1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
|
/*
* Sparse bit array
*
* Copyright (C) 2018, Google LLC.
* Copyright (C) 2018, Red Hat, Inc. (code style cleanup and fuzzing driver)
*
* This work is licensed under the terms of the GNU GPL, version 2.
*
* This library provides functions to support a memory efficient bit array,
* with an index size of 2^64. A sparsebit array is allocated through
* the use sparsebit_alloc() and free'd via sparsebit_free(),
* such as in the following:
*
* struct sparsebit *s;
* s = sparsebit_alloc();
* sparsebit_free(&s);
*
* The struct sparsebit type resolves down to a struct sparsebit.
* Note that, sparsebit_free() takes a pointer to the sparsebit
* structure. This is so that sparsebit_free() is able to poison
* the pointer (e.g. set it to NULL) to the struct sparsebit before
* returning to the caller.
*
* Between the return of sparsebit_alloc() and the call of
* sparsebit_free(), there are multiple query and modifying operations
* that can be performed on the allocated sparsebit array. All of
* these operations take as a parameter the value returned from
* sparsebit_alloc() and most also take a bit index. Frequently
* used routines include:
*
* ---- Query Operations
* sparsebit_is_set(s, idx)
* sparsebit_is_clear(s, idx)
* sparsebit_any_set(s)
* sparsebit_first_set(s)
* sparsebit_next_set(s, prev_idx)
*
* ---- Modifying Operations
* sparsebit_set(s, idx)
* sparsebit_clear(s, idx)
* sparsebit_set_num(s, idx, num);
* sparsebit_clear_num(s, idx, num);
*
* A common operation, is to itterate over all the bits set in a test
* sparsebit array. This can be done via code with the following structure:
*
* sparsebit_idx_t idx;
* if (sparsebit_any_set(s)) {
* idx = sparsebit_first_set(s);
* do {
* ...
* idx = sparsebit_next_set(s, idx);
* } while (idx != 0);
* }
*
* The index of the first bit set needs to be obtained via
* sparsebit_first_set(), because sparsebit_next_set(), needs
* the index of the previously set. The sparsebit_idx_t type is
* unsigned, so there is no previous index before 0 that is available.
* Also, the call to sparsebit_first_set() is not made unless there
* is at least 1 bit in the array set. This is because sparsebit_first_set()
* aborts if sparsebit_first_set() is called with no bits set.
* It is the callers responsibility to assure that the
* sparsebit array has at least a single bit set before calling
* sparsebit_first_set().
*
* ==== Implementation Overview ====
* For the most part the internal implementation of sparsebit is
* opaque to the caller. One important implementation detail that the
* caller may need to be aware of is the spatial complexity of the
* implementation. This implementation of a sparsebit array is not
* only sparse, in that it uses memory proportional to the number of bits
* set. It is also efficient in memory usage when most of the bits are
* set.
*
* At a high-level the state of the bit settings are maintained through
* the use of a binary-search tree, where each node contains at least
* the following members:
*
* typedef uint64_t sparsebit_idx_t;
* typedef uint64_t sparsebit_num_t;
*
* sparsebit_idx_t idx;
* uint32_t mask;
* sparsebit_num_t num_after;
*
* The idx member contains the bit index of the first bit described by this
* node, while the mask member stores the setting of the first 32-bits.
* The setting of the bit at idx + n, where 0 <= n < 32, is located in the
* mask member at 1 << n.
*
* Nodes are sorted by idx and the bits described by two nodes will never
* overlap. The idx member is always aligned to the mask size, i.e. a
* multiple of 32.
*
* Beyond a typical implementation, the nodes in this implementation also
* contains a member named num_after. The num_after member holds the
* number of bits immediately after the mask bits that are contiguously set.
* The use of the num_after member allows this implementation to efficiently
* represent cases where most bits are set. For example, the case of all
* but the last two bits set, is represented by the following two nodes:
*
* node 0 - idx: 0x0 mask: 0xffffffff num_after: 0xffffffffffffffc0
* node 1 - idx: 0xffffffffffffffe0 mask: 0x3fffffff num_after: 0
*
* ==== Invariants ====
* This implementation usses the following invariants:
*
* + Node are only used to represent bits that are set.
* Nodes with a mask of 0 and num_after of 0 are not allowed.
*
* + Sum of bits set in all the nodes is equal to the value of
* the struct sparsebit_pvt num_set member.
*
* + The setting of at least one bit is always described in a nodes
* mask (mask >= 1).
*
* + A node with all mask bits set only occurs when the last bit
* described by the previous node is not equal to this nodes
* starting index - 1. All such occurences of this condition are
* avoided by moving the setting of the nodes mask bits into
* the previous nodes num_after setting.
*
* + Node starting index is evenly divisable by the number of bits
* within a nodes mask member.
*
* + Nodes never represent a range of bits that wrap around the
* highest supported index.
*
* (idx + MASK_BITS + num_after - 1) <= ((sparsebit_idx_t) 0) - 1)
*
* As a consequence of the above, the num_after member of a node
* will always be <=:
*
* maximum_index - nodes_starting_index - number_of_mask_bits
*
* + Nodes within the binary search tree are sorted based on each
* nodes starting index.
*
* + The range of bits described by any two nodes do not overlap. The
* range of bits described by a single node is:
*
* start: node->idx
* end (inclusive): node->idx + MASK_BITS + node->num_after - 1;
*
* Note, at times these invariants are temporarily violated for a
* specific portion of the code. For example, when setting a mask
* bit, there is a small delay between when the mask bit is set and the
* value in the struct sparsebit_pvt num_set member is updated. Other
* temporary violations occur when node_split() is called with a specified
* index and assures that a node where its mask represents the bit
* at the specified index exists. At times to do this node_split()
* must split an existing node into two nodes or create a node that
* has no bits set. Such temporary violations must be corrected before
* returning to the caller. These corrections are typically performed
* by the local function node_reduce().
*/
#include "test_util.h"
#include "sparsebit.h"
#include <limits.h>
#include <assert.h>
#define DUMP_LINE_MAX 100 /* Does not include indent amount */
typedef uint32_t mask_t;
#define MASK_BITS (sizeof(mask_t) * CHAR_BIT)
struct node {
struct node *parent;
struct node *left;
struct node *right;
sparsebit_idx_t idx; /* index of least-significant bit in mask */
sparsebit_num_t num_after; /* num contiguously set after mask */
mask_t mask;
};
struct sparsebit {
/*
* Points to root node of the binary search
* tree. Equal to NULL when no bits are set in
* the entire sparsebit array.
*/
struct node *root;
/*
* A redundant count of the total number of bits set. Used for
* diagnostic purposes and to change the time complexity of
* sparsebit_num_set() from O(n) to O(1).
* Note: Due to overflow, a value of 0 means none or all set.
*/
sparsebit_num_t num_set;
};
/* Returns the number of set bits described by the settings
* of the node pointed to by nodep.
*/
static sparsebit_num_t node_num_set(struct node *nodep)
{
return nodep->num_after + __builtin_popcount(nodep->mask);
}
/* Returns a pointer to the node that describes the
* lowest bit index.
*/
static struct node *node_first(struct sparsebit *s)
{
struct node *nodep;
for (nodep = s->root; nodep && nodep->left; nodep = nodep->left)
;
return nodep;
}
/* Returns a pointer to the node that describes the
* lowest bit index > the index of the node pointed to by np.
* Returns NULL if no node with a higher index exists.
