summaryrefslogtreecommitdiff
path: root/lib/random32.c
blob: 4f9d5dffc55493a2235c3fda72f36052f4da77c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/*
  This is a maximally equidistributed combined Tausworthe generator
  based on code from GNU Scientific Library 1.5 (30 Jun 2004)

  lfsr113 version:

   x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)

   s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
   s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
   s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
   s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))

   The period of this generator is about 2^113 (see erratum paper).

   From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
   Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
   http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
   ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps

   There is an erratum in the paper "Tables of Maximally
   Equidistributed Combined LFSR Generators", Mathematics of
   Computation, 68, 225 (1999), 261--269:
   http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps

        ... the k_j most significant bits of z_j must be non-
        zero, for each j. (Note: this restriction also applies to the
        computer code given in [4], but was mistakenly not mentioned in
        that paper.)

   This affects the seeding procedure by imposing the requirement
   s1 > 1, s2 > 7, s3 > 15, s4 > 127.

*/

#include <linux/types.h>
#include <linux/percpu.h>
#include <linux/export.h>
#include <linux/jiffies.h>
#include <linux/random.h>
#include <linux/sched.h>

#ifdef CONFIG_RANDOM32_SELFTEST
static void __init prandom_state_selftest(void);
#endif

static DEFINE_PER_CPU(struct rnd_state, net_rand_state);

/**
 *	prandom_u32_state - seeded pseudo-random number generator.
 *	@state: pointer to state structure holding seeded state.
 *
 *	This is used for pseudo-randomness with no outside seeding.
 *	For more random results, use prandom_u32().
 */
u32 prandom_u32_state(struct rnd_state *state)
{
#define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b)

	state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
	state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
	state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
	state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);

	return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
}
EXPORT_SYMBOL(prandom_u32_state);

/**
 *	prandom_u32 - pseudo random number generator
 *
 *	A 32 bit pseudo-random number is generated using a fast
 *	algorithm suitable for simulation. This algorithm is NOT
 *	considered safe for cryptographic use.
 */
u32 prandom_u32(void)
{
	unsigned long r;
	struct rnd_state *state = &get_cpu_var(net_rand_state);
	r = prandom_u32_state(state);
	put_cpu_var(state);
	return r;
}
EXPORT_SYMBOL(prandom_u32);

/*
 *	prandom_bytes_state - get the requested number of pseudo-random bytes
 *
 *	@state: pointer to state structure holding seeded state.
 *	@buf: where to copy the pseudo-random bytes to
 *	@bytes: the requested number of bytes
 *
 *	This is used for pseudo-randomness with no outside seeding.
 *	For more random results, use prandom_bytes().
 */
void prandom_bytes_state(struct rnd_state *state, void *buf, int bytes)
{
	unsigned char *p = buf;
	int i;

	for (i = 0; i < round_down(bytes, sizeof(u32)); i += sizeof(u32)) {
		u32 random = prandom_u32_state(state);
		int j;

		for (j = 0; j < sizeof(u32); j++) {
			p[i + j] = random;
			random >>= BITS_PER_BYTE;
		}
	}
	if (i < bytes) {
		u32 random = prandom_u32_state(state);

		for (; i < bytes; i++) {
			p[i] = random;
			random >>= BITS_PER_BYTE;
		}
	}
}
EXPORT_SYMBOL(prandom_bytes_state);

/**
 *	prandom_bytes - get the requested number of pseudo-random bytes
 *	@buf: where to copy the pseudo-random bytes to
 *	@bytes: the requested number of bytes
 */
void prandom_bytes(void *buf, int bytes)
{
	struct rnd_state *state = &get_cpu_var(net_rand_state);

	prandom_bytes_state(state, buf, bytes);
	put_cpu_var(state);
}
EXPORT_SYMBOL(prandom_bytes);

static void prandom_warmup(struct rnd_state *state)
{
	/* Calling RNG ten times to satify recurrence condition */
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
	prandom_u32_state(state);
}

static void prandom_seed_very_weak(struct rnd_state *state, u32 seed)
{
	/* Note: This sort of seeding is ONLY used in test cases and
	 * during boot at the time from core_initcall until late_initcall
	 * as we don't have a stronger entropy source available yet.
	 * After late_initcall, we reseed entire state, we have to (!),
	 * otherwise an attacker just needs to search 32 bit space to
	 * probe for our internal 128 bit state if he knows a couple
	 * of prandom32 outputs!
	 */
#define LCG(x)	((x) * 69069U)	/* super-duper LCG */
	state->s1 = __seed(LCG(seed),        2U);
	state->s2 = __seed(LCG(state->s1),   8U);
	state->s3 = __seed(LCG(state->s2),  16U);
	state->s4 = __seed(LCG(state->s3), 128U);
}

