl, intr);
+ return -EIO;
+ }
+ if (!(intr & ONENAND_INT_RESET)) {
+ wait_err("timeout", state, ctrl, intr);
+ return -EIO;
+ }
+ return 0;
+ }
+
+ if (state != FL_READING) {
+ int result;
+
+ /* Turn interrupts on */
+ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+ if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) {
+ syscfg |= ONENAND_SYS_CFG1_IOBE;
+ write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
+ if (cpu_is_omap34xx())
+ /* Add a delay to let GPIO settle */
+ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+ }
+
+ INIT_COMPLETION(c->irq_done);
+ if (c->gpio_irq) {
+ result = omap_get_gpio_datain(c->gpio_irq);
+ if (result == -1) {
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ wait_err("gpio error", state, ctrl, intr);
+ return -EIO;
+ }
+ } else
+ result = 0;
+ if (result == 0) {
+ int retry_cnt = 0;
+retry:
+ result = wait_for_completion_timeout(&c->irq_done,
+ msecs_to_jiffies(20));
+ if (result == 0) {
+ /* Timeout after 20ms */
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ if (ctrl & ONENAND_CTRL_ONGO) {
+ /*
+ * The operation seems to be still going
+ * so give it some more time.
+ */
+ retry_cnt += 1;
+ if (retry_cnt < 3)
+ goto retry;
+ intr = read_reg(c,
+ ONENAND_REG_INTERRUPT);
+ wait_err("timeout", state, ctrl, intr);
+ return -EIO;
+ }
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ if ((intr & ONENAND_INT_MASTER) == 0)
+ wait_warn("timeout", state, ctrl, intr);
+ }
+ }
+ } else {
+ int retry_cnt = 0;
+
+ /* Turn interrupts off */
+ syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+ syscfg &= ~ONENAND_SYS_CFG1_IOBE;
+ write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
+
+ timeout = jiffies + msecs_to_jiffies(20);
+ while (1) {
+ if (time_before(jiffies, timeout)) {
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ if (intr & ONENAND_INT_MASTER)
+ break;
+ } else {
+ /* Timeout after 20ms */
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+ if (ctrl & ONENAND_CTRL_ONGO) {
+ /*
+ * The operation seems to be still going
+ * so give it some more time.
+ */
+ retry_cnt += 1;
+ if (retry_cnt < 3) {
+ timeout = jiffies +
+ msecs_to_jiffies(20);
+ continue;
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ intr = read_reg(c, ONENAND_REG_INTERRUPT);
+ ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+
+ if (intr & ONENAND_INT_READ) {
+ int ecc = read_reg(c, ONENAND_REG_ECC_STATUS);
+
+ if (ecc) {
+ unsigned int addr1, addr8;
+
+ addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1);
+ addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8);
+ if (ecc & ONENAND_ECC_2BIT_ALL) {
+ printk(KERN_ERR "onenand_wait: ECC error = "
+ "0x%04x, addr1 %#x, addr8 %#x\n",
+ ecc, addr1, addr8);
+ mtd->ecc_stats.failed++;
+ return -EBADMSG;
+ } else if (ecc & ONENAND_ECC_1BIT_ALL) {
+ printk(KERN_NOTICE "onenand_wait: correctable "
+ "ECC error = 0x%04x, addr1 %#x, "
+ "addr8 %#x\n", ecc, addr1, addr8);
+ mtd->ecc_stats.corrected++;
+ }
+ }
+ } else if (state == FL_READING) {
+ wait_err("timeout", state, ctrl, intr);
+ return -EIO;
+ }
+
+ if (ctrl & ONENAND_CTRL_ERROR) {
+ wait_err("controller error", state, ctrl, intr);
+ if (ctrl & ONENAND_CTRL_LOCK)
+ printk(KERN_ERR "onenand_wait: "
+ "Device is write protected!!!\n");
+ return -EIO;
+ }
+
+ if (ctrl & 0xFE9F)
+ wait_warn("unexpected controller status", state, ctrl, intr);
+
+ return 0;
+}
+
+static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area)
+{
+ struct onenand_chip *this = mtd->priv;
+
+ if (ONENAND_CURRENT_BUFFERRAM(this)) {
+ if (area == ONENAND_DATARAM)
+ return mtd->writesize;
+ if (area == ONENAND_SPARERAM)
+ return mtd->oobsize;
+ }
+
+ return 0;
+}
+
+#if defined(CONFIG_ARCH_OMAP3) || defined(MULTI_OMAP2)
+
+static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ dma_addr_t dma_src, dma_dst;
+ int bram_offset;
+ unsigned long timeout;
+ void *buf = (void *)buffer;
+ size_t xtra;
+ volatile unsigned *done;
+
+ bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+ if (bram_offset & 3 || (size_t)buf & 3 || count < 384)
+ goto out_copy;
+
+ if (buf >= high_memory) {
+ struct page *p1;
+
+ if (((size_t)buf & PAGE_MASK) !=
+ ((size_t)(buf + count - 1) & PAGE_MASK))
+ goto out_copy;
+ p1 = vmalloc_to_page(buf);
+ if (!p1)
+ goto out_copy;
+ buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK);
+ }
+
+ xtra = count & 3;
+ if (xtra) {
+ count -= xtra;
+ memcpy(buf + count, this->base + bram_offset + count, xtra);
+ }
+
+ dma_src = c->phys_base + bram_offset;
+ dma_dst = dma_map_single(&c->pdev->dev, buf, count, DMA_FROM_DEVICE);
+ if (dma_mapping_error(&c->pdev->dev, dma_dst)) {
+ dev_err(&c->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n",
+ count);
+ goto out_copy;
+ }
+
+ omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32,
+ count >> 2, 1, 0, 0, 0);
+ omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_src, 0, 0);
+ omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_dst, 0, 0);
+
+ INIT_COMPLETION(c->dma_done);
+ omap_start_dma(c->dma_channel);
+
+ timeout = jiffies + msecs_to_jiffies(20);
+ done = &c->dma_done.done;
+ while (time_before(jiffies, timeout))
+ if (*done)
+ break;
+
+ dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE);
+
+ if (!*done) {
+ dev_err(&c->pdev->dev, "timeout waiting for DMA\n");
+ goto out_copy;
+ }
+
+ return 0;
+
+out_copy:
+ memcpy(buf, this->base + bram_offset, count);
+ return 0;
+}
+
+static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer,
