summaryrefslogtreecommitdiff
path: root/net/openvswitch/flow_netlink.c
blob: dc0d79092e7429b3098a0b0665f88e5e835decb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
/*
 * Copyright (c) 2007-2017 Nicira, Inc.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of version 2 of the GNU General Public
 * License as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include "flow.h"
#include "datapath.h"
#include <linux/uaccess.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <net/llc_pdu.h>
#include <linux/kernel.h>
#include <linux/jhash.h>
#include <linux/jiffies.h>
#include <linux/llc.h>
#include <linux/module.h>
#include <linux/in.h>
#include <linux/rcupdate.h>
#include <linux/if_arp.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/sctp.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/icmp.h>
#include <linux/icmpv6.h>
#include <linux/rculist.h>
#include <net/geneve.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/ndisc.h>
#include <net/mpls.h>
#include <net/vxlan.h>
#include <net/erspan.h>

#include "flow_netlink.h"

struct ovs_len_tbl {
	int len;
	const struct ovs_len_tbl *next;
};

#define OVS_ATTR_NESTED -1
#define OVS_ATTR_VARIABLE -2

static bool actions_may_change_flow(const struct nlattr *actions)
{
	struct nlattr *nla;
	int rem;

	nla_for_each_nested(nla, actions, rem) {
		u16 action = nla_type(nla);

		switch (action) {
		case OVS_ACTION_ATTR_OUTPUT:
		case OVS_ACTION_ATTR_RECIRC:
		case OVS_ACTION_ATTR_TRUNC:
		case OVS_ACTION_ATTR_USERSPACE:
			break;

		case OVS_ACTION_ATTR_CT:
		case OVS_ACTION_ATTR_CT_CLEAR:
		case OVS_ACTION_ATTR_HASH:
		case OVS_ACTION_ATTR_POP_ETH:
		case OVS_ACTION_ATTR_POP_MPLS:
		case OVS_ACTION_ATTR_POP_VLAN:
		case OVS_ACTION_ATTR_PUSH_ETH:
		case OVS_ACTION_ATTR_PUSH_MPLS:
		case OVS_ACTION_ATTR_PUSH_VLAN:
		case OVS_ACTION_ATTR_SAMPLE:
		case OVS_ACTION_ATTR_SET:
		case OVS_ACTION_ATTR_SET_MASKED:
		default:
			return true;
		}
	}
	return false;
}

static void update_range(struct sw_flow_match *match,
			 size_t offset, size_t size, bool is_mask)
{
	struct sw_flow_key_range *range;
	size_t start = rounddown(offset, sizeof(long));
	size_t end = roundup(offset + size, sizeof(long));

	if (!is_mask)
		range = &match->range;
	else
		range = &match->mask->range;

	if (range->start == range->end) {
		range->start = start;
		range->end = end;
		return;
	}

	if (range->start > start)
		range->start = start;

	if (range->end < end)
		range->end = end;
}

#define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
	do { \
		update_range(match, offsetof(struct sw_flow_key, field),    \
			     sizeof((match)->key->field), is_mask);	    \
		if (is_mask)						    \
			(match)->mask->key.field = value;		    \
		else							    \
			(match)->key->field = value;		            \
	} while (0)

#define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask)	    \
	do {								    \
		update_range(match, offset, len, is_mask);		    \
		if (is_mask)						    \
			memcpy((u8 *)&(match)->mask->key + offset, value_p, \
			       len);					   \
		else							    \
			memcpy((u8 *)(match)->key + offset, value_p, len);  \
	} while (0)

#define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask)		      \
	SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
				  value_p, len, is_mask)

#define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask)		    \
	do {								    \
		update_range(match, offsetof(struct sw_flow_key, field),    \
			     sizeof((match)->key->field), is_mask);	    \
		if (is_mask)						    \
			memset((u8 *)&(match)->mask->key.field, value,      \
			       sizeof((match)->mask->key.field));	    \
		else							    \
			memset((u8 *)&(match)->key->field, value,           \
			       sizeof((match)->key->field));                \
	} while (0)

static bool match_validate(const struct sw_flow_match *match,
			   u64 key_attrs, u64 mask_attrs, bool log)
{
	u64 key_expected = 0;
	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */

	/* The following mask attributes allowed only if they
	 * pass the validation tests. */
	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
			| (1 << OVS_KEY_ATTR_IPV6)
			| (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
			| (1 << OVS_KEY_ATTR_TCP)
			| (1 << OVS_KEY_ATTR_TCP_FLAGS)
			| (1 << OVS_KEY_ATTR_UDP)
			| (1 << OVS_KEY_ATTR_SCTP)
			| (1 << OVS_KEY_ATTR_ICMP)
			| (1 << OVS_KEY_ATTR_ICMPV6)
			| (1 << OVS_KEY_ATTR_ARP)
			| (1 << OVS_KEY_ATTR_ND)
			| (1 << OVS_KEY_ATTR_MPLS));

	/* Always allowed mask fields. */
	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
		       | (1 << OVS_KEY_ATTR_IN_PORT)
		       | (1 << OVS_KEY_ATTR_ETHERTYPE));

	/* Check key attributes. */
	if (match->key->eth.type == htons(ETH_P_ARP)
			|| match->key->eth.type == htons(ETH_P_RARP)) {
		key_expected |= 1 << OVS_KEY_ATTR_ARP;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
	}

	if (eth_p_mpls(match->key->eth.type)) {
		key_expected |= 1 << OVS_KEY_ATTR_MPLS;
		if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
			mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
	}

	if (match->key->eth.type == htons(ETH_P_IP)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV4;
		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
		}

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
			}

			if (match->key->ip.proto == IPPROTO_ICMP) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
			}
		}
	}

	if (match->key->eth.type == htons(ETH_P_IPV6)) {
		key_expected |= 1 << OVS_KEY_ATTR_IPV6;
		if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
			mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
		}

		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
			if (match->key->ip.proto == IPPROTO_UDP) {
				key_expected |= 1 << OVS_KEY_ATTR_UDP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
			}

			if (match->key->ip.proto == IPPROTO_SCTP) {
				key_expected |= 1 << OVS_KEY_ATTR_SCTP;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
			}

			if (match->key->ip.proto == IPPROTO_TCP) {
				key_expected |= 1 << OVS_KEY_ATTR_TCP;
				key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				if (match->mask && (match->mask->key.ip.proto == 0xff)) {
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
					mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
				}
			}

			if (match->key->ip.proto == IPPROTO_ICMPV6) {
				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
				if (match->mask && (match->mask->key.ip.proto == 0xff))
					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;

				if (match->key->tp.src ==
						htons(NDISC_NEIGHBOUR_SOLICITATION) ||
				    match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
					key_expected |= 1 << OVS_KEY_ATTR_ND;
					/* Original direction conntrack tuple
					 * uses the same space as the ND fields
					 * in the key, so both are not allowed
					 * at the same time.
					 */
					mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
					if (match->mask && (match->mask->key.tp.src == htons(0xff)))
						mask_allowed |= 1 << OVS_KEY_ATTR_ND;
				}
			}
		}
	}

	if ((key_attrs & key_expected) != key_expected) {
		/* Key attributes check failed. */
		OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
			  (unsigned long long)key_attrs,
			  (unsigned long long)key_expected);
		return false;
	}

	if ((mask_attrs & mask_allowed) != mask_attrs) {
		/* Mask attributes check failed. */
		OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
			  (unsigned long long)mask_attrs,
			  (unsigned long long)mask_allowed);
		return false;
	}

	return true;
}

size_t ovs_tun_key_attr_size(void)
{
	/* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
	 * updating this function.
	 */
	return    nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
		+ nla_total_size(16)   /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TOS */
		+ nla_total_size(1)    /* OVS_TUNNEL_KEY_ATTR_TTL */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_CSUM */
		+ nla_total_size(0)    /* OVS_TUNNEL_KEY_ATTR_OAM */
		+ nla_total_size(256)  /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
		/* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
		 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
		 */
		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
		+ nla_total_size(2)    /* OVS_TUNNEL_KEY_ATTR_TP_DST */
		+ nla_total_size(4);   /* OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS */
}

size_t ovs_key_attr_size(void)
{
	/* Whenever adding new OVS_KEY_ FIELDS, we should consider
	 * updating this function.
	 */
	BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 28);

