1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
|
/** @file
SMM CPU Sync lib implementation.
The lib provides 3 sets of APIs:
1. ContextInit/ContextDeinit/ContextReset:
ContextInit() is called in driver's entrypoint to allocate and initialize the SMM CPU Sync context.
ContextDeinit() is called in driver's unload function to deinitialize the SMM CPU Sync context.
ContextReset() is called by one of CPUs after all CPUs are ready to exit SMI, which allows CPU to
check into the next SMI from this point.
2. GetArrivedCpuCount/CheckInCpu/CheckOutCpu/LockDoor:
When SMI happens, all processors including BSP enter to SMM mode by calling CheckInCpu().
CheckOutCpu() can be called in error handling flow for the CPU who calls CheckInCpu() earlier.
The elected BSP calls LockDoor() so that CheckInCpu() and CheckOutCpu() will return the error code after that.
GetArrivedCpuCount() returns the number of checked-in CPUs.
3. WaitForAPs/ReleaseOneAp/WaitForBsp/ReleaseBsp
WaitForAPs() & ReleaseOneAp() are called from BSP to wait the number of APs and release one specific AP.
WaitForBsp() & ReleaseBsp() are called from APs to wait and release BSP.
The 4 APIs are used to synchronize the running flow among BSP and APs.
BSP and AP Sync flow can be easy understand as below:
BSP: ReleaseOneAp --> AP: WaitForBsp
BSP: WaitForAPs <-- AP: ReleaseBsp
Copyright (c) 2023, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/SafeIntLib.h>
#include <Library/SmmCpuSyncLib.h>
#include <Library/SynchronizationLib.h>
#include <Uefi.h>
///
/// The implementation shall place one semaphore on exclusive cache line for good performance.
///
typedef volatile UINT32 SMM_CPU_SYNC_SEMAPHORE;
typedef struct {
///
/// Used for control each CPU continue run or wait for signal
///
SMM_CPU_SYNC_SEMAPHORE *Run;
} SMM_CPU_SYNC_SEMAPHORE_FOR_EACH_CPU;
struct SMM_CPU_SYNC_CONTEXT {
///
/// Indicate all CPUs in the system.
///
UINTN NumberOfCpus;
///
/// Address of semaphores.
///
VOID *SemBuffer;
///
/// Size of semaphores.
///
UINTN SemBufferPages;
///
/// Before the door is locked, CpuCount stores the arrived CPU count.
/// After the door is locked, CpuCount is set to -1 indicating the door is locked.
/// ArrivedCpuCountUponLock stores the arrived CPU count then.
///
UINTN ArrivedCpuCountUponLock;
///
/// Indicate CPUs entered SMM before lock door.
///
SMM_CPU_SYNC_SEMAPHORE *CpuCount;
///
/// Define an array of structure for each CPU semaphore due to the size alignment
/// requirement. With the array of structure for each CPU semaphore, it's easy to
/// reach the specific CPU with CPU Index for its own semaphore access: CpuSem[CpuIndex].
///
SMM_CPU_SYNC_SEMAPHORE_FOR_EACH_CPU CpuSem[];
};
/**
Performs an atomic compare exchange operation to get semaphore.
The compare exchange operation must be performed using MP safe
mechanisms.
@param[in,out] Sem IN: 32-bit unsigned integer
OUT: original integer - 1 if Sem is not locked.
OUT: MAX_UINT32 if Sem is locked.
@retval Original integer - 1 if Sem is not locked.
MAX_UINT32 if Sem is locked.
**/
STATIC
UINT32
InternalWaitForSemaphore (
IN OUT volatile UINT32 *Sem
)
{
UINT32 Value;
for ( ; ;) {
Value = *Sem;
if (Value == MAX_UINT32) {
return Value;
}
if ((Value != 0) &&
(InterlockedCompareExchange32 (
(UINT32 *)Sem,
Value,
Value - 1
) == Value))
{
break;
}
CpuPause ();
}
return Value - 1;
}
/**
Performs an atomic compare exchange operation to release semaphore.