+ int offset, size_t count)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ dma_addr_t dma_src, dma_dst;
+ int bram_offset;
+ unsigned long timeout;
+ void *buf = (void *)buffer;
+ volatile unsigned *done;
+
+ bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+ if (bram_offset & 3 || (size_t)buf & 3 || count < 384)
+ goto out_copy;
+
+ /* panic_write() may be in an interrupt context */
+ if (in_interrupt())
+ goto out_copy;
+
+ if (buf >= high_memory) {
+ struct page *p1;
+
+ if (((size_t)buf & PAGE_MASK) !=
+ ((size_t)(buf + count - 1) & PAGE_MASK))
+ goto out_copy;
+ p1 = vmalloc_to_page(buf);
+ if (!p1)
+ goto out_copy;
+ buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK);
+ }
+
+ dma_src = dma_map_single(&c->pdev->dev, buf, count, DMA_TO_DEVICE);
+ dma_dst = c->phys_base + bram_offset;
+ if (dma_mapping_error(&c->pdev->dev, dma_dst)) {
+ dev_err(&c->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n",
+ count);
+ return -1;
+ }
+
+ omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32,
+ count >> 2, 1, 0, 0, 0);
+ omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_src, 0, 0);
+ omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_dst, 0, 0);
+
+ INIT_COMPLETION(c->dma_done);
+ omap_start_dma(c->dma_channel);
+
+ timeout = jiffies + msecs_to_jiffies(20);
+ done = &c->dma_done.done;
+ while (time_before(jiffies, timeout))
+ if (*done)
+ break;
+
+ dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_TO_DEVICE);
+
+ if (!*done) {
+ dev_err(&c->pdev->dev, "timeout waiting for DMA\n");
+ goto out_copy;
+ }
+
+ return 0;
+
+out_copy:
+ memcpy(this->base + bram_offset, buf, count);
+ return 0;
+}
+
+#else
+
+int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count);
+
+int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer,
+ int offset, size_t count);
+
+#endif
+
+#if defined(CONFIG_ARCH_OMAP2) || defined(MULTI_OMAP2)
+
+static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ dma_addr_t dma_src, dma_dst;
+ int bram_offset;
+
+ bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+ /* DMA is not used. Revisit PM requirements before enabling it. */
+ if (1 || (c->dma_channel < 0) ||
+ ((void *) buffer >= (void *) high_memory) || (bram_offset & 3) ||
+ (((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) {
+ memcpy(buffer, (__force void *)(this->base + bram_offset),
+ count);
+ return 0;
+ }
+
+ dma_src = c->phys_base + bram_offset;
+ dma_dst = dma_map_single(&c->pdev->dev, buffer, count,
+ DMA_FROM_DEVICE);
+ if (dma_mapping_error(&c->pdev->dev, dma_dst)) {
+ dev_err(&c->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n",
+ count);
+ return -1;
+ }
+
+ omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32,
+ count / 4, 1, 0, 0, 0);
+ omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_src, 0, 0);
+ omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_dst, 0, 0);
+
+ INIT_COMPLETION(c->dma_done);
+ omap_start_dma(c->dma_channel);
+ wait_for_completion(&c->dma_done);
+
+ dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE);
+
+ return 0;
+}
+
+static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer,
+ int offset, size_t count)
+{
+ struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+ struct onenand_chip *this = mtd->priv;
+ dma_addr_t dma_src, dma_dst;
+ int bram_offset;
+
+ bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+ /* DMA is not used. Revisit PM requirements before enabling it. */
+ if (1 || (c->dma_channel < 0) ||
+ ((void *) buffer >= (void *) high_memory) || (bram_offset & 3) ||
+ (((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) {
+ memcpy((__force void *)(this->base + bram_offset), buffer,
+ count);
+ return 0;
+ }
+
+ dma_src = dma_map_single(&c->pdev->dev, (void *) buffer, count,
+ DMA_TO_DEVICE);
+ dma_dst = c->phys_base + bram_offset;
+ if (dma_mapping_error(&c->pdev->dev, dma_dst)) {
+ dev_err(&c->pdev->dev,
+ "Couldn't DMA map a %d byte buffer\n",
+ count);
+ return -1;
+ }
+
+ omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S16,
+ count / 2, 1, 0, 0, 0);
+ omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_src, 0, 0);
+ omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC,
+ dma_dst, 0, 0);
+
+ INIT_COMPLETION(c->dma_done);
+ omap_start_dma(c->dma_channel);
+ wait_for_completion(&c->dma_done);
+
+ dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_TO_DEVICE);
+
+ return 0;
+}
+
+#else
+
+int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area,
+ unsigned char *buffer, int offset,
+ size_t count);
+
+int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area,
+ const unsigned char *buffer,
+ int offset, size_t count);
+
+#endif
+
+static struct platform_driver omap2_onenand_driver;
+
+static int __adjust_timing(struct device *dev, void *data)
+{
+ int ret = 0;
+ struct omap2_onenand *c;
+
+ c = dev_get_drvdata(dev);
+
+ BUG_ON(c->setup == NULL);
+
+ /* DMA is not in use so this is all that is needed */
+ /* Revisit for OMAP3! */
+ ret = c->setup(c->onenand.base, c->freq);
+
+ return ret;
+}
+
+int omap2_onenand_rephase(void)
+{
+ return driver_for_each_device(&omap2_onenand_driver.driver, NULL,
+ NULL, __adjust_timing);
+}
+
+static void __devexit omap2_onenand_shutdown(struct platform_device *pdev)
+{
+ struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
+
+ /* With certain content in the buffer RAM, the OMAP boot ROM code
+ * can recognize the flash chip incorrectly. Zero it out before
+ * soft reset.