	return    nla_total_size(4)   /* OVS_KEY_ATTR_PRIORITY */
		+ nla_total_size(0)   /* OVS_KEY_ATTR_TUNNEL */
		  + ovs_tun_key_attr_size()
		+ nla_total_size(4)   /* OVS_KEY_ATTR_IN_PORT */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_SKB_MARK */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_DP_HASH */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_RECIRC_ID */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_STATE */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_CT_ZONE */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_CT_MARK */
		+ nla_total_size(16)  /* OVS_KEY_ATTR_CT_LABELS */
		+ nla_total_size(40)  /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
		+ nla_total_size(12)  /* OVS_KEY_ATTR_ETHERNET */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
		+ nla_total_size(4)   /* OVS_KEY_ATTR_VLAN */
		+ nla_total_size(0)   /* OVS_KEY_ATTR_ENCAP */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ETHERTYPE */
		+ nla_total_size(40)  /* OVS_KEY_ATTR_IPV6 */
		+ nla_total_size(2)   /* OVS_KEY_ATTR_ICMPV6 */
		+ nla_total_size(28); /* OVS_KEY_ATTR_ND */
}

static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
	[OVS_VXLAN_EXT_GBP]	    = { .len = sizeof(u32) },
};

static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
	[OVS_TUNNEL_KEY_ATTR_ID]	    = { .len = sizeof(u64) },
	[OVS_TUNNEL_KEY_ATTR_IPV4_SRC]	    = { .len = sizeof(u32) },
	[OVS_TUNNEL_KEY_ATTR_IPV4_DST]	    = { .len = sizeof(u32) },
	[OVS_TUNNEL_KEY_ATTR_TOS]	    = { .len = 1 },
	[OVS_TUNNEL_KEY_ATTR_TTL]	    = { .len = 1 },
	[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
	[OVS_TUNNEL_KEY_ATTR_CSUM]	    = { .len = 0 },
	[OVS_TUNNEL_KEY_ATTR_TP_SRC]	    = { .len = sizeof(u16) },
	[OVS_TUNNEL_KEY_ATTR_TP_DST]	    = { .len = sizeof(u16) },
	[OVS_TUNNEL_KEY_ATTR_OAM]	    = { .len = 0 },
	[OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS]   = { .len = OVS_ATTR_VARIABLE },
	[OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS]    = { .len = OVS_ATTR_NESTED,
						.next = ovs_vxlan_ext_key_lens },
	[OVS_TUNNEL_KEY_ATTR_IPV6_SRC]      = { .len = sizeof(struct in6_addr) },
	[OVS_TUNNEL_KEY_ATTR_IPV6_DST]      = { .len = sizeof(struct in6_addr) },
	[OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS]   = { .len = sizeof(u32) },
};

/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
	[OVS_KEY_ATTR_ENCAP]	 = { .len = OVS_ATTR_NESTED },
	[OVS_KEY_ATTR_PRIORITY]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_IN_PORT]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_SKB_MARK]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_ETHERNET]	 = { .len = sizeof(struct ovs_key_ethernet) },
	[OVS_KEY_ATTR_VLAN]	 = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_IPV4]	 = { .len = sizeof(struct ovs_key_ipv4) },
	[OVS_KEY_ATTR_IPV6]	 = { .len = sizeof(struct ovs_key_ipv6) },
	[OVS_KEY_ATTR_TCP]	 = { .len = sizeof(struct ovs_key_tcp) },
	[OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
	[OVS_KEY_ATTR_UDP]	 = { .len = sizeof(struct ovs_key_udp) },
	[OVS_KEY_ATTR_SCTP]	 = { .len = sizeof(struct ovs_key_sctp) },
	[OVS_KEY_ATTR_ICMP]	 = { .len = sizeof(struct ovs_key_icmp) },
	[OVS_KEY_ATTR_ICMPV6]	 = { .len = sizeof(struct ovs_key_icmpv6) },
	[OVS_KEY_ATTR_ARP]	 = { .len = sizeof(struct ovs_key_arp) },
	[OVS_KEY_ATTR_ND]	 = { .len = sizeof(struct ovs_key_nd) },
	[OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_DP_HASH]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_TUNNEL]	 = { .len = OVS_ATTR_NESTED,
				     .next = ovs_tunnel_key_lens, },
	[OVS_KEY_ATTR_MPLS]	 = { .len = sizeof(struct ovs_key_mpls) },
	[OVS_KEY_ATTR_CT_STATE]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_CT_ZONE]	 = { .len = sizeof(u16) },
	[OVS_KEY_ATTR_CT_MARK]	 = { .len = sizeof(u32) },
	[OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
		.len = sizeof(struct ovs_key_ct_tuple_ipv4) },
	[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
		.len = sizeof(struct ovs_key_ct_tuple_ipv6) },
};

static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
{
	return expected_len == attr_len ||
	       expected_len == OVS_ATTR_NESTED ||
	       expected_len == OVS_ATTR_VARIABLE;
}

static bool is_all_zero(const u8 *fp, size_t size)
{
	int i;

	if (!fp)
		return false;

	for (i = 0; i < size; i++)
		if (fp[i])
			return false;

	return true;
}

static int __parse_flow_nlattrs(const struct nlattr *attr,
				const struct nlattr *a[],
				u64 *attrsp, bool log, bool nz)
{
	const struct nlattr *nla;
	u64 attrs;
	int rem;

	attrs = *attrsp;
	nla_for_each_nested(nla, attr, rem) {
		u16 type = nla_type(nla);
		int expected_len;

		if (type > OVS_KEY_ATTR_MAX) {
			OVS_NLERR(log, "Key type %d is out of range max %d",
				  type, OVS_KEY_ATTR_MAX);
			return -EINVAL;
		}

		if (attrs & (1 << type)) {
			OVS_NLERR(log, "Duplicate key (type %d).", type);
			return -EINVAL;
		}

		expected_len = ovs_key_lens[type].len;
		if (!check_attr_len(nla_len(nla), expected_len)) {
			OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
				  type, nla_len(nla), expected_len);
			return -EINVAL;
		}

		if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
			attrs |= 1 << type;
			a[type] = nla;
		}
	}
	if (rem) {
		OVS_NLERR(log, "Message has %d unknown bytes.", rem);
		return -EINVAL;
	}

	*attrsp = attrs;
	return 0;
}

static int parse_flow_mask_nlattrs(const struct nlattr *attr,
				   const struct nlattr *a[], u64 *attrsp,
				   bool log)
{
	return __parse_flow_nlattrs(attr, a, attrsp, log, true);
}

int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
		       u64 *attrsp, bool log)
{
	return __parse_flow_nlattrs(attr, a, attrsp, log, false);
}

static int genev_tun_opt_from_nlattr(const struct nlattr *a,
				     struct sw_flow_match *match, bool is_mask,
				     bool log)
{
	unsigned long opt_key_offset;

	if (nla_len(a) > sizeof(match->key->tun_opts)) {
		OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
			  nla_len(a), sizeof(match->key->tun_opts));
		return -EINVAL;
	}

	if (nla_len(a) % 4 != 0) {
		OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
			  nla_len(a));
		return -EINVAL;
	}

	/* We need to record the length of the options passed
	 * down, otherwise packets with the same format but
	 * additional options will be silently matched.
	 */
	if (!is_mask) {
		SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
				false);
	} else {
		/* This is somewhat unusual because it looks at
		 * both the key and mask while parsing the
		 * attributes (and by extension assumes the key
		 * is parsed first). Normally, we would verify
		 * that each is the correct length and that the
		 * attributes line up in the validate function.
		 * However, that is difficult because this is
		 * variable length and we won't have the
		 * information later.
		 */
		if (match->key->tun_opts_len != nla_len(a)) {
			OVS_NLERR(log, "Geneve option len %d != mask len %d",
				  match->key->tun_opts_len, nla_len(a));
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
	}

	opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
				  nla_len(a), is_mask);
	return 0;
}

static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
				     struct sw_flow_match *match, bool is_mask,
				     bool log)
{
	struct nlattr *a;
	int rem;
	unsigned long opt_key_offset;
	struct vxlan_metadata opts;

	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));

	memset(&opts, 0, sizeof(opts));
	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);

		if (type > OVS_VXLAN_EXT_MAX) {
			OVS_NLERR(log, "VXLAN extension %d out of range max %d",
				  type, OVS_VXLAN_EXT_MAX);
			return -EINVAL;
		}

		if (!check_attr_len(nla_len(a),
				    ovs_vxlan_ext_key_lens[type].len)) {
			OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
				  type, nla_len(a),
				  ovs_vxlan_ext_key_lens[type].len);
			return -EINVAL;
		}

		switch (type) {
		case OVS_VXLAN_EXT_GBP:
			opts.gbp = nla_get_u32(a);
			break;
		default:
			OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
				  type);
			return -EINVAL;
		}
	}
	if (rem) {
		OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
			  rem);
		return -EINVAL;
	}

	if (!is_mask)
		SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
	else
		SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);