*/
static struct node *node_next(struct sparsebit *s, struct node *np)
{
struct node *nodep = np;
/*
* If current node has a right child, next node is the left-most
* of the right child.
*/
if (nodep->right) {
for (nodep = nodep->right; nodep->left; nodep = nodep->left)
;
return nodep;
}
/*
* No right child. Go up until node is left child of a parent.
* That parent is then the next node.
*/
while (nodep->parent && nodep == nodep->parent->right)
nodep = nodep->parent;
return nodep->parent;
}
/* Searches for and returns a pointer to the node that describes the
* highest index < the index of the node pointed to by np.
* Returns NULL if no node with a lower index exists.
*/
static struct node *node_prev(struct sparsebit *s, struct node *np)
{
struct node *nodep = np;
/*
* If current node has a left child, next node is the right-most
* of the left child.
*/
if (nodep->left) {
for (nodep = nodep->left; nodep->right; nodep = nodep->right)
;
return (struct node *) nodep;
}
/*
* No left child. Go up until node is right child of a parent.
* That parent is then the next node.
*/
while (nodep->parent && nodep == nodep->parent->left)
nodep = nodep->parent;
return (struct node *) nodep->parent;
}
/* Allocates space to hold a copy of the node sub-tree pointed to by
* subtree and duplicates the bit settings to the newly allocated nodes.
* Returns the newly allocated copy of subtree.
*/
static struct node *node_copy_subtree(struct node *subtree)
{
struct node *root;
/* Duplicate the node at the root of the subtree */
root = calloc(1, sizeof(*root));
if (!root) {
perror("calloc");
abort();
}
root->idx = subtree->idx;
root->mask = subtree->mask;
root->num_after = subtree->num_after;
/* As needed, recursively duplicate the left and right subtrees */
if (subtree->left) {
root->left = node_copy_subtree(subtree->left);
root->left->parent = root;
}
if (subtree->right) {
root->right = node_copy_subtree(subtree->right);
root->right->parent = root;
}
return root;
}
/* Searches for and returns a pointer to the node that describes the setting
* of the bit given by idx. A node describes the setting of a bit if its
* index is within the bits described by the mask bits or the number of
* contiguous bits set after the mask. Returns NULL if there is no such node.
*/
static struct node *node_find(struct sparsebit *s, sparsebit_idx_t idx)
{
struct node *nodep;
/* Find the node that describes the setting of the bit at idx */
for (nodep = s->root; nodep;
nodep = nodep->idx > idx ? nodep->left : nodep->right) {
if (idx >= nodep->idx &&
idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
break;
}
return nodep;
}
/* Entry Requirements:
* + A node that describes the setting of idx is not already present.
*
* Adds a new node to describe the setting of the bit at the index given
* by idx. Returns a pointer to the newly added node.
*
* TODO(lhuemill): Degenerate cases causes the tree to get unbalanced.
*/
static struct node *node_add(struct sparsebit *s, sparsebit_idx_t idx)
{
struct node *nodep, *parentp, *prev;
/* Allocate and initialize the new node. */
nodep = calloc(1, sizeof(*nodep));
if (!nodep) {
perror("calloc");
abort();
}
nodep->idx = idx & -MASK_BITS;
/* If no nodes, set it up as the root node. */
if (!s->root) {
s->root = nodep;
return nodep;
}
/*
* Find the parent where the new node should be attached
* and add the node there.
*/
parentp = s->root;
while (true) {
if (idx < parentp->idx) {
if (!parentp->left) {
parentp->left = nodep;
nodep->parent = parentp;
break;
}
parentp = parentp->left;
} else {
assert(idx > parentp->idx + MASK_BITS + parentp->num_after - 1);
if (!parentp->right) {
parentp->right = nodep;
nodep->parent = parentp;
break;
}
parentp = parentp->right;
}
}
/*
* Does num_after bits of previous node overlap with the mask
* of the new node? If so set the bits in the new nodes mask
* and reduce the previous nodes num_after.
*/
prev = node_prev(s, nodep);
while (prev && prev->idx + MASK_BITS + prev->num_after - 1 >= nodep->idx) {
unsigned int n1 = (prev->idx + MASK_BITS + prev->num_after - 1)
- nodep->idx;
assert(prev->num_after > 0);
assert(n1 < MASK_BITS);
assert(!(nodep->mask & (1 << n1)));
nodep->mask |= (1 << n1);
prev->num_after--;
}
return nodep;
}
/* Returns whether all the bits in the sparsebit array are set. */
bool sparsebit_all_set(struct sparsebit *s)
{
/*
* If any nodes there must be at least one bit set. Only case
* where a bit is set and total num set is 0, is when all bits
* are set.
*/
return s->root && s->num_set == 0;
}
/* Clears all bits described by the node pointed to by nodep, then
* removes the node.
*/
static void node_rm(struct sparsebit *s, struct node *nodep)
{
struct node *tmp;
sparsebit_num_t num_set;
num_set = node_num_set(nodep);
assert(s->num_set >= num_set || sparsebit_all_set(s));
s->num_set -= node_num_set(nodep);
/* Have both left and right child */
if (nodep->left && nodep->right) {
/*
* Move left children to the leftmost leaf node
* of the right child.
*/
for (tmp = nodep->right; tmp->left; tmp = tmp->left)
;
tmp->left = nodep->left;
nodep->left = NULL;
tmp->left->parent = tmp;
}
/* Left only child */
if (nodep->left) {
if (!nodep->parent) {
s->root = nodep->left;
nodep->left->parent = NULL;
} else {
nodep->left->parent = nodep->parent;
if (nodep == nodep->parent->left)
nodep->parent->left = nodep->left;
else {
assert(nodep == nodep->parent->right);
nodep->parent->right = nodep->left;
}
}
nodep->parent = nodep->left = nodep->right = NULL;
free(nodep);
return;
}
/* Right only child */
if (nodep->right) {
if (!nodep->parent) {
s->root = nodep->right;
nodep->right->parent = NULL;
} else {
nodep->right->parent = nodep->parent;
if (nodep == nodep->parent->left)
nodep->parent->left = nodep->right;
else {
assert(nodep == nodep->parent->right);
nodep->parent->right = nodep->right;
}
}
nodep->parent = nodep->left = nodep->right = NULL;
free(nodep);
return;
}
/* Leaf Node */
if (!nodep->parent) {
s->root = NULL;
} else {
if (nodep->parent->left == nodep)
nodep->parent->left = NULL;
else {
assert(nodep == nodep->parent->right);
nodep->parent->right = NULL;
}
}
nodep->parent = nodep->left = nodep->right = NULL;
free(nodep);
return;
}
/* Splits the node containing the bit at idx so that there is a node
* that starts at the specified index. If no such node exists, a new
* node at the specified index is created. Returns the new node.
*
* idx must start of a mask boundary.
*/
static struct node *node_split(struct sparsebit *s, sparsebit_idx_t idx)
{
struct node *nodep1, *nodep2;
sparsebit_idx_t offset;
sparsebit_num_t orig_num_after;
assert(!(idx % MASK_BITS));
/*
* Is there a node that describes the setting of idx?
* If not, add it.
*/
nodep1 = node_find(s, idx);
if (!nodep1)
return node_add(s, idx);
/*
* All done if the starting index of the node is where the
* split should occur.
*/
if (nodep1->idx == idx)
return nodep1;
/*
* Split point not at start of mask, so it must be part of
* bits described by num_after.