+ */
+ memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE);
+}
+
+static int __devinit omap2_onenand_probe(struct platform_device *pdev)
+{
+ struct omap_onenand_platform_data *pdata;
+ struct omap2_onenand *c;
+ int r;
+
+ pdata = pdev->dev.platform_data;
+ if (pdata == NULL) {
+ dev_err(&pdev->dev, "platform data missing\n");
+ return -ENODEV;
+ }
+
+ c = kzalloc(sizeof(struct omap2_onenand), GFP_KERNEL);
+ if (!c)
+ return -ENOMEM;
+
+ init_completion(&c->irq_done);
+ init_completion(&c->dma_done);
+ c->gpmc_cs = pdata->cs;
+ c->gpio_irq = pdata->gpio_irq;
+ c->dma_channel = pdata->dma_channel;
+ if (c->dma_channel < 0) {
+ /* if -1, don't use DMA */
+ c->gpio_irq = 0;
+ }
+
+ r = gpmc_cs_request(c->gpmc_cs, ONENAND_IO_SIZE, &c->phys_base);
+ if (r < 0) {
+ dev_err(&pdev->dev, "Cannot request GPMC CS\n");
+ goto err_kfree;
+ }
+
+ if (request_mem_region(c->phys_base, ONENAND_IO_SIZE,
+ pdev->dev.driver->name) == NULL) {
+ dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, "
+ "size: 0x%x\n", c->phys_base, ONENAND_IO_SIZE);
+ r = -EBUSY;
+ goto err_free_cs;
+ }
+ c->onenand.base = ioremap(c->phys_base, ONENAND_IO_SIZE);
+ if (c->onenand.base == NULL) {
+ r = -ENOMEM;
+ goto err_release_mem_region;
+ }
+
+ if (pdata->onenand_setup != NULL) {
+ r = pdata->onenand_setup(c->onenand.base, c->freq);
+ if (r < 0) {
+ dev_err(&pdev->dev, "Onenand platform setup failed: "
+ "%d\n", r);
+ goto err_iounmap;
+ }
+ c->setup = pdata->onenand_setup;
+ }
+
+ if (c->gpio_irq) {
+ if ((r = omap_request_gpio(c->gpio_irq)) < 0) {
+ dev_err(&pdev->dev, "Failed to request GPIO%d for "
+ "OneNAND\n", c->gpio_irq);
+ goto err_iounmap;
+ }
+ omap_set_gpio_direction(c->gpio_irq, 1);
+
+ if ((r = request_irq(OMAP_GPIO_IRQ(c->gpio_irq),
+ omap2_onenand_interrupt, IRQF_TRIGGER_RISING,
+ pdev->dev.driver->name, c)) < 0)
+ goto err_release_gpio;
+ }
+
+ if (c->dma_channel >= 0) {
+ r = omap_request_dma(0, pdev->dev.driver->name,
+ omap2_onenand_dma_cb, (void *) c,
+ &c->dma_channel);
+ if (r == 0) {
+ omap_set_dma_write_mode(c->dma_channel,
+ OMAP_DMA_WRITE_NON_POSTED);
+ omap_set_dma_src_data_pack(c->dma_channel, 1);
+ omap_set_dma_src_burst_mode(c->dma_channel,
+ OMAP_DMA_DATA_BURST_8);
+ omap_set_dma_dest_data_pack(c->dma_channel, 1);
+ omap_set_dma_dest_burst_mode(c->dma_channel,
+ OMAP_DMA_DATA_BURST_8);
+ } else {
+ dev_info(&pdev->dev,
+ "failed to allocate DMA for OneNAND, "
+ "using PIO instead\n");
+ c->dma_channel = -1;
+ }
+ }
+
+ dev_info(&pdev->dev, "initializing on CS%d, phys base 0x%08lx, virtual "
+ "base %p\n", c->gpmc_cs, c->phys_base,
+ c->onenand.base);
+
+ c->pdev = pdev;
+ c->mtd.name = pdev->dev.bus_id;
+ c->mtd.priv = &c->onenand;
+ c->mtd.owner = THIS_MODULE;
+
+ if (c->dma_channel >= 0) {
+ struct onenand_chip *this = &c->onenand;
+
+ this->wait = omap2_onenand_wait;
+ if (cpu_is_omap34xx()) {
+ this->read_bufferram = omap3_onenand_read_bufferram;
+ this->write_bufferram = omap3_onenand_write_bufferram;
+ } else {
+ this->read_bufferram = omap2_onenand_read_bufferram;
+ this->write_bufferram = omap2_onenand_write_bufferram;
+ }
+ }
+
+ if ((r = onenand_scan(&c->mtd, 1)) < 0)
+ goto err_release_dma;
+
+ switch ((c->onenand.version_id >> 4) & 0xf) {
+ case 0:
+ c->freq = 40;
+ break;
+ case 1:
+ c->freq = 54;
+ break;
+ case 2:
+ c->freq = 66;
+ break;
+ case 3:
+ c->freq = 83;
+ break;
+ }
+
+#ifdef CONFIG_MTD_PARTITIONS
+ if (pdata->parts != NULL)
+ r = add_mtd_partitions(&c->mtd, pdata->parts,
+ pdata->nr_parts);
+ else
+#endif
+ r = add_mtd_device(&c->mtd);
+ if (r < 0)
+ goto err_release_onenand;
+
+ platform_set_drvdata(pdev, c);
+
+ return 0;
+
+err_release_onenand:
+ onenand_release(&c->mtd);
+err_release_dma:
+ if (c->dma_channel != -1)
+ omap_free_dma(c->dma_channel);
+ if (c->gpio_irq)
+ free_irq(OMAP_GPIO_IRQ(c->gpio_irq), c);
+err_release_gpio:
+ if (c->gpio_irq)
+ omap_free_gpio(c->gpio_irq);
+err_iounmap:
+ iounmap(c->onenand.base);
+err_release_mem_region:
+ release_mem_region(c->phys_base, ONENAND_IO_SIZE);
+err_free_cs:
+ gpmc_cs_free(c->gpmc_cs);
+err_kfree:
+ kfree(c);
+
+ return r;
+}
+
+static int __devexit omap2_onenand_remove(struct platform_device *pdev)
+{
+ struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
+
+ BUG_ON(c == NULL);
+
+#ifdef CONFIG_MTD_PARTITIONS
+ if (c->parts)
+ del_mtd_partitions(&c->mtd);
+ else
+ del_mtd_device(&c->mtd);
+#else
+ del_mtd_device(&c->mtd);
+#endif
+
+ onenand_release(&c->mtd);
+ if (c->dma_channel != -1)
+ omap_free_dma(c->dma_channel);
+ omap2_onenand_shutdown(pdev);
+ platform_set_drvdata(pdev, NULL);
+ if (c->gpio_irq) {
+ free_irq(OMAP_GPIO_IRQ(c->gpio_irq), c);
+ omap_free_gpio(c->gpio_irq);
+ }
+ iounmap(c->onenand.base);
+ release_mem_region(c->phys_base, ONENAND_IO_SIZE);
+ kfree(c);
+
+ return 0;
+}
+
+static struct platform_driver omap2_onenand_driver = {
+ .probe = omap2_onenand_probe,
+ .remove = omap2_onenand_remove,
+ .shutdown = omap2_onenand_shutdown,
+ .driver = {
+ .name = DRIVER_NAME,
+ .owner = THIS_MODULE,
+ },
+};
+
+static int __init omap2_onenand_init(void)
+{
+ printk(KERN_INFO "OneNAND driver initializing\n");
+ return platform_driver_register(&omap2_onenand_driver);
+}
+
+static void __exit omap2_onenand_exit(void)
+{
+ platform_driver_unregister(&omap2_onenand_driver);
+}
+
+module_init(omap2_onenand_init);
+module_exit(omap2_onenand_exit);
+
+MODULE_ALIAS(DRIVER_NAME);
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>");
+MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3");
diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c
index 926cf3a4135d..90ed319f26e6 100644
--- a/drivers/mtd/onenand/onenand_base.c
+++ b/drivers/mtd/onenand/onenand_base.c
@@ -1794,7 +1794,7 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
return -EINVAL;
}
- instr->fail_addr = 0xffffffff;
+ instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
/* Grab the lock and see if the device is available */