	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
				  is_mask);
	return 0;
}

static int erspan_tun_opt_from_nlattr(const struct nlattr *attr,
				      struct sw_flow_match *match, bool is_mask,
				      bool log)
{
	unsigned long opt_key_offset;
	struct erspan_metadata opts;

	BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));

	memset(&opts, 0, sizeof(opts));
	opts.index = nla_get_be32(attr);

	/* Index has only 20-bit */
	if (ntohl(opts.index) & ~INDEX_MASK) {
		OVS_NLERR(log, "ERSPAN index number %x too large.",
			  ntohl(opts.index));
		return -EINVAL;
	}

	SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), is_mask);
	opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
	SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
				  is_mask);

	return 0;
}

static int ip_tun_from_nlattr(const struct nlattr *attr,
			      struct sw_flow_match *match, bool is_mask,
			      bool log)
{
	bool ttl = false, ipv4 = false, ipv6 = false;
	__be16 tun_flags = 0;
	int opts_type = 0;
	struct nlattr *a;
	int rem;

	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		int err;

		if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
			OVS_NLERR(log, "Tunnel attr %d out of range max %d",
				  type, OVS_TUNNEL_KEY_ATTR_MAX);
			return -EINVAL;
		}

		if (!check_attr_len(nla_len(a),
				    ovs_tunnel_key_lens[type].len)) {
			OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
				  type, nla_len(a), ovs_tunnel_key_lens[type].len);
			return -EINVAL;
		}

		switch (type) {
		case OVS_TUNNEL_KEY_ATTR_ID:
			SW_FLOW_KEY_PUT(match, tun_key.tun_id,
					nla_get_be64(a), is_mask);
			tun_flags |= TUNNEL_KEY;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
					nla_get_in_addr(a), is_mask);
			ipv4 = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
					nla_get_in_addr(a), is_mask);
			ipv4 = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
					nla_get_in6_addr(a), is_mask);
			ipv6 = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
			SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
					nla_get_in6_addr(a), is_mask);
			ipv6 = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_TOS:
			SW_FLOW_KEY_PUT(match, tun_key.tos,
					nla_get_u8(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TTL:
			SW_FLOW_KEY_PUT(match, tun_key.ttl,
					nla_get_u8(a), is_mask);
			ttl = true;
			break;
		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
			tun_flags |= TUNNEL_DONT_FRAGMENT;
			break;
		case OVS_TUNNEL_KEY_ATTR_CSUM:
			tun_flags |= TUNNEL_CSUM;
			break;
		case OVS_TUNNEL_KEY_ATTR_TP_SRC:
			SW_FLOW_KEY_PUT(match, tun_key.tp_src,
					nla_get_be16(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_TP_DST:
			SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
					nla_get_be16(a), is_mask);
			break;
		case OVS_TUNNEL_KEY_ATTR_OAM:
			tun_flags |= TUNNEL_OAM;
			break;
		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

			err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;

			tun_flags |= TUNNEL_GENEVE_OPT;
			opts_type = type;
			break;
		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

			err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;

			tun_flags |= TUNNEL_VXLAN_OPT;
			opts_type = type;
			break;
		case OVS_TUNNEL_KEY_ATTR_PAD:
			break;
		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
			if (opts_type) {
				OVS_NLERR(log, "Multiple metadata blocks provided");
				return -EINVAL;
			}

			err = erspan_tun_opt_from_nlattr(a, match, is_mask, log);
			if (err)
				return err;

			tun_flags |= TUNNEL_ERSPAN_OPT;
			opts_type = type;
			break;
		default:
			OVS_NLERR(log, "Unknown IP tunnel attribute %d",
				  type);
			return -EINVAL;
		}
	}

	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
	if (is_mask)
		SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
	else
		SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
				false);

	if (rem > 0) {
		OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
			  rem);
		return -EINVAL;
	}

	if (ipv4 && ipv6) {
		OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
		return -EINVAL;
	}

	if (!is_mask) {
		if (!ipv4 && !ipv6) {
			OVS_NLERR(log, "IP tunnel dst address not specified");
			return -EINVAL;
		}
		if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
			OVS_NLERR(log, "IPv4 tunnel dst address is zero");
			return -EINVAL;
		}
		if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
			OVS_NLERR(log, "IPv6 tunnel dst address is zero");
			return -EINVAL;
		}

		if (!ttl) {
			OVS_NLERR(log, "IP tunnel TTL not specified.");
			return -EINVAL;
		}
	}

	return opts_type;
}

static int vxlan_opt_to_nlattr(struct sk_buff *skb,
			       const void *tun_opts, int swkey_tun_opts_len)
{
	const struct vxlan_metadata *opts = tun_opts;
	struct nlattr *nla;

	nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
	if (!nla)
		return -EMSGSIZE;

	if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
		return -EMSGSIZE;

	nla_nest_end(skb, nla);
	return 0;
}

static int __ip_tun_to_nlattr(struct sk_buff *skb,
			      const struct ip_tunnel_key *output,
			      const void *tun_opts, int swkey_tun_opts_len,
			      unsigned short tun_proto)
{
	if (output->tun_flags & TUNNEL_KEY &&
	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
			 OVS_TUNNEL_KEY_ATTR_PAD))
		return -EMSGSIZE;
	switch (tun_proto) {
	case AF_INET:
		if (output->u.ipv4.src &&
		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
				    output->u.ipv4.src))
			return -EMSGSIZE;
		if (output->u.ipv4.dst &&
		    nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
				    output->u.ipv4.dst))
			return -EMSGSIZE;
		break;
	case AF_INET6:
		if (!ipv6_addr_any(&output->u.ipv6.src) &&
		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
				     &output->u.ipv6.src))
			return -EMSGSIZE;
		if (!ipv6_addr_any(&output->u.ipv6.dst) &&
		    nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
				     &output->u.ipv6.dst))
			return -EMSGSIZE;
		break;
	}
	if (output->tos &&
	    nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
		return -EMSGSIZE;
	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_CSUM) &&
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
		return -EMSGSIZE;
	if (output->tp_src &&
	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
		return -EMSGSIZE;
	if (output->tp_dst &&
	    nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
		return -EMSGSIZE;
	if ((output->tun_flags & TUNNEL_OAM) &&
	    nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
		return -EMSGSIZE;
	if (swkey_tun_opts_len) {
		if (output->tun_flags & TUNNEL_GENEVE_OPT &&
		    nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
			    swkey_tun_opts_len, tun_opts))
			return -EMSGSIZE;
		else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
			 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
			return -EMSGSIZE;
		else if (output->tun_flags & TUNNEL_ERSPAN_OPT &&
			 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS,
				      ((struct erspan_metadata *)tun_opts)->index))
			return -EMSGSIZE;
	}

	return 0;
}

static int ip_tun_to_nlattr(struct sk_buff *skb,
			    const struct ip_tunnel_key *output,
			    const void *tun_opts, int swkey_tun_opts_len,
			    unsigned short tun_proto)
{
	struct nlattr *nla;
	int err;

	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
	if (!nla)
		return -EMSGSIZE;

	err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
				 tun_proto);
	if (err)
		return err;

	nla_nest_end(skb, nla);
	return 0;
}

int ovs_nla_put_tunnel_info(struct sk_buff *skb,
			    struct ip_tunnel_info *tun_info)
{
	return __ip_tun_to_nlattr(skb, &tun_info->key,
				  ip_tunnel_info_opts(tun_info),
				  tun_info->options_len,
				  ip_tunnel_info_af(tun_info));
}

static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
				    const struct nlattr *a[],
				    bool is_mask, bool inner)
{
	__be16 tci = 0;
	__be16 tpid = 0;

	if (a[OVS_KEY_ATTR_VLAN])
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

	if (a[OVS_KEY_ATTR_ETHERTYPE])
		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);

	if (likely(!inner)) {
		SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
		SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
	} else {
		SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
	}
	return 0;
}

static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
				      u64 key_attrs, bool inner,
				      const struct nlattr **a, bool log)
{
	__be16 tci = 0;

	if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
	      (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
	       eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
		/* Not a VLAN. */
		return 0;
	}

	if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
	      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
		OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
		return -EINVAL;
	}

	if (a[OVS_KEY_ATTR_VLAN])
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

	if (!(tci & htons(VLAN_TAG_PRESENT))) {
		if (tci) {
			OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
				  (inner) ? "C-VLAN" : "VLAN");
			return -EINVAL;
		} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
			/* Corner case for truncated VLAN header. */
			OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
				  (inner) ? "C-VLAN" : "VLAN");
			return -EINVAL;
		}
	}

	return 1;
}

static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
					   u64 key_attrs, bool inner,
					   const struct nlattr **a, bool log)
{
	__be16 tci = 0;
	__be16 tpid = 0;
	bool encap_valid = !!(match->key->eth.vlan.tci &
			      htons(VLAN_TAG_PRESENT));
	bool i_encap_valid = !!(match->key->eth.cvlan.tci &
				htons(VLAN_TAG_PRESENT));

	if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
		/* Not a VLAN. */
		return 0;
	}

	if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
		OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
			  (inner) ? "C-VLAN" : "VLAN");
		return -EINVAL;
	}

	if (a[OVS_KEY_ATTR_VLAN])
		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);

	if (a[OVS_KEY_ATTR_ETHERTYPE])
		tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);

	if (tpid != htons(0xffff)) {
		OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
			  (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
		return -EINVAL;
	}
	if (!(tci & htons(VLAN_TAG_PRESENT))) {
		OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
			  (inner) ? "C-VLAN" : "VLAN");
		return -EINVAL;
	}

	return 1;
}

static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
				     u64 *key_attrs, bool inner,
				     const struct nlattr **a, bool is_mask,
				     bool log)
{
	int err;
	const struct nlattr *encap;

	if (!is_mask)
		err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
						 a, log);
	else
		err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
						      a, log);
	if (err <= 0)
		return err;

	err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
	if (err)
		return err;

