summaryrefslogtreecommitdiff
path: root/misc/pylib/fontbuild/italics.pyx
blob: 52233619721172867602d80add3236a36dd16587 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import math

from fontTools.misc.transform import Transform
import numpy as np
from numpy.linalg import norm
from scipy.sparse.linalg import cg
from scipy.ndimage.filters import gaussian_filter1d as gaussian
from scipy.cluster.vq import vq, whiten

from fontbuild.alignpoints import alignCorners
from fontbuild.curveFitPen import fitGlyph, segmentGlyph


def italicizeGlyph(f, g, angle=10, stemWidth=185, meanYCenter=-825, narrowAmount=1):
    unic = g.unicode #save unicode

    glyph = f[g.name]
    slope = np.tanh(math.pi * angle / 180)

    # determine how far on the x axis the glyph should slide
    # to compensate for the slant.
    # meanYCenter:
    #   -600 is a magic number that assumes a 2048 unit em square,
    #   and -825 for a 2816 unit em square. (UPM*0.29296875)
    m = Transform(1, 0, slope, 1, 0, 0)
    xoffset, junk = m.transformPoint((0, meanYCenter))
    m = Transform(narrowAmount, 0, slope, 1, xoffset, 0)

    if len(glyph) > 0:
        g2 = italicize(f[g.name], angle, xoffset=xoffset, stemWidth=stemWidth)
        f.insertGlyph(g2, g.name)

    transformFLGlyphMembers(f[g.name], m)

    if unic > 0xFFFF: #restore unicode
        g.unicode = unic


def italicize(glyph, angle=12, stemWidth=180, xoffset=-50):
    CURVE_CORRECTION_WEIGHT = .03
    CORNER_WEIGHT = 10

    # decompose the glyph into smaller segments
    ga, subsegments = segmentGlyph(glyph,25)
    va, e  = glyphToMesh(ga)
    n = len(va)
    grad = mapEdges(lambda a, pn: normalize(pn[0]-a), va, e)
    cornerWeights = mapEdges(lambda a, pn: normalize(pn[0]-a).dot(normalize(a-pn[1])), grad, e)[:,0].reshape((-1,1))
    smooth = np.ones((n,1)) * CURVE_CORRECTION_WEIGHT

    controlPoints = findControlPointsInMesh(glyph, va, subsegments)
    smooth[controlPoints > 0] = 1
    smooth[cornerWeights < .6] = CORNER_WEIGHT
    # smooth[cornerWeights >= .9999] = 1

    out = va.copy()
    hascurves = False
    for c in glyph.contours:
        for s in c.segments:
            if s.type == "curve":
                hascurves = True
                break
        if hascurves:
            break
    if stemWidth > 100:
        outCorrected = skewMesh(recompose(skewMesh(out, angle * 1.6), grad, e, smooth=smooth), -angle * 1.6)
        # out = copyMeshDetails(va, out, e, 6)
    else:
        outCorrected = out

    # create a transform for italicizing
    normals = edgeNormals(out, e)
    center = va + normals * stemWidth * .4
    if stemWidth > 130:
        center[:, 0] = va[:, 0] * .7 + center[:,0] * .3
    centerSkew = skewMesh(center.dot(np.array([[.97,0],[0,1]])), angle * .9)

    # apply the transform
    out = outCorrected + (centerSkew - center)
    out[:,1] = outCorrected[:,1]

    # make some corrections
    smooth = np.ones((n,1)) * .1
    out = alignCorners(glyph, out, subsegments)
    out = copyMeshDetails(skewMesh(va, angle), out, e, 7, smooth=smooth)
    # grad = mapEdges(lambda a,(p,n): normalize(p-a), skewMesh(outCorrected, angle*.9), e)
    # out = recompose(out, grad, e, smooth=smooth)

    out = skewMesh(out, angle * .1)
    out[:,0] += xoffset
    # out[:,1] = outCorrected[:,1]
    out[va[:,1] == 0, 1] = 0
    gOut = meshToGlyph(out, ga)
    # gOut.width *= .97
    # gOut.width += 10
    # return gOut

    # recompose the glyph into original segments
    return fitGlyph(glyph, gOut, subsegments)


def transformFLGlyphMembers(g, m, transformAnchors = True):
    # g.transform(m)
    g.width = g.width * m[0]
    p = m.transformPoint((0,0))
    for c in g.components:
        d = m.transformPoint(c.offset)
        c.offset = (d[0] - p[0], d[1] - p[1])
    if transformAnchors:
        for a in g.anchors:
                aa = m.transformPoint((a.x,a.y))
                a.x  = aa[0]
                # a.x,a.y = (aa[0] - p[0], aa[1] - p[1])
                # a.x = a.x - m[4]


def glyphToMesh(g):
    points = []
    edges = {}
    offset = 0
    for c in g.contours:
        if len(c) < 2:
            continue
        for i,prev,next in rangePrevNext(len(c)):
            points.append((c[i].points[0].x, c[i].points[0].y))
            edges[i + offset] = np.array([prev + offset, next + offset], dtype=int)
        offset += len(c)
    return np.array(points), edges


def meshToGlyph(points, g):
    g1 = g.copy()
    j = 0
    for c in g1.contours:
        if len(c) < 2:
            continue
        for i in range(len(c)):
            c[i].points[0].x = points[j][0]
            c[i].points[0].y = points[j][1]
            j += 1
    return g1