onenand_get_device(mtd, FL_ERASING);
diff --git a/drivers/mtd/ssfdc.c b/drivers/mtd/ssfdc.c
index a5f3d60047d4..33a5d6ed6f18 100644
--- a/drivers/mtd/ssfdc.c
+++ b/drivers/mtd/ssfdc.c
@@ -321,8 +321,7 @@ static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
DEBUG(MTD_DEBUG_LEVEL1,
"SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n",
ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len,
- (ssfdc->map_len + MAX_PHYS_BLK_PER_ZONE - 1) /
- MAX_PHYS_BLK_PER_ZONE);
+ DIV_ROUND_UP(ssfdc->map_len, MAX_PHYS_BLK_PER_ZONE));
/* Set geometry */
ssfdc->heads = 16;
diff --git a/drivers/mtd/ubi/cdev.c b/drivers/mtd/ubi/cdev.c
index 03c759b4eeb5..b30a0b83d7f1 100644
--- a/drivers/mtd/ubi/cdev.c
+++ b/drivers/mtd/ubi/cdev.c
@@ -104,12 +104,9 @@ static int vol_cdev_open(struct inode *inode, struct file *file)
struct ubi_volume_desc *desc;
int vol_id = iminor(inode) - 1, mode, ubi_num;
- lock_kernel();
ubi_num = ubi_major2num(imajor(inode));
- if (ubi_num < 0) {
- unlock_kernel();
+ if (ubi_num < 0)
return ubi_num;
- }
if (file->f_mode & FMODE_WRITE)
mode = UBI_READWRITE;
@@ -119,7 +116,6 @@ static int vol_cdev_open(struct inode *inode, struct file *file)
dbg_gen("open volume %d, mode %d", vol_id, mode);
desc = ubi_open_volume(ubi_num, vol_id, mode);
- unlock_kernel();
if (IS_ERR(desc))
return PTR_ERR(desc);
diff --git a/drivers/mtd/ubi/scan.c b/drivers/mtd/ubi/scan.c
index 967bb4406df9..4f2daa5bbecf 100644
--- a/drivers/mtd/ubi/scan.c
+++ b/drivers/mtd/ubi/scan.c
@@ -387,7 +387,7 @@ int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
pnum, vol_id, lnum, ec, sqnum, bitflips);
sv = add_volume(si, vol_id, pnum, vid_hdr);
- if (IS_ERR(sv) < 0)
+ if (IS_ERR(sv))
return PTR_ERR(sv);
if (si->max_sqnum < sqnum)
diff --git a/drivers/mtd/ubi/vtbl.c b/drivers/mtd/ubi/vtbl.c
index 217d0e111b2a..333c8941552f 100644
--- a/drivers/mtd/ubi/vtbl.c
+++ b/drivers/mtd/ubi/vtbl.c
@@ -244,8 +244,8 @@ static int vtbl_check(const struct ubi_device *ubi,
}
if (reserved_pebs > ubi->good_peb_count) {
- dbg_err("too large reserved_pebs, good PEBs %d",
- ubi->good_peb_count);
+ dbg_err("too large reserved_pebs %d, good PEBs %d",
+ reserved_pebs, ubi->good_peb_count);
err = 9;
goto bad;
}
diff --git a/drivers/pci/rom.c b/drivers/pci/rom.c
index bd5c0e031398..1f5f6143f35c 100644
--- a/drivers/pci/rom.c
+++ b/drivers/pci/rom.c
@@ -21,7 +21,7 @@
* between the ROM and other resources, so enabling it may disable access
* to MMIO registers or other card memory.
*/
-static int pci_enable_rom(struct pci_dev *pdev)
+int pci_enable_rom(struct pci_dev *pdev)
{
struct resource *res = pdev->resource + PCI_ROM_RESOURCE;
struct pci_bus_region region;
@@ -45,7 +45,7 @@ static int pci_enable_rom(struct pci_dev *pdev)
* Disable ROM decoding on a PCI device by turning off the last bit in the
* ROM BAR.
*/
-static void pci_disable_rom(struct pci_dev *pdev)
+void pci_disable_rom(struct pci_dev *pdev)
{
u32 rom_addr;
pci_read_config_dword(pdev, pdev->rom_base_reg, &rom_addr);
@@ -260,3 +260,5 @@ void pci_cleanup_rom(struct pci_dev *pdev)
EXPORT_SYMBOL(pci_map_rom);
EXPORT_SYMBOL(pci_unmap_rom);
+EXPORT_SYMBOL_GPL(pci_enable_rom);
+EXPORT_SYMBOL_GPL(pci_disable_rom);
diff --git a/fs/Kconfig b/fs/Kconfig
index c189089f35a5..4eca61c201f0 100644
--- a/fs/Kconfig
+++ b/fs/Kconfig
@@ -1168,195 +1168,7 @@ config EFS_FS
To compile the EFS file system support as a module, choose M here: the
module will be called efs.
-config JFFS2_FS
- tristate "Journalling Flash File System v2 (JFFS2) support"
- select CRC32
- depends on MTD
- help
- JFFS2 is the second generation of the Journalling Flash File System
- for use on diskless embedded devices. It provides improved wear
- levelling, compression and support for hard links. You cannot use
- this on normal block devices, only on 'MTD' devices.
-
- Further information on the design and implementation of JFFS2 is
- available at <http://sources.redhat.com/jffs2/>.
-
-config JFFS2_FS_DEBUG
- int "JFFS2 debugging verbosity (0 = quiet, 2 = noisy)"
- depends on JFFS2_FS
- default "0"
- help
- This controls the amount of debugging messages produced by the JFFS2
- code. Set it to zero for use in production systems. For evaluation,
- testing and debugging, it's advisable to set it to one. This will
- enable a few assertions and will print debugging messages at the
- KERN_DEBUG loglevel, where they won't normally be visible. Level 2
- is unlikely to be useful - it enables extra debugging in certain
- areas which at one point needed debugging, but when the bugs were
- located and fixed, the detailed messages were relegated to level 2.
-
- If reporting bugs, please try to have available a full dump of the
- messages at debug level 1 while the misbehaviour was occurring.
-
-config JFFS2_FS_WRITEBUFFER
- bool "JFFS2 write-buffering support"
- depends on JFFS2_FS
- default y
- help
- This enables the write-buffering support in JFFS2.
-
- This functionality is required to support JFFS2 on the following
- types of flash devices:
- - NAND flash
- - NOR flash with transparent ECC
- - DataFlash
-
-config JFFS2_FS_WBUF_VERIFY
- bool "Verify JFFS2 write-buffer reads"
- depends on JFFS2_FS_WRITEBUFFER
- default n
- help
- This causes JFFS2 to read back every page written through the
- write-buffer, and check for errors.
-
-config JFFS2_SUMMARY
- bool "JFFS2 summary support (EXPERIMENTAL)"
- depends on JFFS2_FS && EXPERIMENTAL
- default n
- help
- This feature makes it possible to use summary information
- for faster filesystem mount.
-
- The summary information can be inserted into a filesystem image
- by the utility 'sumtool'.
-
- If unsure, say 'N'.
-
-config JFFS2_FS_XATTR
- bool "JFFS2 XATTR support (EXPERIMENTAL)"
- depends on JFFS2_FS && EXPERIMENTAL
- default n
- help
- Extended attributes are name:value pairs associated with inodes by
- the kernel or by users (see the attr(5) manual page, or visit
- <http://acl.bestbits.at/> for details).