*/
/*
* Calculate offset within num_after for where the split is
* to occur.
*/
offset = idx - (nodep1->idx + MASK_BITS);
orig_num_after = nodep1->num_after;
/*
* Add a new node to describe the bits starting at
* the split point.
*/
nodep1->num_after = offset;
nodep2 = node_add(s, idx);
/* Move bits after the split point into the new node */
nodep2->num_after = orig_num_after - offset;
if (nodep2->num_after >= MASK_BITS) {
nodep2->mask = ~(mask_t) 0;
nodep2->num_after -= MASK_BITS;
} else {
nodep2->mask = (1 << nodep2->num_after) - 1;
nodep2->num_after = 0;
}
return nodep2;
}
/* Iteratively reduces the node pointed to by nodep and its adjacent
* nodes into a more compact form. For example, a node with a mask with
* all bits set adjacent to a previous node, will get combined into a
* single node with an increased num_after setting.
*
* After each reduction, a further check is made to see if additional
* reductions are possible with the new previous and next nodes. Note,
* a search for a reduction is only done across the nodes nearest nodep
* and those that became part of a reduction. Reductions beyond nodep
* and the adjacent nodes that are reduced are not discovered. It is the
* responsibility of the caller to pass a nodep that is within one node
* of each possible reduction.
*
* This function does not fix the temporary violation of all invariants.
* For example it does not fix the case where the bit settings described
* by two or more nodes overlap. Such a violation introduces the potential
* complication of a bit setting for a specific index having different settings
* in different nodes. This would then introduce the further complication
* of which node has the correct setting of the bit and thus such conditions
* are not allowed.
*
* This function is designed to fix invariant violations that are introduced
* by node_split() and by changes to the nodes mask or num_after members.
* For example, when setting a bit within a nodes mask, the function that
* sets the bit doesn't have to worry about whether the setting of that
* bit caused the mask to have leading only or trailing only bits set.
* Instead, the function can call node_reduce(), with nodep equal to the
* node address that it set a mask bit in, and node_reduce() will notice
* the cases of leading or trailing only bits and that there is an
* adjacent node that the bit settings could be merged into.
*
* This implementation specifically detects and corrects violation of the
* following invariants:
*
* + Node are only used to represent bits that are set.
* Nodes with a mask of 0 and num_after of 0 are not allowed.
*
* + The setting of at least one bit is always described in a nodes
* mask (mask >= 1).
*
* + A node with all mask bits set only occurs when the last bit
* described by the previous node is not equal to this nodes
* starting index - 1. All such occurences of this condition are
* avoided by moving the setting of the nodes mask bits into
* the previous nodes num_after setting.
*/
static void node_reduce(struct sparsebit *s, struct node *nodep)
{
bool reduction_performed;
do {
reduction_performed = false;
struct node *prev, *next, *tmp;
/* 1) Potential reductions within the current node. */
/* Nodes with all bits cleared may be removed. */
if (nodep->mask == 0 && nodep->num_after == 0) {
/*
* About to remove the node pointed to by
* nodep, which normally would cause a problem
* for the next pass through the reduction loop,
* because the node at the starting point no longer
* exists. This potential problem is handled
* by first remembering the location of the next
* or previous nodes. Doesn't matter which, because
* once the node at nodep is removed, there will be
* no other nodes between prev and next.
*
* Note, the checks performed on nodep against both
* both prev and next both check for an adjacent
* node that can be reduced into a single node. As
* such, after removing the node at nodep, doesn't
* matter whether the nodep for the next pass
* through the loop is equal to the previous pass
* prev or next node. Either way, on the next pass
* the one not selected will become either the
* prev or next node.
*/
tmp = node_next(s, nodep);
if (!tmp)
tmp = node_prev(s, nodep);
node_rm(s, nodep);
nodep = NULL;
nodep = tmp;
reduction_performed = true;
continue;
}
/*
* When the mask is 0, can reduce the amount of num_after
* bits by moving the initial num_after bits into the mask.
*/
if (nodep->mask == 0) {
assert(nodep->num_after != 0);
assert(nodep->idx + MASK_BITS > nodep->idx);
nodep->idx += MASK_BITS;
if (nodep->num_after >= MASK_BITS) {
nodep->mask = ~0;
nodep->num_after -= MASK_BITS;
} else {
nodep->mask = (1u << nodep->num_after) - 1;
nodep->num_after = 0;
}
reduction_performed = true;
continue;
}
/*
* 2) Potential reductions between the current and
* previous nodes.
*/
prev = node_prev(s, nodep);
if (prev) {
sparsebit_idx_t prev_highest_bit;
/* Nodes with no bits set can be removed. */
if (prev->mask == 0 && prev->num_after == 0) {
node_rm(s, prev);
reduction_performed = true;
continue;
}
/*
* All mask bits set and previous node has
* adjacent index.
*/
if (nodep->mask + 1 == 0 &&
prev->idx + MASK_BITS == nodep->idx) {
prev->num_after += MASK_BITS + nodep->num_after;
nodep->mask = 0;
nodep->num_after = 0;
reduction_performed = true;
continue;
}
/*
* Is node adjacent to previous node and the node
* contains a single contiguous range of bits
* starting from the beginning of the mask?
*/
prev_highest_bit = prev->idx + MASK_BITS - 1 + prev->num_after;
if (prev_highest_bit + 1 == nodep->idx &&
(nodep->mask | (nodep->mask >> 1)) == nodep->mask) {
/*
* How many contiguous bits are there?
* Is equal to the total number of set
* bits, due to an earlier check that
* there is a single contiguous range of
* set bits.
*/
unsigned int num_contiguous
= __builtin_popcount(nodep->mask);
assert((num_contiguous > 0) &&
((1ULL << num_contiguous) - 1) == nodep->mask);
prev->num_after += num_contiguous;
nodep->mask = 0;
/*
* For predictable performance, handle special
* case where all mask bits are set and there
* is a non-zero num_after setting. This code
* is functionally correct without the following
* conditionalized statements, but without them
* the value of num_after is only reduced by
* the number of mask bits per pass. There are
* cases where num_after can be close to 2^64.
* Without this code it could take nearly
* (2^64) / 32 passes to perform the full
* reduction.
*/
if (num_contiguous == MASK_BITS) {
prev->num_after += nodep->num_after;
nodep->num_after = 0;
}
reduction_performed = true;
continue;
}
}
/*
* 3) Potential reductions between the current and
* next nodes.
*/
next = node_next(s, nodep);
if (next) {
/* Nodes with no bits set can be removed. */
if (next->mask == 0 && next->num_after == 0) {
node_rm(s, next);
reduction_performed = true;
continue;
}
/*
* Is next node index adjacent to current node
* and has a mask with all bits set?
*/
if (next->idx == nodep->idx + MASK_BITS + nodep->num_after &&
next->mask == ~(mask_t) 0) {
nodep->num_after += MASK_BITS;
next->mask = 0;
nodep->num_after += next->num_after;
next->num_after = 0;
node_rm(s, next);
next = NULL;
reduction_performed = true;
continue;
}
}
} while (nodep && reduction_performed);
}
/* Returns whether the bit at the index given by idx, within the
* sparsebit array is set or not.