The compare exchange operation must be performed using MP safe
mechanisms.
@param[in,out] Sem IN: 32-bit unsigned integer
OUT: original integer + 1 if Sem is not locked.
OUT: MAX_UINT32 if Sem is locked.
@retval Original integer + 1 if Sem is not locked.
MAX_UINT32 if Sem is locked.
**/
STATIC
UINT32
InternalReleaseSemaphore (
IN OUT volatile UINT32 *Sem
)
{
UINT32 Value;
do {
Value = *Sem;
} while (Value + 1 != 0 &&
InterlockedCompareExchange32 (
(UINT32 *)Sem,
Value,
Value + 1
) != Value);
if (Value == MAX_UINT32) {
return Value;
}
return Value + 1;
}
/**
Performs an atomic compare exchange operation to lock semaphore.
The compare exchange operation must be performed using MP safe
mechanisms.
@param[in,out] Sem IN: 32-bit unsigned integer
OUT: -1
@retval Original integer
**/
STATIC
UINT32
InternalLockdownSemaphore (
IN OUT volatile UINT32 *Sem
)
{
UINT32 Value;
do {
Value = *Sem;
} while (InterlockedCompareExchange32 (
(UINT32 *)Sem,
Value,
(UINT32)-1
) != Value);
return Value;
}
/**
Create and initialize the SMM CPU Sync context. It is to allocate and initialize the
SMM CPU Sync context.
If Context is NULL, then ASSERT().
@param[in] NumberOfCpus The number of Logical Processors in the system.
@param[out] Context Pointer to the new created and initialized SMM CPU Sync context object.
NULL will be returned if any error happen during init.
@retval RETURN_SUCCESS The SMM CPU Sync context was successful created and initialized.
@retval RETURN_OUT_OF_RESOURCES There are not enough resources available to create and initialize SMM CPU Sync context.
@retval RETURN_BUFFER_TOO_SMALL Overflow happen
**/
RETURN_STATUS
EFIAPI
SmmCpuSyncContextInit (
IN UINTN NumberOfCpus,
OUT SMM_CPU_SYNC_CONTEXT **Context
)
{
RETURN_STATUS Status;
UINTN ContextSize;
UINTN OneSemSize;
UINTN NumSem;
UINTN TotalSemSize;
UINTN SemAddr;
UINTN CpuIndex;
SMM_CPU_SYNC_SEMAPHORE_FOR_EACH_CPU *CpuSem;
ASSERT (Context != NULL);
//
// Calculate ContextSize
//
Status = SafeUintnMult (NumberOfCpus, sizeof (SMM_CPU_SYNC_SEMAPHORE_FOR_EACH_CPU), &ContextSize);
if (RETURN_ERROR (Status)) {
return Status;
}
Status = SafeUintnAdd (ContextSize, sizeof (SMM_CPU_SYNC_CONTEXT), &ContextSize);
if (RETURN_ERROR (Status)) {
return Status;
}
//
// Allocate Buffer for Context
//
*Context = AllocatePool (ContextSize);
if (*Context == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
(*Context)->ArrivedCpuCountUponLock = 0;
//
// Save NumberOfCpus
//
(*Context)->NumberOfCpus = NumberOfCpus;
//
// Calculate total semaphore size
//
OneSemSize = GetSpinLockProperties ();
ASSERT (sizeof (SMM_CPU_SYNC_SEMAPHORE) <= OneSemSize);
Status = SafeUintnAdd (1, NumberOfCpus, &NumSem);
if (RETURN_ERROR (Status)) {
goto ON_ERROR;
}
Status = SafeUintnMult (NumSem, OneSemSize, &TotalSemSize);
if (RETURN_ERROR (Status)) {
goto ON_ERROR;
}
//
// Allocate for Semaphores in the *Context
//
(*Context)->SemBufferPages = EFI_SIZE_TO_PAGES (TotalSemSize);
(*Context)->SemBuffer = AllocatePages ((*Context)->SemBufferPages);
if ((*Context)->SemBuffer == NULL) {
Status = RETURN_OUT_OF_RESOURCES;
goto ON_ERROR;
}
//
// Assign Global Semaphore pointer
//
SemAddr = (UINTN)(*Context)->SemBuffer;
(*Context)->CpuCount = (SMM_CPU_SYNC_SEMAPHORE *)SemAddr;
*(*Context)->CpuCount = 0;
SemAddr += OneSemSize;
//
// Assign CPU Semaphore pointer
//
CpuSem = (*Context)->CpuSem;
for (CpuIndex = 0; CpuIndex < NumberOfCpus; CpuIndex++) {
CpuSem->Run = (SMM_CPU_SYNC_SEMAPHORE *)SemAddr;
*CpuSem->Run = 0;
CpuSem++;
SemAddr += OneSemSize;
}
return RETURN_SUCCESS;
ON_ERROR:
FreePool (*Context);
return Status;
}
/**
Deinit an allocated SMM CPU Sync context. The resources allocated in SmmCpuSyncContextInit() will
be freed.