	*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
	*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
	*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);

	encap = a[OVS_KEY_ATTR_ENCAP];

	if (!is_mask)
		err = parse_flow_nlattrs(encap, a, key_attrs, log);
	else
		err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);

	return err;
}

static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
				   u64 *key_attrs, const struct nlattr **a,
				   bool is_mask, bool log)
{
	int err;
	bool encap_valid = false;

	err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
					is_mask, log);
	if (err)
		return err;

	encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
	if (encap_valid) {
		err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
						is_mask, log);
		if (err)
			return err;
	}

	return 0;
}

static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
				       u64 *attrs, const struct nlattr **a,
				       bool is_mask, bool log)
{
	__be16 eth_type;

	eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
	if (is_mask) {
		/* Always exact match EtherType. */
		eth_type = htons(0xffff);
	} else if (!eth_proto_is_802_3(eth_type)) {
		OVS_NLERR(log, "EtherType %x is less than min %x",
				ntohs(eth_type), ETH_P_802_3_MIN);
		return -EINVAL;
	}

	SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
	*attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
	return 0;
}

static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
				 u64 *attrs, const struct nlattr **a,
				 bool is_mask, bool log)
{
	u8 mac_proto = MAC_PROTO_ETHERNET;

	if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
		u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);

		SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
		u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);

		SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
		SW_FLOW_KEY_PUT(match, phy.priority,
			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);

		if (is_mask) {
			in_port = 0xffffffff; /* Always exact match in_port. */
		} else if (in_port >= DP_MAX_PORTS) {
			OVS_NLERR(log, "Port %d exceeds max allowable %d",
				  in_port, DP_MAX_PORTS);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
	} else if (!is_mask) {
		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);

		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
		if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
				       is_mask, log) < 0)
			return -EINVAL;
		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
	}

	if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
		u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);

		if (ct_state & ~CT_SUPPORTED_MASK) {
			OVS_NLERR(log, "ct_state flags %08x unsupported",
				  ct_state);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
		u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);

		SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
		u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);

		SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
	}
	if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
	    ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
		const struct ovs_key_ct_labels *cl;

		cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
		SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
				   sizeof(*cl), is_mask);
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
	}
	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
		const struct ovs_key_ct_tuple_ipv4 *ct;

		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);

		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
	}
	if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
		const struct ovs_key_ct_tuple_ipv6 *ct;

		ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);

		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
				   sizeof(match->key->ipv6.ct_orig.src),
				   is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
				   sizeof(match->key->ipv6.ct_orig.dst),
				   is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
		SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
		SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
		*attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
	}

	/* For layer 3 packets the Ethernet type is provided
	 * and treated as metadata but no MAC addresses are provided.
	 */
	if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
	    (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
		mac_proto = MAC_PROTO_NONE;

	/* Always exact match mac_proto */
	SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);

	if (mac_proto == MAC_PROTO_NONE)
		return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
						   log);

	return 0;
}

static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
				u64 attrs, const struct nlattr **a,
				bool is_mask, bool log)
{
	int err;

	err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
	if (err)
		return err;

	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
		const struct ovs_key_ethernet *eth_key;

		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
		SW_FLOW_KEY_MEMCPY(match, eth.src,
				eth_key->eth_src, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, eth.dst,
				eth_key->eth_dst, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);

		if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
			/* VLAN attribute is always parsed before getting here since it
			 * may occur multiple times.
			 */
			OVS_NLERR(log, "VLAN attribute unexpected.");
			return -EINVAL;
		}

		if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
			err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
							  log);
			if (err)
				return err;
		} else if (!is_mask) {
			SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
		}
	} else if (!match->key->eth.type) {
		OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
		return -EINVAL;
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
		const struct ovs_key_ipv4 *ipv4_key;

		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
			OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
				  ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
			return -EINVAL;
		}
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv4_key->ipv4_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv4_key->ipv4_tos, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv4_key->ipv4_ttl, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv4_key->ipv4_frag, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				ipv4_key->ipv4_src, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
				ipv4_key->ipv4_dst, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
	}

	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
		const struct ovs_key_ipv6 *ipv6_key;

		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
			OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
				  ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
			return -EINVAL;
		}

		if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
			OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x)",
				  ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, ipv6.label,
				ipv6_key->ipv6_label, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ipv6_key->ipv6_proto, is_mask);
		SW_FLOW_KEY_PUT(match, ip.tos,
				ipv6_key->ipv6_tclass, is_mask);
		SW_FLOW_KEY_PUT(match, ip.ttl,
				ipv6_key->ipv6_hlimit, is_mask);
		SW_FLOW_KEY_PUT(match, ip.frag,
				ipv6_key->ipv6_frag, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
				ipv6_key->ipv6_src,
				sizeof(match->key->ipv6.addr.src),
				is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
				ipv6_key->ipv6_dst,
				sizeof(match->key->ipv6.addr.dst),
				is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
		const struct ovs_key_arp *arp_key;

		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
		if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
			OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
				  arp_key->arp_op);
			return -EINVAL;
		}

		SW_FLOW_KEY_PUT(match, ipv4.addr.src,
				arp_key->arp_sip, is_mask);
		SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
			arp_key->arp_tip, is_mask);
		SW_FLOW_KEY_PUT(match, ip.proto,
				ntohs(arp_key->arp_op), is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
				arp_key->arp_sha, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
				arp_key->arp_tha, ETH_ALEN, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_ARP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
		const struct ovs_key_mpls *mpls_key;

		mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
		SW_FLOW_KEY_PUT(match, mpls.top_lse,
				mpls_key->mpls_lse, is_mask);

		attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
	 }

	if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
		const struct ovs_key_tcp *tcp_key;

		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
		SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_TCP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
		SW_FLOW_KEY_PUT(match, tp.flags,
				nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
				is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
	}

	if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
		const struct ovs_key_udp *udp_key;

		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
		SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_UDP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
		const struct ovs_key_sctp *sctp_key;

		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
		SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
		const struct ovs_key_icmp *icmp_key;

		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
		SW_FLOW_KEY_PUT(match, tp.src,
				htons(icmp_key->icmp_type), is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst,
				htons(icmp_key->icmp_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
		const struct ovs_key_icmpv6 *icmpv6_key;

		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
		SW_FLOW_KEY_PUT(match, tp.src,
				htons(icmpv6_key->icmpv6_type), is_mask);
		SW_FLOW_KEY_PUT(match, tp.dst,
				htons(icmpv6_key->icmpv6_code), is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
	}

	if (attrs & (1 << OVS_KEY_ATTR_ND)) {
		const struct ovs_key_nd *nd_key;

		nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
			nd_key->nd_target,
			sizeof(match->key->ipv6.nd.target),
			is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
			nd_key->nd_sll, ETH_ALEN, is_mask);
		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
				nd_key->nd_tll, ETH_ALEN, is_mask);
		attrs &= ~(1 << OVS_KEY_ATTR_ND);
	}

	if (attrs != 0) {
		OVS_NLERR(log, "Unknown key attributes %llx",
			  (unsigned long long)attrs);
		return -EINVAL;
	}

	return 0;
}

static void nlattr_set(struct nlattr *attr, u8 val,
		       const struct ovs_len_tbl *tbl)
{
	struct nlattr *nla;
	int rem;

	/* The nlattr stream should already have been validated */
	nla_for_each_nested(nla, attr, rem) {
		if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
			if (tbl[nla_type(nla)].next)
				tbl = tbl[nla_type(nla)].next;
			nlattr_set(nla, val, tbl);
		} else {
			memset(nla_data(nla), val, nla_len(nla));
		}

		if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
			*(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
	}
}

static void mask_set_nlattr(struct nlattr *attr, u8 val)
{
	nlattr_set(attr, val, ovs_key_lens);
}