*/
bool sparsebit_is_set(struct sparsebit *s, sparsebit_idx_t idx)
{
struct node *nodep;
/* Find the node that describes the setting of the bit at idx */
for (nodep = s->root; nodep;
nodep = nodep->idx > idx ? nodep->left : nodep->right)
if (idx >= nodep->idx &&
idx <= nodep->idx + MASK_BITS + nodep->num_after - 1)
goto have_node;
return false;
have_node:
/* Bit is set if it is any of the bits described by num_after */
if (nodep->num_after && idx >= nodep->idx + MASK_BITS)
return true;
/* Is the corresponding mask bit set */
assert(idx >= nodep->idx && idx - nodep->idx < MASK_BITS);
return !!(nodep->mask & (1 << (idx - nodep->idx)));
}
/* Within the sparsebit array pointed to by s, sets the bit
* at the index given by idx.
*/
static void bit_set(struct sparsebit *s, sparsebit_idx_t idx)
{
struct node *nodep;
/* Skip bits that are already set */
if (sparsebit_is_set(s, idx))
return;
/*
* Get a node where the bit at idx is described by the mask.
* The node_split will also create a node, if there isn't
* already a node that describes the setting of bit.
*/
nodep = node_split(s, idx & -MASK_BITS);
/* Set the bit within the nodes mask */
assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
assert(!(nodep->mask & (1 << (idx - nodep->idx))));
nodep->mask |= 1 << (idx - nodep->idx);
s->num_set++;
node_reduce(s, nodep);
}
/* Within the sparsebit array pointed to by s, clears the bit
* at the index given by idx.
*/
static void bit_clear(struct sparsebit *s, sparsebit_idx_t idx)
{
struct node *nodep;
/* Skip bits that are already cleared */
if (!sparsebit_is_set(s, idx))
return;
/* Is there a node that describes the setting of this bit? */
nodep = node_find(s, idx);
if (!nodep)
return;
/*
* If a num_after bit, split the node, so that the bit is
* part of a node mask.
*/
if (idx >= nodep->idx + MASK_BITS)
nodep = node_split(s, idx & -MASK_BITS);
/*
* After node_split above, bit at idx should be within the mask.
* Clear that bit.
*/
assert(idx >= nodep->idx && idx <= nodep->idx + MASK_BITS - 1);
assert(nodep->mask & (1 << (idx - nodep->idx)));
nodep->mask &= ~(1 << (idx - nodep->idx));
assert(s->num_set > 0 || sparsebit_all_set(s));
s->num_set--;
node_reduce(s, nodep);
}
/* Recursively dumps to the FILE stream given by stream the contents
* of the sub-tree of nodes pointed to by nodep. Each line of output
* is prefixed by the number of spaces given by indent. On each
* recursion, the indent amount is increased by 2. This causes nodes
* at each level deeper into the binary search tree to be displayed
* with a greater indent.
*/
static void dump_nodes(FILE *stream, struct node *nodep,
unsigned int indent)
{
char *node_type;
/* Dump contents of node */
if (!nodep->parent)
node_type = "root";
else if (nodep == nodep->parent->left)
node_type = "left";
else {
assert(nodep == nodep->parent->right);
node_type = "right";
}
fprintf(stream, "%*s---- %s nodep: %p\n", indent, "", node_type, nodep);
fprintf(stream, "%*s parent: %p left: %p right: %p\n", indent, "",
nodep->parent, nodep->left, nodep->right);
fprintf(stream, "%*s idx: 0x%lx mask: 0x%x num_after: 0x%lx\n",
indent, "", nodep->idx, nodep->mask, nodep->num_after);
/* If present, dump contents of left child nodes */
if (nodep->left)
dump_nodes(stream, nodep->left, indent + 2);
/* If present, dump contents of right child nodes */
if (nodep->right)
dump_nodes(stream, nodep->right, indent + 2);
}
static inline sparsebit_idx_t node_first_set(struct node *nodep, int start)
{
mask_t leading = (mask_t)1 << start;
int n1 = __builtin_ctz(nodep->mask & -leading);
return nodep->idx + n1;
}
static inline sparsebit_idx_t node_first_clear(struct node *nodep, int start)
{
mask_t leading = (mask_t)1 << start;
int n1 = __builtin_ctz(~nodep->mask & -leading);
return nodep->idx + n1;
}
/* Dumps to the FILE stream specified by stream, the implementation dependent
* internal state of s. Each line of output is prefixed with the number
* of spaces given by indent. The output is completely implementation
* dependent and subject to change. Output from this function should only
* be used for diagnostic purposes. For example, this function can be
* used by test cases after they detect an unexpected condition, as a means
* to capture diagnostic information.
*/
static void sparsebit_dump_internal(FILE *stream, struct sparsebit *s,
unsigned int indent)
{
/* Dump the contents of s */
fprintf(stream, "%*sroot: %p\n", indent, "", s->root);
fprintf(stream, "%*snum_set: 0x%lx\n", indent, "", s->num_set);
if (s->root)
dump_nodes(stream, s->root, indent);
}
/* Allocates and returns a new sparsebit array. The initial state
* of the newly allocated sparsebit array has all bits cleared.
*/
struct sparsebit *sparsebit_alloc(void)
{
struct sparsebit *s;
/* Allocate top level structure. */
s = calloc(1, sizeof(*s));
if (!s) {
perror("calloc");
abort();
}
return s;
}
/* Frees the implementation dependent data for the sparsebit array
* pointed to by s and poisons the pointer to that data.
*/
void sparsebit_free(struct sparsebit **sbitp)
{
struct sparsebit *s = *sbitp;
if (!s)
return;
sparsebit_clear_all(s);
free(s);
*sbitp = NULL;
}
/* Makes a copy of the sparsebit array given by s, to the sparsebit
* array given by d. Note, d must have already been allocated via
* sparsebit_alloc(). It can though already have bits set, which
* if different from src will be cleared.
*/
void sparsebit_copy(struct sparsebit *d, struct sparsebit *s)
{
/* First clear any bits already set in the destination */
sparsebit_clear_all(d);
if (s->root) {
d->root = node_copy_subtree(s->root);
d->num_set = s->num_set;
}
}
/* Returns whether num consecutive bits starting at idx are all set. */
bool sparsebit_is_set_num(struct sparsebit *s,
sparsebit_idx_t idx, sparsebit_num_t num)
{
sparsebit_idx_t next_cleared;
assert(num > 0);
assert(idx + num - 1 >= idx);
/* With num > 0, the first bit must be set. */
if (!sparsebit_is_set(s, idx))
return false;
/* Find the next cleared bit */
next_cleared = sparsebit_next_clear(s, idx);
/*
* If no cleared bits beyond idx, then there are at least num
* set bits. idx + num doesn't wrap. Otherwise check if
* there are enough set bits between idx and the next cleared bit.
*/
return next_cleared == 0 || next_cleared - idx >= num;
}
/* Returns whether the bit at the index given by idx. */
bool sparsebit_is_clear(struct sparsebit *s,
sparsebit_idx_t idx)
{
return !sparsebit_is_set(s, idx);
}
/* Returns whether num consecutive bits starting at idx are all cleared. */
bool sparsebit_is_clear_num(struct sparsebit *s,
sparsebit_idx_t idx, sparsebit_num_t num)
{
sparsebit_idx_t next_set;
assert(num > 0);
assert(idx + num - 1 >= idx);
/* With num > 0, the first bit must be cleared. */
if (!sparsebit_is_clear(s, idx))
return false;
/* Find the next set bit */
next_set = sparsebit_next_set(s, idx);
/*
* If no set bits beyond idx, then there are at least num
* cleared bits. idx + num doesn't wrap. Otherwise check if
* there are enough cleared bits between idx and the next set bit.
