1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
/** @file
RISC-V instance of Timer Library.
Copyright (c) 2016 - 2022, Hewlett Packard Enterprise Development LP. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Uefi.h>
#include <Guid/RiscVSecHobData.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
#include <Register/RiscV64/RiscVImpl.h>
#include <Pi/PiBootMode.h>
#include <Pi/PiHob.h>
#include <Library/HobLib.h>
#include <Library/FdtLib.h>
#include <Library/TimerLib.h>
STATIC UINT64 mTimeBase;
#define GET_TIME_BASE() (mTimeBase ?: GetPerformanceCounterProperties(NULL, NULL))
/**
Stalls the CPU for at least the given number of ticks.
Stalls the CPU for at least the given number of ticks. It's invoked by
MicroSecondDelay() and NanoSecondDelay().
@param Delay A period of time to delay in ticks.
**/
STATIC
VOID
InternalRiscVTimerDelay (
IN UINT64 Delay
)
{
UINT64 Ticks;
Ticks = RiscVReadTimer () + Delay;
while (RiscVReadTimer () <= Ticks) {
CpuPause ();
}
}
/**
Stalls the CPU for at least the given number of microseconds.
Stalls the CPU for the number of microseconds specified by MicroSeconds.
@param MicroSeconds The minimum number of microseconds to delay.
@return MicroSeconds
**/
UINTN
EFIAPI
MicroSecondDelay (
IN UINTN MicroSeconds
)
{
InternalRiscVTimerDelay (
DivU64x32 (
MultU64x32 (
MicroSeconds,
GET_TIME_BASE ()
),
1000000u
)
);
return MicroSeconds;
}
/**
Stalls the CPU for at least the given number of nanoseconds.
Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
@param NanoSeconds The minimum number of nanoseconds to delay.
@return NanoSeconds
**/
UINTN
EFIAPI
NanoSecondDelay (
IN UINTN NanoSeconds
)
{
InternalRiscVTimerDelay (
DivU64x32 (
MultU64x32 (
NanoSeconds,
GET_TIME_BASE ()
),
1000000000u
)
);
return NanoSeconds;
}
/**
Retrieves the current value of a 64-bit free running performance counter.
Retrieves the current value of a 64-bit free running performance counter. The
counter can either count up by 1 or count down by 1. If the physical
performance counter counts by a larger increment, then the counter values
must be translated. The properties of the counter can be retrieved from
GetPerformanceCounterProperties().
@return The current value of the free running performance counter.
**/
UINT64
EFIAPI
GetPerformanceCounter (
VOID
)
{
return (UINT64)RiscVReadTimer ();
}
/**return
Retrieves the 64-bit frequency in Hz and the range of performance counter
values.
If StartValue is not NULL, then the value that the performance counter starts
with immediately after is it rolls over is returned in StartValue. If
EndValue is not NULL, then the value that the performance counter end with
immediately before it rolls over is returned in EndValue. The 64-bit
frequency of the performance counter in Hz is always returned. If StartValue
is less than EndValue, then the performance counter counts up. If StartValue
is greater than EndValue, then the performance counter counts down. For
example, a 64-bit free running counter that counts up would have a StartValue
of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
@param StartValue The value the performance counter starts with when it
rolls over.
@param EndValue The value that the performance counter ends with before
it rolls over.
@return The frequency in Hz.
**/
UINT64
EFIAPI
GetPerformanceCounterProperties (
OUT UINT64 *StartValue, OPTIONAL
OUT UINT64 *EndValue OPTIONAL
)
{
VOID *Hob;
RISCV_SEC_HANDOFF_DATA *SecData;
CONST EFI_GUID SecHobDataGuid = RISCV_SEC_HANDOFF_HOB_GUID;
UINT64 TimeBase;
CONST VOID *FdtBase;
if (StartValue != NULL) {
*StartValue = 0;
}
if (EndValue != NULL) {
*EndValue = 32 - 1;
}
if (mTimeBase != 0) {
return mTimeBase;
}
//
// Locate the FDT HOB and validate header
//
Hob = GetFirstGuidHob (&gFdtHobGuid);
if (Hob) {
FdtBase = (CONST VOID *)(UINTN)*(CONST UINT64 *)GET_GUID_HOB_DATA (Hob);
} else {
//
// Get the FDT address from the SEC HOB
//
Hob = GetFirstGuidHob (&SecHobDataGuid);
ASSERT (Hob != NULL);
SecData = (RISCV_SEC_HANDOFF_DATA *)GET_GUID_HOB_DATA (Hob);
FdtBase = (CONST VOID *)SecData->FdtPointer;
}
ASSERT (FdtBase != NULL);
ASSERT (FdtCheckHeader ((VOID *)(UINTN)FdtBase) == 0);
//
// /cpus node
//
INT32 Node = FdtSubnodeOffsetNameLen (
FdtBase,
0,
"cpus",
sizeof ("cpus") - 1
);
ASSERT (Node >= 0);
//
// timebase-frequency property
//
INT32 Len;
CONST FDT_PROPERTY *Prop =
FdtGetProperty (FdtBase, Node, "timebase-frequency", &Len);
ASSERT (Prop != NULL && Len == sizeof (UINT32));
//
// Device-tree cells are big-endian
//
TimeBase = SwapBytes32 (*(CONST UINT32 *)Prop->Data);
ASSERT (TimeBase != 0);
//
// Save the time base for later use. Note that the mTimeBase maybe zero if
// this library is stored in read-only memory.
//
mTimeBase = TimeBase;
return TimeBase;
}
/**
Converts elapsed ticks of performance counter to time in nanoseconds.
This function converts the elapsed ticks of running performance counter to
time value in unit of nanoseconds.
@param Ticks The number of elapsed ticks of running performance counter.
@return The elapsed time in nanoseconds.
**/
UINT64
EFIAPI
GetTimeInNanoSecond (
IN UINT64 Ticks
)
{
UINT64 NanoSeconds;
UINT32 Remainder;
//
// Ticks
// Time = --------- x 1,000,000,000
// Frequency
//
NanoSeconds = MultU64x32 (DivU64x32Remainder (Ticks, GET_TIME_BASE (), &Remainder), 1000000000u);
//
// Frequency < 0x100000000, so Remainder < 0x100000000, then (Remainder * 1,000,000,000)
// will not overflow 64-bit.
//
NanoSeconds += DivU64x32 (MultU64x32 ((UINT64)Remainder, 1000000000u), GET_TIME_BASE ());
return NanoSeconds;
}
|