/**
 * ovs_nla_get_match - parses Netlink attributes into a flow key and
 * mask. In case the 'mask' is NULL, the flow is treated as exact match
 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
 * does not include any don't care bit.
 * @net: Used to determine per-namespace field support.
 * @match: receives the extracted flow match information.
 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
 * sequence. The fields should of the packet that triggered the creation
 * of this flow.
 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
 * attribute specifies the mask field of the wildcarded flow.
 * @log: Boolean to allow kernel error logging.  Normally true, but when
 * probing for feature compatibility this should be passed in as false to
 * suppress unnecessary error logging.
 */
int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
		      const struct nlattr *nla_key,
		      const struct nlattr *nla_mask,
		      bool log)
{
	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
	struct nlattr *newmask = NULL;
	u64 key_attrs = 0;
	u64 mask_attrs = 0;
	int err;

	err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
	if (err)
		return err;

	err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
	if (err)
		return err;

	err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
	if (err)
		return err;

	if (match->mask) {
		if (!nla_mask) {
			/* Create an exact match mask. We need to set to 0xff
			 * all the 'match->mask' fields that have been touched
			 * in 'match->key'. We cannot simply memset
			 * 'match->mask', because padding bytes and fields not
			 * specified in 'match->key' should be left to 0.
			 * Instead, we use a stream of netlink attributes,
			 * copied from 'key' and set to 0xff.
			 * ovs_key_from_nlattrs() will take care of filling
			 * 'match->mask' appropriately.
			 */
			newmask = kmemdup(nla_key,
					  nla_total_size(nla_len(nla_key)),
					  GFP_KERNEL);
			if (!newmask)
				return -ENOMEM;

			mask_set_nlattr(newmask, 0xff);

			/* The userspace does not send tunnel attributes that
			 * are 0, but we should not wildcard them nonetheless.
			 */
			if (match->key->tun_proto)
				SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
							 0xff, true);

			nla_mask = newmask;
		}

		err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
		if (err)
			goto free_newmask;

		/* Always match on tci. */
		SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
		SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);

		err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
		if (err)
			goto free_newmask;

		err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
					   log);
		if (err)
			goto free_newmask;
	}

	if (!match_validate(match, key_attrs, mask_attrs, log))
		err = -EINVAL;

free_newmask:
	kfree(newmask);
	return err;
}

static size_t get_ufid_len(const struct nlattr *attr, bool log)
{
	size_t len;

	if (!attr)
		return 0;

	len = nla_len(attr);
	if (len < 1 || len > MAX_UFID_LENGTH) {
		OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
			  nla_len(attr), MAX_UFID_LENGTH);
		return 0;
	}

	return len;
}

/* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
 * or false otherwise.
 */
bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
		      bool log)
{
	sfid->ufid_len = get_ufid_len(attr, log);
	if (sfid->ufid_len)
		memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);

	return sfid->ufid_len;
}

int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
			   const struct sw_flow_key *key, bool log)
{
	struct sw_flow_key *new_key;

	if (ovs_nla_get_ufid(sfid, ufid, log))
		return 0;

	/* If UFID was not provided, use unmasked key. */
	new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
	if (!new_key)
		return -ENOMEM;
	memcpy(new_key, key, sizeof(*key));
	sfid->unmasked_key = new_key;

	return 0;
}

u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
{
	return attr ? nla_get_u32(attr) : 0;
}

/**
 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
 * @net: Network namespace.
 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
 * metadata.
 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
 * attributes.
 * @attrs: Bit mask for the netlink attributes included in @a.
 * @log: Boolean to allow kernel error logging.  Normally true, but when
 * probing for feature compatibility this should be passed in as false to
 * suppress unnecessary error logging.
 *
 * This parses a series of Netlink attributes that form a flow key, which must
 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
 * get the metadata, that is, the parts of the flow key that cannot be
 * extracted from the packet itself.
 *
 * This must be called before the packet key fields are filled in 'key'.
 */

int ovs_nla_get_flow_metadata(struct net *net,
			      const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
			      u64 attrs, struct sw_flow_key *key, bool log)
{
	struct sw_flow_match match;

	memset(&match, 0, sizeof(match));
	match.key = key;

	key->ct_state = 0;
	key->ct_zone = 0;
	key->ct_orig_proto = 0;
	memset(&key->ct, 0, sizeof(key->ct));
	memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
	memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));

	key->phy.in_port = DP_MAX_PORTS;

	return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
}

static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
			    bool is_mask)
{
	__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);

	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
	    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
		return -EMSGSIZE;
	return 0;
}

static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
			     const struct sw_flow_key *output, bool is_mask,
			     struct sk_buff *skb)
{
	struct ovs_key_ethernet *eth_key;
	struct nlattr *nla;
	struct nlattr *encap = NULL;
	struct nlattr *in_encap = NULL;

	if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
		goto nla_put_failure;

	if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
		goto nla_put_failure;

	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
		goto nla_put_failure;

	if ((swkey->tun_proto || is_mask)) {
		const void *opts = NULL;

		if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
			opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);

		if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
				     swkey->tun_opts_len, swkey->tun_proto))
			goto nla_put_failure;
	}

	if (swkey->phy.in_port == DP_MAX_PORTS) {
		if (is_mask && (output->phy.in_port == 0xffff))
			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
				goto nla_put_failure;
	} else {
		u16 upper_u16;
		upper_u16 = !is_mask ? 0 : 0xffff;

		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
				(upper_u16 << 16) | output->phy.in_port))
			goto nla_put_failure;
	}

	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
		goto nla_put_failure;

	if (ovs_ct_put_key(swkey, output, skb))
		goto nla_put_failure;

	if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
		nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
		if (!nla)
			goto nla_put_failure;

		eth_key = nla_data(nla);
		ether_addr_copy(eth_key->eth_src, output->eth.src);
		ether_addr_copy(eth_key->eth_dst, output->eth.dst);

		if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
			if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
				goto nla_put_failure;
			encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
			if (!swkey->eth.vlan.tci)
				goto unencap;

			if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
				if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
					goto nla_put_failure;
				in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
				if (!swkey->eth.cvlan.tci)
					goto unencap;
			}
		}

		if (swkey->eth.type == htons(ETH_P_802_2)) {
			/*
			* Ethertype 802.2 is represented in the netlink with omitted
			* OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
			* 0xffff in the mask attribute.  Ethertype can also
			* be wildcarded.
			*/
			if (is_mask && output->eth.type)
				if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
							output->eth.type))
					goto nla_put_failure;
			goto unencap;
		}
	}

	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
		goto nla_put_failure;

	if (eth_type_vlan(swkey->eth.type)) {
		/* There are 3 VLAN tags, we don't know anything about the rest
		 * of the packet, so truncate here.
		 */
		WARN_ON_ONCE(!(encap && in_encap));
		goto unencap;
	}

	if (swkey->eth.type == htons(ETH_P_IP)) {
		struct ovs_key_ipv4 *ipv4_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
		if (!nla)
			goto nla_put_failure;
		ipv4_key = nla_data(nla);
		ipv4_key->ipv4_src = output->ipv4.addr.src;
		ipv4_key->ipv4_dst = output->ipv4.addr.dst;
		ipv4_key->ipv4_proto = output->ip.proto;
		ipv4_key->ipv4_tos = output->ip.tos;
		ipv4_key->ipv4_ttl = output->ip.ttl;
		ipv4_key->ipv4_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_IPV6)) {
		struct ovs_key_ipv6 *ipv6_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
		if (!nla)
			goto nla_put_failure;
		ipv6_key = nla_data(nla);
		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
				sizeof(ipv6_key->ipv6_src));
		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
				sizeof(ipv6_key->ipv6_dst));
		ipv6_key->ipv6_label = output->ipv6.label;
		ipv6_key->ipv6_proto = output->ip.proto;
		ipv6_key->ipv6_tclass = output->ip.tos;
		ipv6_key->ipv6_hlimit = output->ip.ttl;
		ipv6_key->ipv6_frag = output->ip.frag;
	} else if (swkey->eth.type == htons(ETH_P_ARP) ||
		   swkey->eth.type == htons(ETH_P_RARP)) {
		struct ovs_key_arp *arp_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
		if (!nla)
			goto nla_put_failure;
		arp_key = nla_data(nla);
		memset(arp_key, 0, sizeof(struct ovs_key_arp));
		arp_key->arp_sip = output->ipv4.addr.src;
		arp_key->arp_tip = output->ipv4.addr.dst;
		arp_key->arp_op = htons(output->ip.proto);
		ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
		ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
	} else if (eth_p_mpls(swkey->eth.type)) {
		struct ovs_key_mpls *mpls_key;

		nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
		if (!nla)
			goto nla_put_failure;
		mpls_key = nla_data(nla);
		mpls_key->mpls_lse = output->mpls.top_lse;
	}

	if ((swkey->eth.type == htons(ETH_P_IP) ||
	     swkey->eth.type == htons(ETH_P_IPV6)) &&
	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) {

		if (swkey->ip.proto == IPPROTO_TCP) {
			struct ovs_key_tcp *tcp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
			if (!nla)
				goto nla_put_failure;
			tcp_key = nla_data(nla);
			tcp_key->tcp_src = output->tp.src;
			tcp_key->tcp_dst = output->tp.dst;
			if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
					 output->tp.flags))
				goto nla_put_failure;
		} else if (swkey->ip.proto == IPPROTO_UDP) {
			struct ovs_key_udp *udp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
			if (!nla)
				goto nla_put_failure;
			udp_key = nla_data(nla);
			udp_key->udp_src = output->tp.src;
			udp_key->udp_dst = output->tp.dst;
		} else if (swkey->ip.proto == IPPROTO_SCTP) {
			struct ovs_key_sctp *sctp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
			if (!nla)
				goto nla_put_failure;
			sctp_key = nla_data(nla);
			sctp_key->sctp_src = output->tp.src;
			sctp_key->sctp_dst = output->tp.dst;
		} else if (swkey->eth.type == htons(ETH_P_IP) &&
			   swkey->ip.proto == IPPROTO_ICMP) {
			struct ovs_key_icmp *icmp_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
			if (!nla)
				goto nla_put_failure;
			icmp_key = nla_data(nla);
			icmp_key->icmp_type = ntohs(output->tp.src);
			icmp_key->icmp_code = ntohs(output->tp.dst);
		} else if (swkey->eth.type == htons(ETH_P_IPV6) &&
			   swkey->ip.proto == IPPROTO_ICMPV6) {
			struct ovs_key_icmpv6 *icmpv6_key;

			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
						sizeof(*icmpv6_key));
			if (!nla)
				goto nla_put_failure;
			icmpv6_key = nla_data(nla);
			icmpv6_key->icmpv6_type = ntohs(output->tp.src);
			icmpv6_key->icmpv6_code = ntohs(output->tp.dst);

			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
				struct ovs_key_nd *nd_key;

				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
				if (!nla)
					goto nla_put_failure;
				nd_key = nla_data(nla);
				memcpy(nd_key->nd_target, &output->ipv6.nd.target,
							sizeof(nd_key->nd_target));
				ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
				ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
			}
		}
	}

unencap:
	if (in_encap)
		nla_nest_end(skb, in_encap);
	if (encap)
		nla_nest_end(skb, encap);

	return 0;

nla_put_failure:
	return -EMSGSIZE;
}

int ovs_nla_put_key(const struct sw_flow_key *swkey,
		    const struct sw_flow_key *output, int attr, bool is_mask,
		    struct sk_buff *skb)
{
	int err;
	struct nlattr *nla;

	nla = nla_nest_start(skb, attr);
	if (!nla)
		return -EMSGSIZE;
	err = __ovs_nla_put_key(swkey, output, is_mask, skb);
	if (err)
		return err;
	nla_nest_end(skb, nla);

	return 0;
}

/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
{
	if (ovs_identifier_is_ufid(&flow->id))
		return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
			       flow->id.ufid);

	return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
			       OVS_FLOW_ATTR_KEY, false, skb);
}

/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
{
	return ovs_nla_put_key(&flow->key, &flow->key,
				OVS_FLOW_ATTR_KEY, false, skb);
}

/* Called with ovs_mutex or RCU read lock. */
int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
{
	return ovs_nla_put_key(&flow->key, &flow->mask->key,
				OVS_FLOW_ATTR_MASK, true, skb);
}

#define MAX_ACTIONS_BUFSIZE	(32 * 1024)

static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
{
	struct sw_flow_actions *sfa;

	if (size > MAX_ACTIONS_BUFSIZE) {
		OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
		return ERR_PTR(-EINVAL);
	}

	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
	if (!sfa)
		return ERR_PTR(-ENOMEM);

	sfa->actions_len = 0;
	return sfa;
}

static void ovs_nla_free_set_action(const struct nlattr *a)
{
	const struct nlattr *ovs_key = nla_data(a);
	struct ovs_tunnel_info *ovs_tun;

	switch (nla_type(ovs_key)) {
	case OVS_KEY_ATTR_TUNNEL_INFO:
		ovs_tun = nla_data(ovs_key);
		dst_release((struct dst_entry *)ovs_tun->tun_dst);
		break;
	}
}

void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
{
	const struct nlattr *a;
	int rem;

	if (!sf_acts)
		return;

	nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
		switch (nla_type(a)) {
		case OVS_ACTION_ATTR_SET:
			ovs_nla_free_set_action(a);
			break;
		case OVS_ACTION_ATTR_CT:
			ovs_ct_free_action(a);
			break;
		}
	}

	kfree(sf_acts);
}

static void __ovs_nla_free_flow_actions(struct rcu_head *head)
{
	ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
}

/* Schedules 'sf_acts' to be freed after the next RCU grace period.
 * The caller must hold rcu_read_lock for this to be sensible. */
void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
{
	call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
}

static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
				       int attr_len, bool log)
{

	struct sw_flow_actions *acts;
	int new_acts_size;
	int req_size = NLA_ALIGN(attr_len);
	int next_offset = offsetof(struct sw_flow_actions, actions) +
					(*sfa)->actions_len;

	if (req_size <= (ksize(*sfa) - next_offset))
		goto out;

	new_acts_size = ksize(*sfa) * 2;

	if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
		if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
			return ERR_PTR(-EMSGSIZE);
		new_acts_size = MAX_ACTIONS_BUFSIZE;
	}

	acts = nla_alloc_flow_actions(new_acts_size, log);
	if (IS_ERR(acts))
		return (void *)acts;

	memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
	acts->actions_len = (*sfa)->actions_len;
	acts->orig_len = (*sfa)->orig_len;
	kfree(*sfa);
	*sfa = acts;

out:
	(*sfa)->actions_len += req_size;
	return  (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
}

static struct nlattr *__add_action(struct sw_flow_actions **sfa,
				   int attrtype, void *data, int len, bool log)
{
	struct nlattr *a;

	a = reserve_sfa_size(sfa, nla_attr_size(len), log);
	if (IS_ERR(a))
		return a;

	a->nla_type = attrtype;
	a->nla_len = nla_attr_size(len);

	if (data)
		memcpy(nla_data(a), data, len);
	memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));

	return a;
}

int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
		       int len, bool log)
{
	struct nlattr *a;

	a = __add_action(sfa, attrtype, data, len, log);

	return PTR_ERR_OR_ZERO(a);
}

static inline int add_nested_action_start(struct sw_flow_actions **sfa,
					  int attrtype, bool log)
{
	int used = (*sfa)->actions_len;
	int err;

	err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
	if (err)
		return err;

	return used;
}

static inline void add_nested_action_end(struct sw_flow_actions *sfa,
					 int st_offset)
{
	struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
							       st_offset);

	a->nla_len = sfa->actions_len - st_offset;
}

static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
				  const struct sw_flow_key *key,
				  struct sw_flow_actions **sfa,
				  __be16 eth_type, __be16 vlan_tci, bool log);

static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
				    const struct sw_flow_key *key,
				    struct sw_flow_actions **sfa,
				    __be16 eth_type, __be16 vlan_tci,
				    bool log, bool last)
{
	const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
	const struct nlattr *probability, *actions;
	const struct nlattr *a;
	int rem, start, err;
	struct sample_arg arg;

	memset(attrs, 0, sizeof(attrs));
	nla_for_each_nested(a, attr, rem) {
		int type = nla_type(a);
		if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
			return -EINVAL;
		attrs[type] = a;
	}
	if (rem)
		return -EINVAL;

	probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
	if (!probability || nla_len(probability) != sizeof(u32))
		return -EINVAL;

	actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
	if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
		return -EINVAL;

	/* validation done, copy sample action. */
	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
	if (start < 0)
		return start;