-
- If unsure, say N.
-
-config JFFS2_FS_POSIX_ACL
- bool "JFFS2 POSIX Access Control Lists"
- depends on JFFS2_FS_XATTR
- default y
- select FS_POSIX_ACL
- help
- Posix Access Control Lists (ACLs) support permissions for users and
- groups beyond the owner/group/world scheme.
-
- To learn more about Access Control Lists, visit the Posix ACLs for
- Linux website <http://acl.bestbits.at/>.
-
- If you don't know what Access Control Lists are, say N
-
-config JFFS2_FS_SECURITY
- bool "JFFS2 Security Labels"
- depends on JFFS2_FS_XATTR
- default y
- help
- Security labels support alternative access control models
- implemented by security modules like SELinux. This option
- enables an extended attribute handler for file security
- labels in the jffs2 filesystem.
-
- If you are not using a security module that requires using
- extended attributes for file security labels, say N.
-
-config JFFS2_COMPRESSION_OPTIONS
- bool "Advanced compression options for JFFS2"
- depends on JFFS2_FS
- default n
- help
- Enabling this option allows you to explicitly choose which
- compression modules, if any, are enabled in JFFS2. Removing
- compressors can mean you cannot read existing file systems,
- and enabling experimental compressors can mean that you
- write a file system which cannot be read by a standard kernel.
-
- If unsure, you should _definitely_ say 'N'.
-
-config JFFS2_ZLIB
- bool "JFFS2 ZLIB compression support" if JFFS2_COMPRESSION_OPTIONS
- select ZLIB_INFLATE
- select ZLIB_DEFLATE
- depends on JFFS2_FS
- default y
- help
- Zlib is designed to be a free, general-purpose, legally unencumbered,
- lossless data-compression library for use on virtually any computer
- hardware and operating system. See <http://www.gzip.org/zlib/> for
- further information.
-
- Say 'Y' if unsure.
-
-config JFFS2_LZO
- bool "JFFS2 LZO compression support" if JFFS2_COMPRESSION_OPTIONS
- select LZO_COMPRESS
- select LZO_DECOMPRESS
- depends on JFFS2_FS
- default n
- help
- minilzo-based compression. Generally works better than Zlib.
-
- This feature was added in July, 2007. Say 'N' if you need
- compatibility with older bootloaders or kernels.
-
-config JFFS2_RTIME
- bool "JFFS2 RTIME compression support" if JFFS2_COMPRESSION_OPTIONS
- depends on JFFS2_FS
- default y
- help
- Rtime does manage to recompress already-compressed data. Say 'Y' if unsure.
-
-config JFFS2_RUBIN
- bool "JFFS2 RUBIN compression support" if JFFS2_COMPRESSION_OPTIONS
- depends on JFFS2_FS
- default n
- help
- RUBINMIPS and DYNRUBIN compressors. Say 'N' if unsure.
-
-choice
- prompt "JFFS2 default compression mode" if JFFS2_COMPRESSION_OPTIONS
- default JFFS2_CMODE_PRIORITY
- depends on JFFS2_FS
- help
- You can set here the default compression mode of JFFS2 from
- the available compression modes. Don't touch if unsure.
-
-config JFFS2_CMODE_NONE
- bool "no compression"
- help
- Uses no compression.
-
-config JFFS2_CMODE_PRIORITY
- bool "priority"
- help
- Tries the compressors in a predefined order and chooses the first
- successful one.
-
-config JFFS2_CMODE_SIZE
- bool "size (EXPERIMENTAL)"
- help
- Tries all compressors and chooses the one which has the smallest
- result.
-
-config JFFS2_CMODE_FAVOURLZO
- bool "Favour LZO"
- help
- Tries all compressors and chooses the one which has the smallest
- result but gives some preference to LZO (which has faster
- decompression) at the expense of size.
-
-endchoice
-
+source "fs/jffs2/Kconfig"
# UBIFS File system configuration
source "fs/ubifs/Kconfig"
diff --git a/fs/jffs2/Kconfig b/fs/jffs2/Kconfig
new file mode 100644
index 000000000000..6ae169cd8faa
--- /dev/null
+++ b/fs/jffs2/Kconfig
@@ -0,0 +1,188 @@
+config JFFS2_FS
+ tristate "Journalling Flash File System v2 (JFFS2) support"
+ select CRC32
+ depends on MTD
+ help
+ JFFS2 is the second generation of the Journalling Flash File System
+ for use on diskless embedded devices. It provides improved wear
+ levelling, compression and support for hard links. You cannot use
+ this on normal block devices, only on 'MTD' devices.
+
+ Further information on the design and implementation of JFFS2 is
+ available at <http://sources.redhat.com/jffs2/>.
+
+config JFFS2_FS_DEBUG
+ int "JFFS2 debugging verbosity (0 = quiet, 2 = noisy)"
+ depends on JFFS2_FS
+ default "0"
+ help
+ This controls the amount of debugging messages produced by the JFFS2
+ code. Set it to zero for use in production systems. For evaluation,
+ testing and debugging, it's advisable to set it to one. This will
+ enable a few assertions and will print debugging messages at the
+ KERN_DEBUG loglevel, where they won't normally be visible. Level 2
+ is unlikely to be useful - it enables extra debugging in certain
+ areas which at one point needed debugging, but when the bugs were
+ located and fixed, the detailed messages were relegated to level 2.
+
+ If reporting bugs, please try to have available a full dump of the
+ messages at debug level 1 while the misbehaviour was occurring.
+
+config JFFS2_FS_WRITEBUFFER
+ bool "JFFS2 write-buffering support"
+ depends on JFFS2_FS
+ default y
+ help
+ This enables the write-buffering support in JFFS2.
+
+ This functionality is required to support JFFS2 on the following
+ types of flash devices:
+ - NAND flash
+ - NOR flash with transparent ECC
+ - DataFlash
+
+config JFFS2_FS_WBUF_VERIFY
+ bool "Verify JFFS2 write-buffer reads"
+ depends on JFFS2_FS_WRITEBUFFER
+ default n
+ help
+ This causes JFFS2 to read back every page written through the
+ write-buffer, and check for errors.
+
+config JFFS2_SUMMARY
+ bool "JFFS2 summary support (EXPERIMENTAL)"
+ depends on JFFS2_FS && EXPERIMENTAL
+ default n
+ help
+ This feature makes it possible to use summary information
+ for faster filesystem mount.
+
+ The summary information can be inserted into a filesystem image
+ by the utility 'sumtool'.
+
+ If unsure, say 'N'.
+
+config JFFS2_FS_XATTR
+ bool "JFFS2 XATTR support (EXPERIMENTAL)"
+ depends on JFFS2_FS && EXPERIMENTAL
+ default n
+ help
+ Extended attributes are name:value pairs associated with inodes by
+ the kernel or by users (see the attr(5) manual page, or visit
+ <http://acl.bestbits.at/> for details).
+
+ If unsure, say N.