If Context is NULL, then ASSERT().
@param[in,out] Context Pointer to the SMM CPU Sync context object to be deinitialized.
**/
VOID
EFIAPI
SmmCpuSyncContextDeinit (
IN OUT SMM_CPU_SYNC_CONTEXT *Context
)
{
ASSERT (Context != NULL);
FreePages (Context->SemBuffer, Context->SemBufferPages);
FreePool (Context);
}
/**
Reset SMM CPU Sync context. SMM CPU Sync context will be reset to the initialized state.
This function is called by one of CPUs after all CPUs are ready to exit SMI, which allows CPU to
check into the next SMI from this point.
If Context is NULL, then ASSERT().
@param[in,out] Context Pointer to the SMM CPU Sync context object to be reset.
**/
VOID
EFIAPI
SmmCpuSyncContextReset (
IN OUT SMM_CPU_SYNC_CONTEXT *Context
)
{
ASSERT (Context != NULL);
Context->ArrivedCpuCountUponLock = 0;
*Context->CpuCount = 0;
}
/**
Get current number of arrived CPU in SMI.
BSP might need to know the current number of arrived CPU in SMI to make sure all APs
in SMI. This API can be for that purpose.
If Context is NULL, then ASSERT().
@param[in] Context Pointer to the SMM CPU Sync context object.
@retval Current number of arrived CPU in SMI.
**/
UINTN
EFIAPI
SmmCpuSyncGetArrivedCpuCount (
IN SMM_CPU_SYNC_CONTEXT *Context
)
{
UINT32 Value;
ASSERT (Context != NULL);
Value = *Context->CpuCount;
if (Value == (UINT32)-1) {
return Context->ArrivedCpuCountUponLock;
}
return Value;
}
/**
Performs an atomic operation to check in CPU.
When SMI happens, all processors including BSP enter to SMM mode by calling SmmCpuSyncCheckInCpu().
If Context is NULL, then ASSERT().
If CpuIndex exceeds the range of all CPUs in the system, then ASSERT().
@param[in,out] Context Pointer to the SMM CPU Sync context object.
@param[in] CpuIndex Check in CPU index.
@retval RETURN_SUCCESS Check in CPU (CpuIndex) successfully.
@retval RETURN_ABORTED Check in CPU failed due to SmmCpuSyncLockDoor() has been called by one elected CPU.
**/
RETURN_STATUS
EFIAPI
SmmCpuSyncCheckInCpu (
IN OUT SMM_CPU_SYNC_CONTEXT *Context,
IN UINTN CpuIndex
)
{
ASSERT (Context != NULL);
ASSERT (CpuIndex < Context->NumberOfCpus);
//
// Check to return if CpuCount has already been locked.
//
if (InternalReleaseSemaphore (Context->CpuCount) == MAX_UINT32) {
return RETURN_ABORTED;
}
return RETURN_SUCCESS;
}
/**
Performs an atomic operation to check out CPU.