/**
 *	prandom_seed - add entropy to pseudo random number generator
 *	@seed: seed value
 *
 *	Add some additional seeding to the prandom pool.
 */
void prandom_seed(u32 entropy)
{
	int i;
	/*
	 * No locking on the CPUs, but then somewhat random results are, well,
	 * expected.
	 */
	for_each_possible_cpu (i) {
		struct rnd_state *state = &per_cpu(net_rand_state, i);

		state->s1 = __seed(state->s1 ^ entropy, 2U);
		prandom_warmup(state);
	}
}
EXPORT_SYMBOL(prandom_seed);

/*
 *	Generate some initially weak seeding values to allow
 *	to start the prandom_u32() engine.
 */
static int __init prandom_init(void)
{
	int i;

#ifdef CONFIG_RANDOM32_SELFTEST
	prandom_state_selftest();
#endif

	for_each_possible_cpu(i) {
		struct rnd_state *state = &per_cpu(net_rand_state,i);

		prandom_seed_very_weak(state, (i + jiffies) ^ random_get_entropy());
		prandom_warmup(state);
	}
	return 0;
}
core_initcall(prandom_init);

static void __prandom_timer(unsigned long dontcare);
static DEFINE_TIMER(seed_timer, __prandom_timer, 0, 0);

static void __prandom_timer(unsigned long dontcare)
{
	u32 entropy;

	get_random_bytes(&entropy, sizeof(entropy));
	prandom_seed(entropy);
	/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
	seed_timer.expires = jiffies + (40 * HZ + (prandom_u32() % (40 * HZ)));
	add_timer(&seed_timer);
}

static void __init __prandom_start_seed_timer(void)
{
	set_timer_slack(&seed_timer, HZ);
	seed_timer.expires = jiffies + 40 * HZ;
	add_timer(&seed_timer);
}

/*
 *	Generate better values after random number generator
 *	is fully initialized.
 */
static void __prandom_reseed(bool late)
{
	int i;
	unsigned long flags;
	static bool latch = false;
	static DEFINE_SPINLOCK(lock);

	/* only allow initial seeding (late == false) once */
	spin_lock_irqsave(&lock, flags);
	if (latch && !late)
		goto out;
	latch = true;

	for_each_possible_cpu(i) {
		struct rnd_state *state = &per_cpu(net_rand_state,i);
		u32 seeds[4];

		get_random_bytes(&seeds, sizeof(seeds));
		state->s1 = __seed(seeds[0],   2U);
		state->s2 = __seed(seeds[1],   8U);
		state->s3 = __seed(seeds[2],  16U);
		state->s4 = __seed(seeds[3], 128U);

		prandom_warmup(state);
	}
out:
	spin_unlock_irqrestore(&lock, flags);
}

void prandom_reseed_late(void)
{
	__prandom_reseed(true);
}

static int __init prandom_reseed(void)
{
	__prandom_reseed(false);
	__prandom_start_seed_timer();
	return 0;
}
late_initcall(prandom_reseed);

#ifdef CONFIG_RANDOM32_SELFTEST
static struct prandom_test1 {
	u32 seed;
	u32 result;
} test1[] = {
	{ 1U, 3484351685U },
	{ 2U, 2623130059U },
	{ 3U, 3125133893U },
	{ 4U,  984847254U },
};