+
+config JFFS2_FS_POSIX_ACL
+ bool "JFFS2 POSIX Access Control Lists"
+ depends on JFFS2_FS_XATTR
+ default y
+ select FS_POSIX_ACL
+ help
+ Posix Access Control Lists (ACLs) support permissions for users and
+ groups beyond the owner/group/world scheme.
+
+ To learn more about Access Control Lists, visit the Posix ACLs for
+ Linux website <http://acl.bestbits.at/>.
+
+ If you don't know what Access Control Lists are, say N
+
+config JFFS2_FS_SECURITY
+ bool "JFFS2 Security Labels"
+ depends on JFFS2_FS_XATTR
+ default y
+ help
+ Security labels support alternative access control models
+ implemented by security modules like SELinux. This option
+ enables an extended attribute handler for file security
+ labels in the jffs2 filesystem.
+
+ If you are not using a security module that requires using
+ extended attributes for file security labels, say N.
+
+config JFFS2_COMPRESSION_OPTIONS
+ bool "Advanced compression options for JFFS2"
+ depends on JFFS2_FS
+ default n
+ help
+ Enabling this option allows you to explicitly choose which
+ compression modules, if any, are enabled in JFFS2. Removing
+ compressors can mean you cannot read existing file systems,
+ and enabling experimental compressors can mean that you
+ write a file system which cannot be read by a standard kernel.
+
+ If unsure, you should _definitely_ say 'N'.
+
+config JFFS2_ZLIB
+ bool "JFFS2 ZLIB compression support" if JFFS2_COMPRESSION_OPTIONS
+ select ZLIB_INFLATE
+ select ZLIB_DEFLATE
+ depends on JFFS2_FS
+ default y
+ help
+ Zlib is designed to be a free, general-purpose, legally unencumbered,
+ lossless data-compression library for use on virtually any computer
+ hardware and operating system. See <http://www.gzip.org/zlib/> for
+ further information.
+
+ Say 'Y' if unsure.
+
+config JFFS2_LZO
+ bool "JFFS2 LZO compression support" if JFFS2_COMPRESSION_OPTIONS
+ select LZO_COMPRESS
+ select LZO_DECOMPRESS
+ depends on JFFS2_FS
+ default n
+ help
+ minilzo-based compression. Generally works better than Zlib.
+
+ This feature was added in July, 2007. Say 'N' if you need
+ compatibility with older bootloaders or kernels.
+
+config JFFS2_RTIME
+ bool "JFFS2 RTIME compression support" if JFFS2_COMPRESSION_OPTIONS
+ depends on JFFS2_FS
+ default y
+ help
+ Rtime does manage to recompress already-compressed data. Say 'Y' if unsure.
+
+config JFFS2_RUBIN
+ bool "JFFS2 RUBIN compression support" if JFFS2_COMPRESSION_OPTIONS
+ depends on JFFS2_FS
+ default n
+ help
+ RUBINMIPS and DYNRUBIN compressors. Say 'N' if unsure.
+
+choice
+ prompt "JFFS2 default compression mode" if JFFS2_COMPRESSION_OPTIONS
+ default JFFS2_CMODE_PRIORITY
+ depends on JFFS2_FS
+ help
+ You can set here the default compression mode of JFFS2 from
+ the available compression modes. Don't touch if unsure.
+
+config JFFS2_CMODE_NONE
+ bool "no compression"
+ help
+ Uses no compression.
+
+config JFFS2_CMODE_PRIORITY
+ bool "priority"
+ help
+ Tries the compressors in a predefined order and chooses the first
+ successful one.
+
+config JFFS2_CMODE_SIZE
+ bool "size (EXPERIMENTAL)"
+ help
+ Tries all compressors and chooses the one which has the smallest
+ result.
+
+config JFFS2_CMODE_FAVOURLZO
+ bool "Favour LZO"
+ help
+ Tries all compressors and chooses the one which has the smallest
+ result but gives some preference to LZO (which has faster
+ decompression) at the expense of size.
+
+endchoice
diff --git a/fs/jffs2/compr.c b/fs/jffs2/compr.c
index 86739ee53b37..f25e70c1b51c 100644
--- a/fs/jffs2/compr.c
+++ b/fs/jffs2/compr.c
@@ -53,8 +53,8 @@ static int jffs2_is_best_compression(struct jffs2_compressor *this,
}
/* jffs2_compress:
- * @data: Pointer to uncompressed data
- * @cdata: Pointer to returned pointer to buffer for compressed data
+ * @data_in: Pointer to uncompressed data
+ * @cpage_out: Pointer to returned pointer to buffer for compressed data
* @datalen: On entry, holds the amount of data available for compression.
* On exit, expected to hold the amount of data actually compressed.
* @cdatalen: On entry, holds the amount of space available for compressed
diff --git a/fs/jffs2/dir.c b/fs/jffs2/dir.c
index cd219ef55254..b1aaae823a52 100644
--- a/fs/jffs2/dir.c
+++ b/fs/jffs2/dir.c
@@ -311,7 +311,7 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
/* FIXME: If you care. We'd need to use frags for the target
if it grows much more than this */
if (targetlen > 254)
- return -EINVAL;
+ return -ENAMETOOLONG;
ri = jffs2_alloc_raw_inode();
diff --git a/fs/jffs2/erase.c b/fs/jffs2/erase.c
index dddb2a6c9e2c..259461b910af 100644
--- a/fs/jffs2/erase.c
+++ b/fs/jffs2/erase.c
@@ -68,7 +68,7 @@ static void jffs2_erase_block(struct jffs2_sb_info *c,
instr->len = c->sector_size;
instr->callback = jffs2_erase_callback;
instr->priv = (unsigned long)(&instr[1]);
- instr->fail_addr = 0xffffffff;
+ instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
((struct erase_priv_struct *)instr->priv)->jeb = jeb;
((struct erase_priv_struct *)instr->priv)->c = c;
@@ -175,7 +175,7 @@ static void jffs2_erase_failed(struct jffs2_sb_info *c, struct jffs2_eraseblock
{
/* For NAND, if the failure did not occur at the device level for a
specific physical page, don't bother updating the bad block table. */
- if (jffs2_cleanmarker_oob(c) && (bad_offset != 0xffffffff)) {
+ if (jffs2_cleanmarker_oob(c) && (bad_offset != MTD_FAIL_ADDR_UNKNOWN)) {
/* We had a device-level failure to erase. Let's see if we've
failed too many times. */
if (!jffs2_write_nand_badblock(c, jeb, bad_offset)) {
diff --git a/fs/jffs2/fs.c b/fs/jffs2/fs.c
index 086c43830221..249305d65d5b 100644
--- a/fs/jffs2/fs.c
+++ b/fs/jffs2/fs.c
@@ -207,6 +207,8 @@ int jffs2_statfs(struct dentry *dentry, struct kstatfs *buf)
buf->f_files = 0;
buf->f_ffree = 0;
buf->f_namelen = JFFS2_MAX_NAME_LEN;
+ buf->f_fsid.val[0] = JFFS2_SUPER_MAGIC;
+ buf->f_fsid.val[1] = c->mtd->index;
spin_lock(&c->erase_completion_lock);
avail = c->dirty_size + c->free_size;
@@ -440,14 +442,14 @@ struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_i
memset(ri, 0, sizeof(*ri));
/* Set OS-specific defaults for new inodes */
- ri->uid = cpu_to_je16(current->fsuid);
+ ri->uid = cpu_to_je16(current_fsuid());
if (dir_i->i_mode & S_ISGID) {
ri->gid = cpu_to_je16(dir_i->i_gid);
if (S_ISDIR(mode))
mode |= S_ISGID;
} else {
- ri->gid = cpu_to_je16(current->fsgid);
+ ri->gid = cpu_to_je16(current_fsgid());
}
/* POSIX ACLs have to be processed now, at least partly.