*/
return next_set == 0 || next_set - idx >= num;
}
/* Returns the total number of bits set. Note: 0 is also returned for
* the case of all bits set. This is because with all bits set, there
* is 1 additional bit set beyond what can be represented in the return
* value. Use sparsebit_any_set(), instead of sparsebit_num_set() > 0,
* to determine if the sparsebit array has any bits set.
*/
sparsebit_num_t sparsebit_num_set(struct sparsebit *s)
{
return s->num_set;
}
/* Returns whether any bit is set in the sparsebit array. */
bool sparsebit_any_set(struct sparsebit *s)
{
/*
* Nodes only describe set bits. If any nodes then there
* is at least 1 bit set.
*/
if (!s->root)
return false;
/*
* Every node should have a non-zero mask. For now will
* just assure that the root node has a non-zero mask,
* which is a quick check that at least 1 bit is set.
*/
assert(s->root->mask != 0);
assert(s->num_set > 0 ||
(s->root->num_after == ((sparsebit_num_t) 0) - MASK_BITS &&
s->root->mask == ~(mask_t) 0));
return true;
}
/* Returns whether all the bits in the sparsebit array are cleared. */
bool sparsebit_all_clear(struct sparsebit *s)
{
return !sparsebit_any_set(s);
}
/* Returns whether all the bits in the sparsebit array are set. */
bool sparsebit_any_clear(struct sparsebit *s)
{
return !sparsebit_all_set(s);
}
/* Returns the index of the first set bit. Abort if no bits are set.
*/
sparsebit_idx_t sparsebit_first_set(struct sparsebit *s)
{
struct node *nodep;
/* Validate at least 1 bit is set */
assert(sparsebit_any_set(s));
nodep = node_first(s);
return node_first_set(nodep, 0);
}
/* Returns the index of the first cleared bit. Abort if
* no bits are cleared.
*/
sparsebit_idx_t sparsebit_first_clear(struct sparsebit *s)
{
struct node *nodep1, *nodep2;
/* Validate at least 1 bit is cleared. */
assert(sparsebit_any_clear(s));
/* If no nodes or first node index > 0 then lowest cleared is 0 */
nodep1 = node_first(s);
if (!nodep1 || nodep1->idx > 0)
return 0;
/* Does the mask in the first node contain any cleared bits. */
if (nodep1->mask != ~(mask_t) 0)
return node_first_clear(nodep1, 0);
/*
* All mask bits set in first node. If there isn't a second node
* then the first cleared bit is the first bit after the bits
* described by the first node.
*/
nodep2 = node_next(s, nodep1);
if (!nodep2) {
/*
* No second node. First cleared bit is first bit beyond
* bits described by first node.
*/
assert(nodep1->mask == ~(mask_t) 0);
assert(nodep1->idx + MASK_BITS + nodep1->num_after != (sparsebit_idx_t) 0);
return nodep1->idx + MASK_BITS + nodep1->num_after;
}
/*
* There is a second node.
* If it is not adjacent to the first node, then there is a gap
* of cleared bits between the nodes, and the first cleared bit
* is the first bit within the gap.
*/
if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
return nodep1->idx + MASK_BITS + nodep1->num_after;
/*
* Second node is adjacent to the first node.
* Because it is adjacent, its mask should be non-zero. If all
* its mask bits are set, then with it being adjacent, it should
* have had the mask bits moved into the num_after setting of the
* previous node.
*/
return node_first_clear(nodep2, 0);
}
/* Returns index of next bit set within s after the index given by prev.
* Returns 0 if there are no bits after prev that are set.
*/
sparsebit_idx_t sparsebit_next_set(struct sparsebit *s,
sparsebit_idx_t prev)
{
sparsebit_idx_t lowest_possible = prev + 1;
sparsebit_idx_t start;
struct node *nodep;
/* A bit after the highest index can't be set. */
if (lowest_possible == 0)
return 0;
/*
* Find the leftmost 'candidate' overlapping or to the right
* of lowest_possible.
*/
struct node *candidate = NULL;
/* True iff lowest_possible is within candidate */
bool contains = false;
/*
* Find node that describes setting of bit at lowest_possible.
* If such a node doesn't exist, find the node with the lowest
* starting index that is > lowest_possible.
*/
for (nodep = s->root; nodep;) {
if ((nodep->idx + MASK_BITS + nodep->num_after - 1)
>= lowest_possible) {
candidate = nodep;
if (candidate->idx <= lowest_possible) {
contains = true;
break;
}
nodep = nodep->left;
} else {
nodep = nodep->right;
}
}
if (!candidate)
return 0;
assert(candidate->mask != 0);
/* Does the candidate node describe the setting of lowest_possible? */
if (!contains) {
/*
* Candidate doesn't describe setting of bit at lowest_possible.
* Candidate points to the first node with a starting index
* > lowest_possible.
*/
assert(candidate->idx > lowest_possible);
return node_first_set(candidate, 0);
}
/*
* Candidate describes setting of bit at lowest_possible.
* Note: although the node describes the setting of the bit
* at lowest_possible, its possible that its setting and the
* setting of all latter bits described by this node are 0.
* For now, just handle the cases where this node describes
* a bit at or after an index of lowest_possible that is set.
*/
start = lowest_possible - candidate->idx;
if (start < MASK_BITS && candidate->mask >= (1 << start))
return node_first_set(candidate, start);
if (candidate->num_after) {
sparsebit_idx_t first_num_after_idx = candidate->idx + MASK_BITS;
return lowest_possible < first_num_after_idx
? first_num_after_idx : lowest_possible;
}
/*
* Although candidate node describes setting of bit at
* the index of lowest_possible, all bits at that index and
* latter that are described by candidate are cleared. With
* this, the next bit is the first bit in the next node, if
* such a node exists. If a next node doesn't exist, then
* there is no next set bit.
*/
candidate = node_next(s, candidate);
if (!candidate)
return 0;
return node_first_set(candidate, 0);
}
/* Returns index of next bit cleared within s after the index given by prev.
* Returns 0 if there are no bits after prev that are cleared.
*/
sparsebit_idx_t sparsebit_next_clear(struct sparsebit *s,
sparsebit_idx_t prev)
{
sparsebit_idx_t lowest_possible = prev + 1;
sparsebit_idx_t idx;
struct node *nodep1, *nodep2;
/* A bit after the highest index can't be set. */
if (lowest_possible == 0)
return 0;
/*
* Does a node describing the setting of lowest_possible exist?
* If not, the bit at lowest_possible is cleared.
*/
nodep1 = node_find(s, lowest_possible);
if (!nodep1)
return lowest_possible;
/* Does a mask bit in node 1 describe the next cleared bit. */
for (idx = lowest_possible - nodep1->idx; idx < MASK_BITS; idx++)
if (!(nodep1->mask & (1 << idx)))
return nodep1->idx + idx;
/*
* Next cleared bit is not described by node 1. If there
* isn't a next node, then next cleared bit is described
* by bit after the bits described by the first node.
*/
nodep2 = node_next(s, nodep1);
if (!nodep2)
return nodep1->idx + MASK_BITS + nodep1->num_after;
/*
* There is a second node.
* If it is not adjacent to the first node, then there is a gap
* of cleared bits between the nodes, and the next cleared bit
* is the first bit within the gap.
*/
if (nodep1->idx + MASK_BITS + nodep1->num_after != nodep2->idx)
return nodep1->idx + MASK_BITS + nodep1->num_after;
/*
* Second node is adjacent to the first node.