static struct prandom_test2 {
	u32 seed;
	u32 iteration;
	u32 result;
} test2[] = {
	/* Test cases against taus113 from GSL library. */
	{  931557656U, 959U, 2975593782U },
	{ 1339693295U, 876U, 3887776532U },
	{ 1545556285U, 961U, 1615538833U },
	{  601730776U, 723U, 1776162651U },
	{ 1027516047U, 687U,  511983079U },
	{  416526298U, 700U,  916156552U },
	{ 1395522032U, 652U, 2222063676U },
	{  366221443U, 617U, 2992857763U },
	{ 1539836965U, 714U, 3783265725U },
	{  556206671U, 994U,  799626459U },
	{  684907218U, 799U,  367789491U },
	{ 2121230701U, 931U, 2115467001U },
	{ 1668516451U, 644U, 3620590685U },
	{  768046066U, 883U, 2034077390U },
	{ 1989159136U, 833U, 1195767305U },
	{  536585145U, 996U, 3577259204U },
	{ 1008129373U, 642U, 1478080776U },
	{ 1740775604U, 939U, 1264980372U },
	{ 1967883163U, 508U,   10734624U },
	{ 1923019697U, 730U, 3821419629U },
	{  442079932U, 560U, 3440032343U },
	{ 1961302714U, 845U,  841962572U },
	{ 2030205964U, 962U, 1325144227U },
	{ 1160407529U, 507U,  240940858U },
	{  635482502U, 779U, 4200489746U },
	{ 1252788931U, 699U,  867195434U },
	{ 1961817131U, 719U,  668237657U },
	{ 1071468216U, 983U,  917876630U },
	{ 1281848367U, 932U, 1003100039U },
	{  582537119U, 780U, 1127273778U },
	{ 1973672777U, 853U, 1071368872U },
	{ 1896756996U, 762U, 1127851055U },
	{  847917054U, 500U, 1717499075U },
	{ 1240520510U, 951U, 2849576657U },
	{ 1685071682U, 567U, 1961810396U },
	{ 1516232129U, 557U,    3173877U },
	{ 1208118903U, 612U, 1613145022U },
	{ 1817269927U, 693U, 4279122573U },
	{ 1510091701U, 717U,  638191229U },
	{  365916850U, 807U,  600424314U },
	{  399324359U, 702U, 1803598116U },
	{ 1318480274U, 779U, 2074237022U },
	{  697758115U, 840U, 1483639402U },
	{ 1696507773U, 840U,  577415447U },
	{ 2081979121U, 981U, 3041486449U },
	{  955646687U, 742U, 3846494357U },
	{ 1250683506U, 749U,  836419859U },
	{  595003102U, 534U,  366794109U },
	{   47485338U, 558U, 3521120834U },
	{  619433479U, 610U, 3991783875U },
	{  704096520U, 518U, 4139493852U },
	{ 1712224984U, 606U, 2393312003U },
	{ 1318233152U, 922U, 3880361134U },
	{  855572992U, 761U, 1472974787U },
	{   64721421U, 703U,  683860550U },
	{  678931758U, 840U,  380616043U },
	{  692711973U, 778U, 1382361947U },
	{  677703619U, 530U, 2826914161U },
	{   92393223U, 586U, 1522128471U },
	{ 1222592920U, 743U, 3466726667U },
	{  358288986U, 695U, 1091956998U },
	{ 1935056945U, 958U,  514864477U },
	{  735675993U, 990U, 1294239989U },
	{ 1560089402U, 897U, 2238551287U },
	{   70616361U, 829U,   22483098U },
	{  368234700U, 731U, 2913875084U },
	{   20221190U, 879U, 1564152970U },
	{  539444654U, 682U, 1835141259U },
	{ 1314987297U, 840U, 1801114136U },
	{ 2019295544U, 645U, 3286438930U },
	{  469023838U, 716U, 1637918202U },
	{ 1843754496U, 653U, 2562092152U },
	{  400672036U, 809U, 4264212785U },
	{  404722249U, 965U, 2704116999U },
	{  600702209U, 758U,  584979986U },
	{  519953954U, 667U, 2574436237U },
	{ 1658071126U, 694U, 2214569490U },
	{  420480037U, 749U, 3430010866U },
	{  690103647U, 969U, 3700758083U },
	{ 1029424799U, 937U, 3787746841U },
	{ 2012608669U, 506U, 3362628973U },
	{ 1535432887U, 998U,   42610943U },
	{ 1330635533U, 857U, 3040806504U },
	{ 1223800550U, 539U, 3954229517U },
	{ 1322411537U, 680U, 3223250324U },
	{ 1877847898U, 945U, 2915147143U },
	{ 1646356099U, 874U,  965988280U },
	{  805687536U, 744U, 4032277920U },
	{ 1948093210U, 633U, 1346597684U },
	{  392609744U, 783U, 1636083295U },
	{  690241304U, 770U, 1201031298U },
	{ 1360302965U, 696U, 1665394461U },
	{ 1220090946U, 780U, 1316922812U },
	{  447092251U, 500U, 3438743375U },
	{ 1613868791U, 592U,  828546883U },
	{  523430951U, 548U, 2552392304U },
	{  726692899U, 810U, 1656872867U },
	{ 1364340021U, 836U, 3710513486U },
	{ 1986257729U, 931U,  935013962U },
	{  407983964U, 921U,  728767059U },
};

static void __init prandom_state_selftest(void)
{
	int i, j, errors = 0, runs = 0;
	bool error = false;

	for (i = 0; i < ARRAY_SIZE(test1); i++) {
		struct rnd_state state;

		prandom_seed_very_weak(&state, test1[i].seed);
		prandom_warmup(&state);

		if (test1[i].result != prandom_u32_state(&state))
			error = true;
	}

	if (error)
		pr_warn("prandom: seed boundary self test failed\n");
	else
		pr_info("prandom: seed boundary self test passed\n");

	for (i = 0; i < ARRAY_SIZE(test2); i++) {
		struct rnd_state state;

		prandom_seed_very_weak(&state, test2[i].seed);
		prandom_warmup(&state);

		for (j = 0; j < test2[i].iteration - 1; j++)
			prandom_u32_state(&state);

		if (test2[i].result != prandom_u32_state(&state))
			errors++;

		runs++;
		cond_resched();
	}

	if (errors)
		pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
	else
		pr_info("prandom: %d self tests passed\n", runs);
}
#endif