diff --git a/fs/jffs2/nodemgmt.c b/fs/jffs2/nodemgmt.c
index a9bf9603c1ba..0875b60b4bf7 100644
--- a/fs/jffs2/nodemgmt.c
+++ b/fs/jffs2/nodemgmt.c
@@ -261,6 +261,10 @@ static int jffs2_find_nextblock(struct jffs2_sb_info *c)
jffs2_sum_reset_collected(c->summary); /* reset collected summary */
+ /* adjust write buffer offset, else we get a non contiguous write bug */
+ if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
+ c->wbuf_ofs = 0xffffffff;
+
D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
return 0;
diff --git a/fs/jffs2/wbuf.c b/fs/jffs2/wbuf.c
index 0e78b00035e4..d9a721e6db70 100644
--- a/fs/jffs2/wbuf.c
+++ b/fs/jffs2/wbuf.c
@@ -679,10 +679,7 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
memset(c->wbuf,0xff,c->wbuf_pagesize);
/* adjust write buffer offset, else we get a non contiguous write bug */
- if (SECTOR_ADDR(c->wbuf_ofs) == SECTOR_ADDR(c->wbuf_ofs+c->wbuf_pagesize))
- c->wbuf_ofs += c->wbuf_pagesize;
- else
- c->wbuf_ofs = 0xffffffff;
+ c->wbuf_ofs += c->wbuf_pagesize;
c->wbuf_len = 0;
return 0;
}
diff --git a/include/linux/mtd/cfi.h b/include/linux/mtd/cfi.h
index d6fb115f5a07..ee5124ec319e 100644
--- a/include/linux/mtd/cfi.h
+++ b/include/linux/mtd/cfi.h
@@ -12,6 +12,7 @@
#include <linux/mtd/flashchip.h>
#include <linux/mtd/map.h>
#include <linux/mtd/cfi_endian.h>
+#include <linux/mtd/xip.h>
#ifdef CONFIG_MTD_CFI_I1
#define cfi_interleave(cfi) 1
@@ -430,7 +431,6 @@ static inline uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t
{
map_word val;
uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, cfi_interleave(cfi), type);
-
val = cfi_build_cmd(cmd, map, cfi);
if (prev_val)
@@ -483,6 +483,13 @@ static inline void cfi_udelay(int us)
}
}
+int __xipram cfi_qry_present(struct map_info *map, __u32 base,
+ struct cfi_private *cfi);
+int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
+ struct cfi_private *cfi);
+void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
+ struct cfi_private *cfi);
+
struct cfi_extquery *cfi_read_pri(struct map_info *map, uint16_t adr, uint16_t size,
const char* name);
struct cfi_fixup {
diff --git a/include/linux/mtd/flashchip.h b/include/linux/mtd/flashchip.h
index 08dd131301c1..d4f38c5fd44e 100644
--- a/include/linux/mtd/flashchip.h
+++ b/include/linux/mtd/flashchip.h
@@ -73,6 +73,10 @@ struct flchip {
int buffer_write_time;
int erase_time;
+ int word_write_time_max;
+ int buffer_write_time_max;
+ int erase_time_max;
+
void *priv;
};
diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h
index 922636548558..eae26bb6430a 100644
--- a/include/linux/mtd/mtd.h
+++ b/include/linux/mtd/mtd.h
@@ -25,8 +25,10 @@
#define MTD_ERASE_DONE 0x08
#define MTD_ERASE_FAILED 0x10
+#define MTD_FAIL_ADDR_UNKNOWN 0xffffffff
+
/* If the erase fails, fail_addr might indicate exactly which block failed. If
- fail_addr = 0xffffffff, the failure was not at the device level or was not
+ fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level or was not
specific to any particular block. */
struct erase_info {
struct mtd_info *mtd;
diff --git a/include/linux/mtd/nand-gpio.h b/include/linux/mtd/nand-gpio.h
new file mode 100644
index 000000000000..51534e50f7fc
--- /dev/null
+++ b/include/linux/mtd/nand-gpio.h
@@ -0,0 +1,19 @@
+#ifndef __LINUX_MTD_NAND_GPIO_H
+#define __LINUX_MTD_NAND_GPIO_H
+
+#include <linux/mtd/nand.h>
+
+struct gpio_nand_platdata {
+ int gpio_nce;
+ int gpio_nwp;
+ int gpio_cle;
+ int gpio_ale;
+ int gpio_rdy;
+ void (*adjust_parts)(struct gpio_nand_platdata *, size_t);
+ struct mtd_partition *parts;
+ unsigned int num_parts;
+ unsigned int options;
+ int chip_delay;
+};
+
+#endif
diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h
index 81774e5facf4..733d3f3b4eb8 100644
--- a/include/linux/mtd/nand.h
+++ b/include/linux/mtd/nand.h
@@ -248,6 +248,7 @@ struct nand_hw_control {
* @read_page_raw: function to read a raw page without ECC
* @write_page_raw: function to write a raw page without ECC
* @read_page: function to read a page according to the ecc generator requirements
+ * @read_subpage: function to read parts of the page covered by ECC.