	/* When both skb and flow may be changed, put the sample
	 * into a deferred fifo. On the other hand, if only skb
	 * may be modified, the actions can be executed in place.
	 *
	 * Do this analysis at the flow installation time.
	 * Set 'clone_action->exec' to true if the actions can be
	 * executed without being deferred.
	 *
	 * If the sample is the last action, it can always be excuted
	 * rather than deferred.
	 */
	arg.exec = last || !actions_may_change_flow(actions);
	arg.probability = nla_get_u32(probability);

	err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
				 log);
	if (err)
		return err;

	err = __ovs_nla_copy_actions(net, actions, key, sfa,
				     eth_type, vlan_tci, log);

	if (err)
		return err;

	add_nested_action_end(*sfa, start);

	return 0;
}

void ovs_match_init(struct sw_flow_match *match,
		    struct sw_flow_key *key,
		    bool reset_key,
		    struct sw_flow_mask *mask)
{
	memset(match, 0, sizeof(*match));
	match->key = key;
	match->mask = mask;

	if (reset_key)
		memset(key, 0, sizeof(*key));

	if (mask) {
		memset(&mask->key, 0, sizeof(mask->key));
		mask->range.start = mask->range.end = 0;
	}
}

static int validate_geneve_opts(struct sw_flow_key *key)
{
	struct geneve_opt *option;
	int opts_len = key->tun_opts_len;
	bool crit_opt = false;

	option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
	while (opts_len > 0) {
		int len;

		if (opts_len < sizeof(*option))
			return -EINVAL;

		len = sizeof(*option) + option->length * 4;
		if (len > opts_len)
			return -EINVAL;

		crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);

		option = (struct geneve_opt *)((u8 *)option + len);
		opts_len -= len;
	};

	key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;

	return 0;
}

static int validate_and_copy_set_tun(const struct nlattr *attr,
				     struct sw_flow_actions **sfa, bool log)
{
	struct sw_flow_match match;
	struct sw_flow_key key;
	struct metadata_dst *tun_dst;
	struct ip_tunnel_info *tun_info;
	struct ovs_tunnel_info *ovs_tun;
	struct nlattr *a;
	int err = 0, start, opts_type;

	ovs_match_init(&match, &key, true, NULL);
	opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
	if (opts_type < 0)
		return opts_type;

	if (key.tun_opts_len) {
		switch (opts_type) {
		case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
			err = validate_geneve_opts(&key);
			if (err < 0)
				return err;
			break;
		case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
			break;
		case OVS_TUNNEL_KEY_ATTR_ERSPAN_OPTS:
			break;
		}
	};

	start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
	if (start < 0)
		return start;

	tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
				     GFP_KERNEL);

	if (!tun_dst)
		return -ENOMEM;

	err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
	if (err) {
		dst_release((struct dst_entry *)tun_dst);
		return err;
	}

	a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
			 sizeof(*ovs_tun), log);
	if (IS_ERR(a)) {
		dst_release((struct dst_entry *)tun_dst);
		return PTR_ERR(a);
	}

	ovs_tun = nla_data(a);
	ovs_tun->tun_dst = tun_dst;

	tun_info = &tun_dst->u.tun_info;
	tun_info->mode = IP_TUNNEL_INFO_TX;
	if (key.tun_proto == AF_INET6)
		tun_info->mode |= IP_TUNNEL_INFO_IPV6;
	tun_info->key = key.tun_key;

	/* We need to store the options in the action itself since
	 * everything else will go away after flow setup. We can append
	 * it to tun_info and then point there.
	 */
	ip_tunnel_info_opts_set(tun_info,
				TUN_METADATA_OPTS(&key, key.tun_opts_len),
				key.tun_opts_len);
	add_nested_action_end(*sfa, start);

	return err;
}

/* Return false if there are any non-masked bits set.
 * Mask follows data immediately, before any netlink padding.
 */
static bool validate_masked(u8 *data, int len)
{
	u8 *mask = data + len;

	while (len--)
		if (*data++ & ~*mask++)
			return false;

	return true;
}

static int validate_set(const struct nlattr *a,
			const struct sw_flow_key *flow_key,
			struct sw_flow_actions **sfa, bool *skip_copy,
			u8 mac_proto, __be16 eth_type, bool masked, bool log)
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
	size_t key_len;

	/* There can be only one key in a action */
	if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
		return -EINVAL;

	key_len = nla_len(ovs_key);
	if (masked)
		key_len /= 2;

	if (key_type > OVS_KEY_ATTR_MAX ||
	    !check_attr_len(key_len, ovs_key_lens[key_type].len))
		return -EINVAL;

	if (masked && !validate_masked(nla_data(ovs_key), key_len))
		return -EINVAL;

	switch (key_type) {
	const struct ovs_key_ipv4 *ipv4_key;
	const struct ovs_key_ipv6 *ipv6_key;
	int err;

	case OVS_KEY_ATTR_PRIORITY:
	case OVS_KEY_ATTR_SKB_MARK:
	case OVS_KEY_ATTR_CT_MARK:
	case OVS_KEY_ATTR_CT_LABELS:
		break;

	case OVS_KEY_ATTR_ETHERNET:
		if (mac_proto != MAC_PROTO_ETHERNET)
			return -EINVAL;
		break;

	case OVS_KEY_ATTR_TUNNEL:
		if (masked)
			return -EINVAL; /* Masked tunnel set not supported. */

		*skip_copy = true;
		err = validate_and_copy_set_tun(a, sfa, log);
		if (err)
			return err;
		break;

	case OVS_KEY_ATTR_IPV4:
		if (eth_type != htons(ETH_P_IP))
			return -EINVAL;

		ipv4_key = nla_data(ovs_key);

		if (masked) {
			const struct ovs_key_ipv4 *mask = ipv4_key + 1;

			/* Non-writeable fields. */
			if (mask->ipv4_proto || mask->ipv4_frag)
				return -EINVAL;
		} else {
			if (ipv4_key->ipv4_proto != flow_key->ip.proto)
				return -EINVAL;

			if (ipv4_key->ipv4_frag != flow_key->ip.frag)
				return -EINVAL;
		}
		break;

	case OVS_KEY_ATTR_IPV6:
		if (eth_type != htons(ETH_P_IPV6))
			return -EINVAL;

		ipv6_key = nla_data(ovs_key);

		if (masked) {
			const struct ovs_key_ipv6 *mask = ipv6_key + 1;

			/* Non-writeable fields. */
			if (mask->ipv6_proto || mask->ipv6_frag)
				return -EINVAL;

			/* Invalid bits in the flow label mask? */
			if (ntohl(mask->ipv6_label) & 0xFFF00000)
				return -EINVAL;
		} else {
			if (ipv6_key->ipv6_proto != flow_key->ip.proto)
				return -EINVAL;

			if (ipv6_key->ipv6_frag != flow_key->ip.frag)
				return -EINVAL;
		}
		if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_TCP:
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_TCP)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_UDP:
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_UDP)
			return -EINVAL;

		break;

	case OVS_KEY_ATTR_MPLS:
		if (!eth_p_mpls(eth_type))
			return -EINVAL;
		break;

	case OVS_KEY_ATTR_SCTP:
		if ((eth_type != htons(ETH_P_IP) &&
		     eth_type != htons(ETH_P_IPV6)) ||
		    flow_key->ip.proto != IPPROTO_SCTP)
			return -EINVAL;

		break;

	default:
		return -EINVAL;
	}

	/* Convert non-masked non-tunnel set actions to masked set actions. */
	if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
		int start, len = key_len * 2;
		struct nlattr *at;

		*skip_copy = true;

		start = add_nested_action_start(sfa,
						OVS_ACTION_ATTR_SET_TO_MASKED,
						log);
		if (start < 0)
			return start;

		at = __add_action(sfa, key_type, NULL, len, log);
		if (IS_ERR(at))
			return PTR_ERR(at);

		memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
		memset(nla_data(at) + key_len, 0xff, key_len);    /* Mask. */
		/* Clear non-writeable bits from otherwise writeable fields. */
		if (key_type == OVS_KEY_ATTR_IPV6) {
			struct ovs_key_ipv6 *mask = nla_data(at) + key_len;

			mask->ipv6_label &= htonl(0x000FFFFF);
		}
		add_nested_action_end(*sfa, start);
	}

	return 0;
}

static int validate_userspace(const struct nlattr *attr)
{
	static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
		[OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
		[OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
		[OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
	};
	struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
	int error;

	error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr,
				 userspace_policy, NULL);
	if (error)
		return error;

	if (!a[OVS_USERSPACE_ATTR_PID] ||
	    !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
		return -EINVAL;

	return 0;
}

static int copy_action(const struct nlattr *from,
		       struct sw_flow_actions **sfa, bool log)
{
	int totlen = NLA_ALIGN(from->nla_len);
	struct nlattr *to;

	to = reserve_sfa_size(sfa, from->nla_len, log);
	if (IS_ERR(to))
		return PTR_ERR(to);

	memcpy(to, from, totlen);
	return 0;
}

static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
				  const struct sw_flow_key *key,
				  struct sw_flow_actions **sfa,
				  __be16 eth_type, __be16 vlan_tci, bool log)
{
	u8 mac_proto = ovs_key_mac_proto(key);
	const struct nlattr *a;
	int rem, err;