This function can be called in error handling flow for the CPU who calls CheckInCpu() earlier.
The caller shall make sure the CPU specified by CpuIndex has already checked-in.
If Context is NULL, then ASSERT().
If CpuIndex exceeds the range of all CPUs in the system, then ASSERT().
@param[in,out] Context Pointer to the SMM CPU Sync context object.
@param[in] CpuIndex Check out CPU index.
@retval RETURN_SUCCESS Check out CPU (CpuIndex) successfully.
@retval RETURN_ABORTED Check out CPU failed due to SmmCpuSyncLockDoor() has been called by one elected CPU.
**/
RETURN_STATUS
EFIAPI
SmmCpuSyncCheckOutCpu (
IN OUT SMM_CPU_SYNC_CONTEXT *Context,
IN UINTN CpuIndex
)
{
ASSERT (Context != NULL);
ASSERT (CpuIndex < Context->NumberOfCpus);
if (InternalWaitForSemaphore (Context->CpuCount) == MAX_UINT32) {
return RETURN_ABORTED;
}
return RETURN_SUCCESS;
}
/**
Performs an atomic operation lock door for CPU checkin and checkout. After this function:
CPU can not check in via SmmCpuSyncCheckInCpu().
CPU can not check out via SmmCpuSyncCheckOutCpu().
The CPU specified by CpuIndex is elected to lock door. The caller shall make sure the CpuIndex
is the actual CPU calling this function to avoid the undefined behavior.
If Context is NULL, then ASSERT().
If CpuCount is NULL, then ASSERT().
If CpuIndex exceeds the range of all CPUs in the system, then ASSERT().
@param[in,out] Context Pointer to the SMM CPU Sync context object.
@param[in] CpuIndex Indicate which CPU to lock door.
@param[out] CpuCount Number of arrived CPU in SMI after look door.
**/
VOID
EFIAPI
SmmCpuSyncLockDoor (
IN OUT SMM_CPU_SYNC_CONTEXT *Context,
IN UINTN CpuIndex,
OUT UINTN *CpuCount
)
{
ASSERT (Context != NULL);
ASSERT (CpuCount != NULL);
ASSERT (CpuIndex < Context->NumberOfCpus);
//
// Temporarily record the CpuCount into the ArrivedCpuCountUponLock before lock door.
// Recording before lock door is to avoid the Context->CpuCount is locked but possible
// Context->ArrivedCpuCountUponLock is not updated.
//
Context->ArrivedCpuCountUponLock = *Context->CpuCount;
//
// Lock door operation
//
*CpuCount = InternalLockdownSemaphore (Context->CpuCount);
//
// Update the ArrivedCpuCountUponLock
//
Context->ArrivedCpuCountUponLock = *CpuCount;
}
/**
Used by the BSP to wait for APs.
The number of APs need to be waited is specified by NumberOfAPs. The BSP is specified by BspIndex.
The caller shall make sure the BspIndex is the actual CPU calling this function to avoid the undefined behavior.
The caller shall make sure the NumberOfAPs have already checked-in to avoid the undefined behavior.
If Context is NULL, then ASSERT().
If NumberOfAPs >= All CPUs in system, then ASSERT().
If BspIndex exceeds the range of all CPUs in the system, then ASSERT().
Note:
This function is blocking mode, and it will return only after the number of APs released by
calling SmmCpuSyncReleaseBsp():
BSP: WaitForAPs <-- AP: ReleaseBsp
@param[in,out] Context Pointer to the SMM CPU Sync context object.
@param[in] NumberOfAPs Number of APs need to be waited by BSP.
@param[in] BspIndex The BSP Index to wait for APs.