* Because it is adjacent, its mask should be non-zero. If all
* its mask bits are set, then with it being adjacent, it should
* have had the mask bits moved into the num_after setting of the
* previous node.
*/
return node_first_clear(nodep2, 0);
}
/* Starting with the index 1 greater than the index given by start, finds
* and returns the index of the first sequence of num consecutively set
* bits. Returns a value of 0 of no such sequence exists.
*/
sparsebit_idx_t sparsebit_next_set_num(struct sparsebit *s,
sparsebit_idx_t start, sparsebit_num_t num)
{
sparsebit_idx_t idx;
assert(num >= 1);
for (idx = sparsebit_next_set(s, start);
idx != 0 && idx + num - 1 >= idx;
idx = sparsebit_next_set(s, idx)) {
assert(sparsebit_is_set(s, idx));
/*
* Does the sequence of bits starting at idx consist of
* num set bits?
*/
if (sparsebit_is_set_num(s, idx, num))
return idx;
/*
* Sequence of set bits at idx isn't large enough.
* Skip this entire sequence of set bits.
*/
idx = sparsebit_next_clear(s, idx);
if (idx == 0)
return 0;
}
return 0;
}
/* Starting with the index 1 greater than the index given by start, finds
* and returns the index of the first sequence of num consecutively cleared
* bits. Returns a value of 0 of no such sequence exists.
*/
sparsebit_idx_t sparsebit_next_clear_num(struct sparsebit *s,
sparsebit_idx_t start, sparsebit_num_t num)
{
sparsebit_idx_t idx;
assert(num >= 1);
for (idx = sparsebit_next_clear(s, start);
idx != 0 && idx + num - 1 >= idx;
idx = sparsebit_next_clear(s, idx)) {
assert(sparsebit_is_clear(s, idx));
/*
* Does the sequence of bits starting at idx consist of
* num cleared bits?
*/
if (sparsebit_is_clear_num(s, idx, num))
return idx;
/*
* Sequence of cleared bits at idx isn't large enough.
* Skip this entire sequence of cleared bits.
*/
idx = sparsebit_next_set(s, idx);
if (idx == 0)
return 0;
}
return 0;
}
/* Sets the bits * in the inclusive range idx through idx + num - 1. */
void sparsebit_set_num(struct sparsebit *s,
sparsebit_idx_t start, sparsebit_num_t num)
{
struct node *nodep, *next;
unsigned int n1;
sparsebit_idx_t idx;
sparsebit_num_t n;
sparsebit_idx_t middle_start, middle_end;
assert(num > 0);
assert(start + num - 1 >= start);
/*
* Leading - bits before first mask boundary.
*
* TODO(lhuemill): With some effort it may be possible to
* replace the following loop with a sequential sequence
* of statements. High level sequence would be:
*
* 1. Use node_split() to force node that describes setting
* of idx to be within the mask portion of a node.
* 2. Form mask of bits to be set.
* 3. Determine number of mask bits already set in the node
* and store in a local variable named num_already_set.
* 4. Set the appropriate mask bits within the node.
* 5. Increment struct sparsebit_pvt num_set member
* by the number of bits that were actually set.
* Exclude from the counts bits that were already set.
* 6. Before returning to the caller, use node_reduce() to
* handle the multiple corner cases that this method
* introduces.
*/
for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
bit_set(s, idx);
/* Middle - bits spanning one or more entire mask */
middle_start = idx;
middle_end = middle_start + (n & -MASK_BITS) - 1;
if (n >= MASK_BITS) {
nodep = node_split(s, middle_start);
/*
* As needed, split just after end of middle bits.
* No split needed if end of middle bits is at highest
* supported bit index.
*/
if (middle_end + 1 > middle_end)
(void) node_split(s, middle_end + 1);
/* Delete nodes that only describe bits within the middle. */
for (next = node_next(s, nodep);
next && (next->idx < middle_end);
next = node_next(s, nodep)) {
assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
node_rm(s, next);
next = NULL;
}
/* As needed set each of the mask bits */
for (n1 = 0; n1 < MASK_BITS; n1++) {
if (!(nodep->mask & (1 << n1))) {
nodep->mask |= 1 << n1;
s->num_set++;
}
}
s->num_set -= nodep->num_after;
nodep->num_after = middle_end - middle_start + 1 - MASK_BITS;
s->num_set += nodep->num_after;
node_reduce(s, nodep);
}
idx = middle_end + 1;
n -= middle_end - middle_start + 1;
/* Trailing - bits at and beyond last mask boundary */
assert(n < MASK_BITS);
for (; n > 0; idx++, n--)
bit_set(s, idx);
}
/* Clears the bits * in the inclusive range idx through idx + num - 1. */
void sparsebit_clear_num(struct sparsebit *s,
sparsebit_idx_t start, sparsebit_num_t num)
{
struct node *nodep, *next;
unsigned int n1;
sparsebit_idx_t idx;
sparsebit_num_t n;
sparsebit_idx_t middle_start, middle_end;
assert(num > 0);
assert(start + num - 1 >= start);
/* Leading - bits before first mask boundary */
for (idx = start, n = num; n > 0 && idx % MASK_BITS != 0; idx++, n--)
bit_clear(s, idx);
/* Middle - bits spanning one or more entire mask */
middle_start = idx;
middle_end = middle_start + (n & -MASK_BITS) - 1;
if (n >= MASK_BITS) {
nodep = node_split(s, middle_start);
/*
* As needed, split just after end of middle bits.
* No split needed if end of middle bits is at highest
* supported bit index.
*/
if (middle_end + 1 > middle_end)
(void) node_split(s, middle_end + 1);
/* Delete nodes that only describe bits within the middle. */
for (next = node_next(s, nodep);
next && (next->idx < middle_end);
next = node_next(s, nodep)) {
assert(next->idx + MASK_BITS + next->num_after - 1 <= middle_end);
node_rm(s, next);
next = NULL;
}
/* As needed clear each of the mask bits */
for (n1 = 0; n1 < MASK_BITS; n1++) {
if (nodep->mask & (1 << n1)) {
nodep->mask &= ~(1 << n1);
s->num_set--;
}
}
/* Clear any bits described by num_after */
s->num_set -= nodep->num_after;
nodep->num_after = 0;
/*
* Delete the node that describes the beginning of
* the middle bits and perform any allowed reductions
* with the nodes prev or next of nodep.
*/
node_reduce(s, nodep);
nodep = NULL;
}
idx = middle_end + 1;
n -= middle_end - middle_start + 1;
/* Trailing - bits at and beyond last mask boundary */
assert(n < MASK_BITS);
for (; n > 0; idx++, n--)
bit_clear(s, idx);
}
/* Sets the bit at the index given by idx. */
void sparsebit_set(struct sparsebit *s, sparsebit_idx_t idx)
{
sparsebit_set_num(s, idx, 1);
}
/* Clears the bit at the index given by idx. */
void sparsebit_clear(struct sparsebit *s, sparsebit_idx_t idx)
{
sparsebit_clear_num(s, idx, 1);
}
/* Sets the bits in the entire addressable range of the sparsebit array. */
void sparsebit_set_all(struct sparsebit *s)
{
sparsebit_set(s, 0);
sparsebit_set_num(s, 1, ~(sparsebit_idx_t) 0);
assert(sparsebit_all_set(s));
}
/* Clears the bits in the entire addressable range of the sparsebit array. */
void sparsebit_clear_all(struct sparsebit *s)
{
sparsebit_clear(s, 0);
sparsebit_clear_num(s, 1, ~(sparsebit_idx_t) 0);
assert(!sparsebit_any_set(s));
}
static size_t display_range(FILE *stream, sparsebit_idx_t low,
sparsebit_idx_t high, bool prepend_comma_space)
{
char *fmt_str;
size_t sz;
/* Determine the printf format string */
if (low == high)
fmt_str = prepend_comma_space ? ", 0x%lx" : "0x%lx";
else
fmt_str = prepend_comma_space ? ", 0x%lx:0x%lx" : "0x%lx:0x%lx";
/*
* When stream is NULL, just determine the size of what would
* have been printed, else print the range.