	nla_for_each_nested(a, attr, rem) {
		/* Expected argument lengths, (u32)-1 for variable length. */
		static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
			[OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
			[OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
			[OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
			[OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
			[OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
			[OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
			[OVS_ACTION_ATTR_POP_VLAN] = 0,
			[OVS_ACTION_ATTR_SET] = (u32)-1,
			[OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
			[OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
			[OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
			[OVS_ACTION_ATTR_CT] = (u32)-1,
			[OVS_ACTION_ATTR_CT_CLEAR] = 0,
			[OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
			[OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
			[OVS_ACTION_ATTR_POP_ETH] = 0,
		};
		const struct ovs_action_push_vlan *vlan;
		int type = nla_type(a);
		bool skip_copy;

		if (type > OVS_ACTION_ATTR_MAX ||
		    (action_lens[type] != nla_len(a) &&
		     action_lens[type] != (u32)-1))
			return -EINVAL;

		skip_copy = false;
		switch (type) {
		case OVS_ACTION_ATTR_UNSPEC:
			return -EINVAL;

		case OVS_ACTION_ATTR_USERSPACE:
			err = validate_userspace(a);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_OUTPUT:
			if (nla_get_u32(a) >= DP_MAX_PORTS)
				return -EINVAL;
			break;

		case OVS_ACTION_ATTR_TRUNC: {
			const struct ovs_action_trunc *trunc = nla_data(a);

			if (trunc->max_len < ETH_HLEN)
				return -EINVAL;
			break;
		}

		case OVS_ACTION_ATTR_HASH: {
			const struct ovs_action_hash *act_hash = nla_data(a);

			switch (act_hash->hash_alg) {
			case OVS_HASH_ALG_L4:
				break;
			default:
				return  -EINVAL;
			}

			break;
		}

		case OVS_ACTION_ATTR_POP_VLAN:
			if (mac_proto != MAC_PROTO_ETHERNET)
				return -EINVAL;
			vlan_tci = htons(0);
			break;

		case OVS_ACTION_ATTR_PUSH_VLAN:
			if (mac_proto != MAC_PROTO_ETHERNET)
				return -EINVAL;
			vlan = nla_data(a);
			if (!eth_type_vlan(vlan->vlan_tpid))
				return -EINVAL;
			if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
				return -EINVAL;
			vlan_tci = vlan->vlan_tci;
			break;

		case OVS_ACTION_ATTR_RECIRC:
			break;

		case OVS_ACTION_ATTR_PUSH_MPLS: {
			const struct ovs_action_push_mpls *mpls = nla_data(a);

			if (!eth_p_mpls(mpls->mpls_ethertype))
				return -EINVAL;
			/* Prohibit push MPLS other than to a white list
			 * for packets that have a known tag order.
			 */
			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
			    (eth_type != htons(ETH_P_IP) &&
			     eth_type != htons(ETH_P_IPV6) &&
			     eth_type != htons(ETH_P_ARP) &&
			     eth_type != htons(ETH_P_RARP) &&
			     !eth_p_mpls(eth_type)))
				return -EINVAL;
			eth_type = mpls->mpls_ethertype;
			break;
		}

		case OVS_ACTION_ATTR_POP_MPLS:
			if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
			    !eth_p_mpls(eth_type))
				return -EINVAL;

			/* Disallow subsequent L2.5+ set and mpls_pop actions
			 * as there is no check here to ensure that the new
			 * eth_type is valid and thus set actions could
			 * write off the end of the packet or otherwise
			 * corrupt it.
			 *
			 * Support for these actions is planned using packet
			 * recirculation.
			 */
			eth_type = htons(0);
			break;

		case OVS_ACTION_ATTR_SET:
			err = validate_set(a, key, sfa,
					   &skip_copy, mac_proto, eth_type,
					   false, log);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SET_MASKED:
			err = validate_set(a, key, sfa,
					   &skip_copy, mac_proto, eth_type,
					   true, log);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SAMPLE: {
			bool last = nla_is_last(a, rem);

			err = validate_and_copy_sample(net, a, key, sfa,
						       eth_type, vlan_tci,
						       log, last);
			if (err)
				return err;
			skip_copy = true;
			break;
		}

		case OVS_ACTION_ATTR_CT:
			err = ovs_ct_copy_action(net, a, key, sfa, log);
			if (err)
				return err;
			skip_copy = true;
			break;

		case OVS_ACTION_ATTR_CT_CLEAR:
			break;

		case OVS_ACTION_ATTR_PUSH_ETH:
			/* Disallow pushing an Ethernet header if one
			 * is already present */
			if (mac_proto != MAC_PROTO_NONE)
				return -EINVAL;
			mac_proto = MAC_PROTO_NONE;
			break;

		case OVS_ACTION_ATTR_POP_ETH:
			if (mac_proto != MAC_PROTO_ETHERNET)
				return -EINVAL;
			if (vlan_tci & htons(VLAN_TAG_PRESENT))
				return -EINVAL;
			mac_proto = MAC_PROTO_ETHERNET;
			break;

		default:
			OVS_NLERR(log, "Unknown Action type %d", type);
			return -EINVAL;
		}
		if (!skip_copy) {
			err = copy_action(a, sfa, log);
			if (err)
				return err;
		}
	}

	if (rem > 0)
		return -EINVAL;

	return 0;
}

/* 'key' must be the masked key. */
int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
			 const struct sw_flow_key *key,
			 struct sw_flow_actions **sfa, bool log)
{
	int err;

	*sfa = nla_alloc_flow_actions(nla_len(attr), log);
	if (IS_ERR(*sfa))
		return PTR_ERR(*sfa);

	(*sfa)->orig_len = nla_len(attr);
	err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
				     key->eth.vlan.tci, log);
	if (err)
		ovs_nla_free_flow_actions(*sfa);

	return err;
}

static int sample_action_to_attr(const struct nlattr *attr,
				 struct sk_buff *skb)
{
	struct nlattr *start, *ac_start = NULL, *sample_arg;
	int err = 0, rem = nla_len(attr);
	const struct sample_arg *arg;
	struct nlattr *actions;

	start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
	if (!start)
		return -EMSGSIZE;

	sample_arg = nla_data(attr);
	arg = nla_data(sample_arg);
	actions = nla_next(sample_arg, &rem);

	if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
		err = -EMSGSIZE;
		goto out;
	}

	ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
	if (!ac_start) {
		err = -EMSGSIZE;
		goto out;
	}

	err = ovs_nla_put_actions(actions, rem, skb);

out:
	if (err) {
		nla_nest_cancel(skb, ac_start);
		nla_nest_cancel(skb, start);
	} else {
		nla_nest_end(skb, ac_start);
		nla_nest_end(skb, start);
	}

	return err;
}

static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
	int key_type = nla_type(ovs_key);
	struct nlattr *start;
	int err;

	switch (key_type) {
	case OVS_KEY_ATTR_TUNNEL_INFO: {
		struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
		struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;

		start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
		if (!start)
			return -EMSGSIZE;

		err =  ip_tun_to_nlattr(skb, &tun_info->key,
					ip_tunnel_info_opts(tun_info),
					tun_info->options_len,
					ip_tunnel_info_af(tun_info));
		if (err)
			return err;
		nla_nest_end(skb, start);
		break;
	}
	default:
		if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
			return -EMSGSIZE;
		break;
	}

	return 0;
}

static int masked_set_action_to_set_action_attr(const struct nlattr *a,
						struct sk_buff *skb)
{
	const struct nlattr *ovs_key = nla_data(a);
	struct nlattr *nla;
	size_t key_len = nla_len(ovs_key) / 2;

	/* Revert the conversion we did from a non-masked set action to
	 * masked set action.
	 */
	nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
	if (!nla)
		return -EMSGSIZE;

	if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
		return -EMSGSIZE;

	nla_nest_end(skb, nla);
	return 0;
}

int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
{
	const struct nlattr *a;
	int rem, err;

	nla_for_each_attr(a, attr, len, rem) {
		int type = nla_type(a);

		switch (type) {
		case OVS_ACTION_ATTR_SET:
			err = set_action_to_attr(a, skb);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SET_TO_MASKED:
			err = masked_set_action_to_set_action_attr(a, skb);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_SAMPLE:
			err = sample_action_to_attr(a, skb);
			if (err)
				return err;
			break;

		case OVS_ACTION_ATTR_CT:
			err = ovs_ct_action_to_attr(nla_data(a), skb);
			if (err)
				return err;
			break;

		default:
			if (nla_put(skb, type, nla_len(a), nla_data(a)))
				return -EMSGSIZE;
			break;
		}
	}

	return 0;
}