**/
VOID
EFIAPI
SmmCpuSyncWaitForAPs (
IN OUT SMM_CPU_SYNC_CONTEXT *Context,
IN UINTN NumberOfAPs,
IN UINTN BspIndex
)
{
UINTN Arrived;
ASSERT (Context != NULL);
ASSERT (NumberOfAPs < Context->NumberOfCpus);
ASSERT (BspIndex < Context->NumberOfCpus);
for (Arrived = 0; Arrived < NumberOfAPs; Arrived++) {
InternalWaitForSemaphore (Context->CpuSem[BspIndex].Run);
}
}
/**
Used by the BSP to release one AP.
The AP is specified by CpuIndex. The BSP is specified by BspIndex.
The caller shall make sure the BspIndex is the actual CPU calling this function to avoid the undefined behavior.
The caller shall make sure the CpuIndex has already checked-in to avoid the undefined behavior.
If Context is NULL, then ASSERT().
If CpuIndex == BspIndex, then ASSERT().
If BspIndex or CpuIndex exceed the range of all CPUs in the system, then ASSERT().
@param[in,out] Context Pointer to the SMM CPU Sync context object.
@param[in] CpuIndex Indicate which AP need to be released.
@param[in] BspIndex The BSP Index to release AP.
**/
VOID
EFIAPI
SmmCpuSyncReleaseOneAp (
IN OUT SMM_CPU_SYNC_CONTEXT *Context,
IN UINTN CpuIndex,
IN UINTN BspIndex
)
{
ASSERT (Context != NULL);
ASSERT (BspIndex != CpuIndex);
ASSERT (CpuIndex < Context->NumberOfCpus);
ASSERT (BspIndex < Context->NumberOfCpus);
InternalReleaseSemaphore (Context->CpuSem[CpuIndex].Run);
}
/**
Used by the AP to wait BSP.
The AP is specified by CpuIndex.
The caller shall make sure the CpuIndex is the actual CPU calling this function to avoid the undefined behavior.
The BSP is specified by BspIndex.
If Context is NULL, then ASSERT().
If CpuIndex == BspIndex, then ASSERT().
If BspIndex or CpuIndex exceed the range of all CPUs in the system, then ASSERT().
Note:
This function is blocking mode, and it will return only after the AP released by
calling SmmCpuSyncReleaseOneAp():
BSP: ReleaseOneAp --> AP: WaitForBsp
@param[in,out] Context Pointer to the SMM CPU Sync context object.
@param[in] CpuIndex Indicate which AP wait BSP.
@param[in] BspIndex The BSP Index to be waited.
**/
VOID
EFIAPI
SmmCpuSyncWaitForBsp (
IN OUT SMM_CPU_SYNC_CONTEXT *Context,
IN UINTN CpuIndex,
IN UINTN BspIndex
)
{
ASSERT (Context != NULL);
ASSERT (BspIndex != CpuIndex);
ASSERT (CpuIndex < Context->NumberOfCpus);
ASSERT (BspIndex < Context->NumberOfCpus);
InternalWaitForSemaphore (Context->CpuSem[CpuIndex].Run);
}
/**
Used by the AP to release BSP.
The AP is specified by CpuIndex.
The caller shall make sure the CpuIndex is the actual CPU calling this function to avoid the undefined behavior.
The BSP is specified by BspIndex.
If Context is NULL, then ASSERT().
If CpuIndex == BspIndex, then ASSERT().
If BspIndex or CpuIndex exceed the range of all CPUs in the system, then ASSERT().
@param[in,out] Context Pointer to the SMM CPU Sync context object.
@param[in] CpuIndex Indicate which AP release BSP.
@param[in] BspIndex The BSP Index to be released.
**/
VOID
EFIAPI
SmmCpuSyncReleaseBsp (
IN OUT SMM_CPU_SYNC_CONTEXT *Context,
IN UINTN CpuIndex,
IN UINTN BspIndex
)
{
ASSERT (Context != NULL);
ASSERT (BspIndex != CpuIndex);
ASSERT (CpuIndex < Context->NumberOfCpus);
ASSERT (BspIndex < Context->NumberOfCpus);
InternalReleaseSemaphore (Context->CpuSem[BspIndex].Run);
}
|