*/
if (!stream)
sz = snprintf(NULL, 0, fmt_str, low, high);
else
sz = fprintf(stream, fmt_str, low, high);
return sz;
}
/* Dumps to the FILE stream given by stream, the bit settings
* of s. Each line of output is prefixed with the number of
* spaces given by indent. The length of each line is implementation
* dependent and does not depend on the indent amount. The following
* is an example output of a sparsebit array that has bits:
*
* 0x5, 0x8, 0xa:0xe, 0x12
*
* This corresponds to a sparsebit whose bits 5, 8, 10, 11, 12, 13, 14, 18
* are set. Note that a ':', instead of a '-' is used to specify a range of
* contiguous bits. This is done because '-' is used to specify command-line
* options, and sometimes ranges are specified as command-line arguments.
*/
void sparsebit_dump(FILE *stream, struct sparsebit *s,
unsigned int indent)
{
size_t current_line_len = 0;
size_t sz;
struct node *nodep;
if (!sparsebit_any_set(s))
return;
/* Display initial indent */
fprintf(stream, "%*s", indent, "");
/* For each node */
for (nodep = node_first(s); nodep; nodep = node_next(s, nodep)) {
unsigned int n1;
sparsebit_idx_t low, high;
/* For each group of bits in the mask */
for (n1 = 0; n1 < MASK_BITS; n1++) {
if (nodep->mask & (1 << n1)) {
low = high = nodep->idx + n1;
for (; n1 < MASK_BITS; n1++) {
if (nodep->mask & (1 << n1))
high = nodep->idx + n1;
else
break;
}
if ((n1 == MASK_BITS) && nodep->num_after)
high += nodep->num_after;
/*
* How much room will it take to display
* this range.
*/
sz = display_range(NULL, low, high,
current_line_len != 0);
/*
* If there is not enough room, display
* a newline plus the indent of the next
* line.
*/
if (current_line_len + sz > DUMP_LINE_MAX) {
fputs("\n", stream);
fprintf(stream, "%*s", indent, "");
current_line_len = 0;
}
/* Display the range */
sz = display_range(stream, low, high,
current_line_len != 0);
current_line_len += sz;
}
}
/*
* If num_after and most significant-bit of mask is not
* set, then still need to display a range for the bits
* described by num_after.
*/
if (!(nodep->mask & (1 << (MASK_BITS - 1))) && nodep->num_after) {
low = nodep->idx + MASK_BITS;
high = nodep->idx + MASK_BITS + nodep->num_after - 1;
/*
* How much room will it take to display
* this range.
*/
sz = display_range(NULL, low, high,
current_line_len != 0);
/*
* If there is not enough room, display
* a newline plus the indent of the next
* line.
*/
if (current_line_len + sz > DUMP_LINE_MAX) {
fputs("\n", stream);
fprintf(stream, "%*s", indent, "");
current_line_len = 0;
}
/* Display the range */
sz = display_range(stream, low, high,
current_line_len != 0);
current_line_len += sz;
}
}
fputs("\n", stream);
}
/* Validates the internal state of the sparsebit array given by
* s. On error, diagnostic information is printed to stderr and
* abort is called.
*/
void sparsebit_validate_internal(struct sparsebit *s)
{
bool error_detected = false;
struct node *nodep, *prev = NULL;
sparsebit_num_t total_bits_set = 0;
unsigned int n1;
/* For each node */
for (nodep = node_first(s); nodep;
prev = nodep, nodep = node_next(s, nodep)) {
/*
* Increase total bits set by the number of bits set
* in this node.
*/
for (n1 = 0; n1 < MASK_BITS; n1++)
if (nodep->mask & (1 << n1))
total_bits_set++;
total_bits_set += nodep->num_after;
/*
* Arbitrary choice as to whether a mask of 0 is allowed
* or not. For diagnostic purposes it is beneficial to
* have only one valid means to represent a set of bits.
* To support this an arbitrary choice has been made
* to not allow a mask of zero.
*/
if (nodep->mask == 0) {
fprintf(stderr, "Node mask of zero, "
"nodep: %p nodep->mask: 0x%x",
nodep, nodep->mask);
error_detected = true;
break;
}
/*
* Validate num_after is not greater than the max index
* - the number of mask bits. The num_after member
* uses 0-based indexing and thus has no value that
* represents all bits set. This limitation is handled
* by requiring a non-zero mask. With a non-zero mask,
* MASK_BITS worth of bits are described by the mask,
* which makes the largest needed num_after equal to:
*
* (~(sparsebit_num_t) 0) - MASK_BITS + 1
*/
if (nodep->num_after
> (~(sparsebit_num_t) 0) - MASK_BITS + 1) {
fprintf(stderr, "num_after too large, "
"nodep: %p nodep->num_after: 0x%lx",
nodep, nodep->num_after);
error_detected = true;
break;
}
/* Validate node index is divisible by the mask size */
if (nodep->idx % MASK_BITS) {
fprintf(stderr, "Node index not divisable by "
"mask size,\n"
" nodep: %p nodep->idx: 0x%lx "
"MASK_BITS: %lu\n",
nodep, nodep->idx, MASK_BITS);
error_detected = true;
break;
}
/*
* Validate bits described by node don't wrap beyond the
* highest supported index.
*/
if ((nodep->idx + MASK_BITS + nodep->num_after - 1) < nodep->idx) {
fprintf(stderr, "Bits described by node wrap "
"beyond highest supported index,\n"
" nodep: %p nodep->idx: 0x%lx\n"
" MASK_BITS: %lu nodep->num_after: 0x%lx",
nodep, nodep->idx, MASK_BITS, nodep->num_after);
error_detected = true;
break;
}
/* Check parent pointers. */
if (nodep->left) {
if (nodep->left->parent != nodep) {
fprintf(stderr, "Left child parent pointer "
"doesn't point to this node,\n"
" nodep: %p nodep->left: %p "
"nodep->left->parent: %p",
nodep, nodep->left,
nodep->left->parent);
error_detected = true;
break;
}
}
if (nodep->right) {
if (nodep->right->parent != nodep) {
fprintf(stderr, "Right child parent pointer "
"doesn't point to this node,\n"
" nodep: %p nodep->right: %p "
"nodep->right->parent: %p",
nodep, nodep->right,
nodep->right->parent);
error_detected = true;
break;
}
}
if (!nodep->parent) {
if (s->root != nodep) {
fprintf(stderr, "Unexpected root node, "
"s->root: %p nodep: %p",
s->root, nodep);
error_detected = true;
break;
}
}
if (prev) {
/*
* Is index of previous node before index of
* current node?