* @write_page: function to write a page according to the ecc generator requirements
* @read_oob: function to read chip OOB data
* @write_oob: function to write chip OOB data
diff --git a/include/linux/mtd/onenand_regs.h b/include/linux/mtd/onenand_regs.h
index d1b310c92eb4..0c6bbe28f38c 100644
--- a/include/linux/mtd/onenand_regs.h
+++ b/include/linux/mtd/onenand_regs.h
@@ -152,6 +152,8 @@
#define ONENAND_SYS_CFG1_INT (1 << 6)
#define ONENAND_SYS_CFG1_IOBE (1 << 5)
#define ONENAND_SYS_CFG1_RDY_CONF (1 << 4)
+#define ONENAND_SYS_CFG1_HF (1 << 2)
+#define ONENAND_SYS_CFG1_SYNC_WRITE (1 << 1)
/*
* Controller Status Register F240h (R)
diff --git a/include/linux/mtd/partitions.h b/include/linux/mtd/partitions.h
index 5014f7a9f5df..c92b4d439609 100644
--- a/include/linux/mtd/partitions.h
+++ b/include/linux/mtd/partitions.h
@@ -73,7 +73,6 @@ struct device;
struct device_node;
int __devinit of_mtd_parse_partitions(struct device *dev,
- struct mtd_info *mtd,
struct device_node *node,
struct mtd_partition **pparts);
diff --git a/include/linux/mtd/sh_flctl.h b/include/linux/mtd/sh_flctl.h
new file mode 100644
index 000000000000..e77c1cea404d
--- /dev/null
+++ b/include/linux/mtd/sh_flctl.h
@@ -0,0 +1,125 @@
+/*
+ * SuperH FLCTL nand controller
+ *
+ * Copyright © 2008 Renesas Solutions Corp.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+#ifndef __SH_FLCTL_H__
+#define __SH_FLCTL_H__
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+
+/* FLCTL registers */
+#define FLCMNCR(f) (f->reg + 0x0)
+#define FLCMDCR(f) (f->reg + 0x4)
+#define FLCMCDR(f) (f->reg + 0x8)
+#define FLADR(f) (f->reg + 0xC)
+#define FLADR2(f) (f->reg + 0x3C)
+#define FLDATAR(f) (f->reg + 0x10)
+#define FLDTCNTR(f) (f->reg + 0x14)
+#define FLINTDMACR(f) (f->reg + 0x18)
+#define FLBSYTMR(f) (f->reg + 0x1C)
+#define FLBSYCNT(f) (f->reg + 0x20)
+#define FLDTFIFO(f) (f->reg + 0x24)
+#define FLECFIFO(f) (f->reg + 0x28)
+#define FLTRCR(f) (f->reg + 0x2C)
+#define FL4ECCRESULT0(f) (f->reg + 0x80)
+#define FL4ECCRESULT1(f) (f->reg + 0x84)
+#define FL4ECCRESULT2(f) (f->reg + 0x88)
+#define FL4ECCRESULT3(f) (f->reg + 0x8C)
+#define FL4ECCCR(f) (f->reg + 0x90)
+#define FL4ECCCNT(f) (f->reg + 0x94)
+#define FLERRADR(f) (f->reg + 0x98)
+
+/* FLCMNCR control bits */
+#define ECCPOS2 (0x1 << 25)
+#define _4ECCCNTEN (0x1 << 24)
+#define _4ECCEN (0x1 << 23)
+#define _4ECCCORRECT (0x1 << 22)
+#define SNAND_E (0x1 << 18) /* SNAND (0=512 1=2048)*/
+#define QTSEL_E (0x1 << 17)
+#define ENDIAN (0x1 << 16) /* 1 = little endian */
+#define FCKSEL_E (0x1 << 15)
+#define ECCPOS_00 (0x00 << 12)
+#define ECCPOS_01 (0x01 << 12)
+#define ECCPOS_02 (0x02 << 12)
+#define ACM_SACCES_MODE (0x01 << 10)
+#define NANWF_E (0x1 << 9)
+#define SE_D (0x1 << 8) /* Spare area disable */
+#define CE1_ENABLE (0x1 << 4) /* Chip Enable 1 */
+#define CE0_ENABLE (0x1 << 3) /* Chip Enable 0 */
+#define TYPESEL_SET (0x1 << 0)
+
+/* FLCMDCR control bits */
+#define ADRCNT2_E (0x1 << 31) /* 5byte address enable */
+#define ADRMD_E (0x1 << 26) /* Sector address access */
+#define CDSRC_E (0x1 << 25) /* Data buffer selection */
+#define DOSR_E (0x1 << 24) /* Status read check */
+#define SELRW (0x1 << 21) /* 0:read 1:write */
+#define DOADR_E (0x1 << 20) /* Address stage execute */
+#define ADRCNT_1 (0x00 << 18) /* Address data bytes: 1byte */
+#define ADRCNT_2 (0x01 << 18) /* Address data bytes: 2byte */
+#define ADRCNT_3 (0x02 << 18) /* Address data bytes: 3byte */
+#define ADRCNT_4 (0x03 << 18) /* Address data bytes: 4byte */
+#define DOCMD2_E (0x1 << 17) /* 2nd cmd stage execute */
+#define DOCMD1_E (0x1 << 16) /* 1st cmd stage execute */
+
+/* FLTRCR control bits */
+#define TRSTRT (0x1 << 0) /* translation start */
+#define TREND (0x1 << 1) /* translation end */
+
+/* FL4ECCCR control bits */
+#define _4ECCFA (0x1 << 2) /* 4 symbols correct fault */
+#define _4ECCEND (0x1 << 1) /* 4 symbols end */
+#define _4ECCEXST (0x1 << 0) /* 4 symbols exist */
+
+#define INIT_FL4ECCRESULT_VAL 0x03FF03FF
+#define LOOP_TIMEOUT_MAX 0x00010000
+
+#define mtd_to_flctl(mtd) container_of(mtd, struct sh_flctl, mtd)
+
+struct sh_flctl {
+ struct mtd_info mtd;
+ struct nand_chip chip;
+ void __iomem *reg;
+
+ uint8_t done_buff[2048 + 64]; /* max size 2048 + 64 */
+ int read_bytes;
+ int index;
+ int seqin_column; /* column in SEQIN cmd */
+ int seqin_page_addr; /* page_addr in SEQIN cmd */
+ uint32_t seqin_read_cmd; /* read cmd in SEQIN cmd */
+ int erase1_page_addr; /* page_addr in ERASE1 cmd */
+ uint32_t erase_ADRCNT; /* bits of FLCMDCR in ERASE1 cmd */
+ uint32_t rw_ADRCNT; /* bits of FLCMDCR in READ WRITE cmd */
+
+ int hwecc_cant_correct[4];
+
+ unsigned page_size:1; /* NAND page size (0 = 512, 1 = 2048) */
+ unsigned hwecc:1; /* Hardware ECC (0 = disabled, 1 = enabled) */
+};
+
+struct sh_flctl_platform_data {
+ struct mtd_partition *parts;
+ int nr_parts;
+ unsigned long flcmncr_val;
+
+ unsigned has_hwecc:1;
+};
+
+#endif /* __SH_FLCTL_H__ */
diff --git a/include/linux/pci.h b/include/linux/pci.h
index 98dc6243a706..acf8f24037cd 100644
--- a/include/linux/pci.h
+++ b/include/linux/pci.h
@@ -631,6 +631,8 @@ int __must_check pci_assign_resource(struct pci_dev *dev, int i);
int pci_select_bars(struct pci_dev *dev, unsigned long flags);
/* ROM control related routines */
+int pci_enable_rom(struct pci_dev *pdev);
+void pci_disable_rom(struct pci_dev *pdev);
void __iomem __must_check *pci_map_rom(struct pci_dev *pdev, size_t *size);
void pci_unmap_rom(struct pci_dev *pdev, void __iomem *rom);
size_t pci_get_rom_size(void __iomem *rom, size_t size);