def quantizeGradient(grad, book=None):
    if book == None:
        book = np.array([(1,0),(0,1),(0,-1),(-1,0)])
    indexArray = vq(whiten(grad), book)[0]
    out = book[indexArray]
    for i,v in enumerate(out):
        out[i] = normalize(v)
    return out


def findControlPointsInMesh(glyph, va, subsegments):
    controlPointIndices = np.zeros((len(va),1))
    index = 0
    for i,c in enumerate(subsegments):
        segmentCount = len(glyph.contours[i].segments) - 1
        for j,s in enumerate(c):
            if j < segmentCount:
                if glyph.contours[i].segments[j].type == "line":
                    controlPointIndices[index] = 1
            index += s[1]
    return controlPointIndices


def recompose(v, grad, e, smooth=1, P=None, distance=None):
    n = len(v)
    if distance == None:
        distance = mapEdges(lambda a, pn: norm(pn[0] - a), v, e)
    if (P == None):
        P = mP(v,e)
        P += np.identity(n) * smooth
    f = v.copy()
    for i,(prev,next) in e.iteritems():
        f[i] = (grad[next] * distance[next] - grad[i] * distance[i])
    out = v.copy()
    f += v * smooth
    for i in range(len(out[0,:])):
        out[:,i] = cg(P, f[:,i])[0]
    return out


def mP(v,e):
    n = len(v)
    M = np.zeros((n,n))
    for i, edges in e.iteritems():
        w = -2 / float(len(edges))
        for index in edges:
            M[i,index] = w
        M[i,i] = 2
    return M


def normalize(v):
    n = np.linalg.norm(v)
    if n == 0:
        return v
    return v/n


def mapEdges(func,v,e,*args):
    b = v.copy()
    for i, edges in e.iteritems():
        b[i] = func(v[i], [v[j] for j in edges], *args)
    return b


def getNormal(a,b,c):
    "Assumes TT winding direction"
    p = np.roll(normalize(b - a), 1)
    n = -np.roll(normalize(c - a), 1)
    p[1] *= -1
    n[1] *= -1
    # print p, n, normalize((p + n) * .5)
    return normalize((p + n) * .5)


def edgeNormals(v,e):
    "Assumes a mesh where each vertex has exactly least two edges"
    return mapEdges(lambda a, pn : getNormal(a,pn[0],pn[1]),v,e)


def rangePrevNext(count):
    c = np.arange(count,dtype=int)
    r = np.vstack((c, np.roll(c, 1), np.roll(c, -1)))
    return r.T


def skewMesh(v,angle):
    slope = np.tanh([math.pi * angle / 180])
    return v.dot(np.array([[1,0],[slope,1]]))


def labelConnected(e):
    label = 0
    labels = np.zeros((len(e),1))
    for i,(prev,next) in e.iteritems():
        labels[i] = label
        if next <= i:
            label += 1
    return labels


def copyGradDetails(a,b,e,scale=15):
    n = len(a)
    labels = labelConnected(e)
    out = a.astype(float).copy()
    for i in range(labels[-1]+1):
        mask = (labels==i).flatten()
        out[mask,:] = gaussian(b[mask,:], scale, mode="wrap", axis=0) + a[mask,:] - gaussian(a[mask,:], scale, mode="wrap", axis=0)
    return out


def copyMeshDetails(va,vb,e,scale=5,smooth=.01):
    gradA = mapEdges(lambda a, pn: normalize(pn[0]-a), va, e)
    gradB = mapEdges(lambda a, pn: normalize(pn[0]-a), vb, e)
    grad = copyGradDetails(gradA, gradB, e, scale)
    grad = mapEdges(lambda a, pn: normalize(a), grad, e)
    return recompose(vb, grad, e, smooth=smooth)


def condenseGlyph(glyph, scale=.8, stemWidth=185):
    ga, subsegments = segmentGlyph(glyph, 25)
    va, e  = glyphToMesh(ga)
    n = len(va)

    normals = edgeNormals(va,e)
    cn = va.dot(np.array([[scale, 0],[0,1]]))
    grad = mapEdges(lambda a, pn: normalize(pn[0]-a), cn, e)
    # ograd = mapEdges(lambda a,(p,n): normalize(p-a), va, e)

    cn[:,0] -= normals[:,0] * stemWidth * .5 * (1 - scale)
    out = recompose(cn, grad, e, smooth=.5)
    # out = recompose(out, grad, e, smooth=.1)
    out = recompose(out, grad, e, smooth=.01)

    # cornerWeights = mapEdges(lambda a,(p,n): normalize(p-a).dot(normalize(a-n)), grad, e)[:,0].reshape((-1,1))
    #     smooth = np.ones((n,1)) * .1
    #     smooth[cornerWeights < .6] = 10
    #
    #     grad2 = quantizeGradient(grad).astype(float)
    #     grad2 = copyGradDetails(grad, grad2, e, scale=10)
    #     grad2 = mapEdges(lambda a,e: normalize(a), grad2, e)
    #     out = recompose(out, grad2, e, smooth=smooth)
    out[:,0] += 15
    out[:,1] = va[:,1]
    # out = recompose(out, grad, e, smooth=.5)
    gOut = meshToGlyph(out, ga)
    gOut = fitGlyph(glyph, gOut, subsegments)
    for i,seg in enumerate(gOut):
        gOut[i].points[0].y = glyph[i].points[0].y
    return gOut