*/
if (prev->idx >= nodep->idx) {
fprintf(stderr, "Previous node index "
">= current node index,\n"
" prev: %p prev->idx: 0x%lx\n"
" nodep: %p nodep->idx: 0x%lx",
prev, prev->idx, nodep, nodep->idx);
error_detected = true;
break;
}
/*
* Nodes occur in asscending order, based on each
* nodes starting index.
*/
if ((prev->idx + MASK_BITS + prev->num_after - 1)
>= nodep->idx) {
fprintf(stderr, "Previous node bit range "
"overlap with current node bit range,\n"
" prev: %p prev->idx: 0x%lx "
"prev->num_after: 0x%lx\n"
" nodep: %p nodep->idx: 0x%lx "
"nodep->num_after: 0x%lx\n"
" MASK_BITS: %lu",
prev, prev->idx, prev->num_after,
nodep, nodep->idx, nodep->num_after,
MASK_BITS);
error_detected = true;
break;
}
/*
* When the node has all mask bits set, it shouldn't
* be adjacent to the last bit described by the
* previous node.
*/
if (nodep->mask == ~(mask_t) 0 &&
prev->idx + MASK_BITS + prev->num_after == nodep->idx) {
fprintf(stderr, "Current node has mask with "
"all bits set and is adjacent to the "
"previous node,\n"
" prev: %p prev->idx: 0x%lx "
"prev->num_after: 0x%lx\n"
" nodep: %p nodep->idx: 0x%lx "
"nodep->num_after: 0x%lx\n"
" MASK_BITS: %lu",
prev, prev->idx, prev->num_after,
nodep, nodep->idx, nodep->num_after,
MASK_BITS);
error_detected = true;
break;
}
}
}
if (!error_detected) {
/*
* Is sum of bits set in each node equal to the count
* of total bits set.
*/
if (s->num_set != total_bits_set) {
fprintf(stderr, "Number of bits set missmatch,\n"
" s->num_set: 0x%lx total_bits_set: 0x%lx",
s->num_set, total_bits_set);
error_detected = true;
}
}
if (error_detected) {
fputs(" dump_internal:\n", stderr);
sparsebit_dump_internal(stderr, s, 4);
abort();
}
}
#ifdef FUZZ
/* A simple but effective fuzzing driver. Look for bugs with the help
* of some invariants and of a trivial representation of sparsebit.
* Just use 512 bytes of /dev/zero and /dev/urandom as inputs, and let
* afl-fuzz do the magic. :)
*/
#include <stdlib.h>
#include <assert.h>
struct range {
sparsebit_idx_t first, last;
bool set;
};
struct sparsebit *s;
struct range ranges[1000];
int num_ranges;
static bool get_value(sparsebit_idx_t idx)
{
int i;
for (i = num_ranges; --i >= 0; )
if (ranges[i].first <= idx && idx <= ranges[i].last)
return ranges[i].set;
return false;
}
static void operate(int code, sparsebit_idx_t first, sparsebit_idx_t last)
{
sparsebit_num_t num;
sparsebit_idx_t next;
if (first < last) {
num = last - first + 1;
} else {
num = first - last + 1;
first = last;
last = first + num - 1;
}
switch (code) {
case 0:
sparsebit_set(s, first);
assert(sparsebit_is_set(s, first));
assert(!sparsebit_is_clear(s, first));
assert(sparsebit_any_set(s));
assert(!sparsebit_all_clear(s));
if (get_value(first))
return;
if (num_ranges == 1000)
exit(0);
ranges[num_ranges++] = (struct range)
{ .first = first, .last = first, .set = true };
break;
case 1:
sparsebit_clear(s, first);
assert(!sparsebit_is_set(s, first));
assert(sparsebit_is_clear(s, first));
assert(sparsebit_any_clear(s));
assert(!sparsebit_all_set(s));
if (!get_value(first))
return;
if (num_ranges == 1000)
exit(0);
ranges[num_ranges++] = (struct range)
{ .first = first, .last = first, .set = false };
break;
case 2:
assert(sparsebit_is_set(s, first) == get_value(first));
assert(sparsebit_is_clear(s, first) == !get_value(first));
break;
case 3:
if (sparsebit_any_set(s))
assert(get_value(sparsebit_first_set(s)));
if (sparsebit_any_clear(s))
assert(!get_value(sparsebit_first_clear(s)));
sparsebit_set_all(s);
assert(!sparsebit_any_clear(s));
assert(sparsebit_all_set(s));
num_ranges = 0;
ranges[num_ranges++] = (struct range)
{ .first = 0, .last = ~(sparsebit_idx_t)0, .set = true };
break;
case 4:
if (sparsebit_any_set(s))
assert(get_value(sparsebit_first_set(s)));
if (sparsebit_any_clear(s))
assert(!get_value(sparsebit_first_clear(s)));
sparsebit_clear_all(s);
assert(!sparsebit_any_set(s));
assert(sparsebit_all_clear(s));
num_ranges = 0;
break;
case 5:
next = sparsebit_next_set(s, first);
assert(next == 0 || next > first);
assert(next == 0 || get_value(next));
break;
case 6:
next = sparsebit_next_clear(s, first);
assert(next == 0 || next > first);
assert(next == 0 || !get_value(next));
break;
case 7:
next = sparsebit_next_clear(s, first);
if (sparsebit_is_set_num(s, first, num)) {
assert(next == 0 || next > last);
if (first)
next = sparsebit_next_set(s, first - 1);
else if (sparsebit_any_set(s))
next = sparsebit_first_set(s);
else
return;
assert(next == first);
} else {
assert(sparsebit_is_clear(s, first) || next <= last);
}
break;
case 8:
next = sparsebit_next_set(s, first);
if (sparsebit_is_clear_num(s, first, num)) {
assert(next == 0 || next > last);
if (first)
next = sparsebit_next_clear(s, first - 1);
else if (sparsebit_any_clear(s))
next = sparsebit_first_clear(s);
else
return;
assert(next == first);
} else {
assert(sparsebit_is_set(s, first) || next <= last);
}
break;
case 9:
sparsebit_set_num(s, first, num);
assert(sparsebit_is_set_num(s, first, num));
assert(!sparsebit_is_clear_num(s, first, num));
assert(sparsebit_any_set(s));
assert(!sparsebit_all_clear(s));
if (num_ranges == 1000)
exit(0);
ranges[num_ranges++] = (struct range)
{ .first = first, .last = last, .set = true };
break;
case 10:
sparsebit_clear_num(s, first, num);
assert(!sparsebit_is_set_num(s, first, num));
assert(sparsebit_is_clear_num(s, first, num));
assert(sparsebit_any_clear(s));
assert(!sparsebit_all_set(s));
if (num_ranges == 1000)
exit(0);
ranges[num_ranges++] = (struct range)
{ .first = first, .last = last, .set = false };
break;
case 11:
sparsebit_validate_internal(s);
break;
default:
break;
}
}
unsigned char get8(void)
{
int ch;
ch = getchar();
if (ch == EOF)
exit(0);
return ch;
}
uint64_t get64(void)
{
uint64_t x;
x = get8();
x = (x << 8) | get8();
x = (x << 8) | get8();
x = (x << 8) | get8();
x = (x << 8) | get8();
x = (x << 8) | get8();
x = (x << 8) | get8();
return (x << 8) | get8();
}
int main(void)
{
s = sparsebit_alloc();
for (;;) {
uint8_t op = get8() & 0xf;
uint64_t first = get64();
uint64_t last = get64();
operate(op, first, last);
}
}
#endif
|