1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
|
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Definitions for the 'struct sk_buff' memory handlers.
*
* Authors:
* Alan Cox, <gw4pts@gw4pts.ampr.org>
* Florian La Roche, <rzsfl@rz.uni-sb.de>
*/
#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H
#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/time.h>
#include <linux/bug.h>
#include <linux/bvec.h>
#include <linux/cache.h>
#include <linux/rbtree.h>
#include <linux/socket.h>
#include <linux/refcount.h>
#include <linux/atomic.h>
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/net.h>
#include <linux/textsearch.h>
#include <net/checksum.h>
#include <linux/rcupdate.h>
#include <linux/hrtimer.h>
#include <linux/dma-mapping.h>
#include <linux/netdev_features.h>
#include <linux/sched.h>
#include <linux/sched/clock.h>
#include <net/flow_dissector.h>
#include <linux/splice.h>
#include <linux/in6.h>
#include <linux/if_packet.h>
#include <net/flow.h>
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
#include <linux/netfilter/nf_conntrack_common.h>
#endif
/* The interface for checksum offload between the stack and networking drivers
* is as follows...
*
* A. IP checksum related features
*
* Drivers advertise checksum offload capabilities in the features of a device.
* From the stack's point of view these are capabilities offered by the driver,
* a driver typically only advertises features that it is capable of offloading
* to its device.
*
* The checksum related features are:
*
* NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
* IP (one's complement) checksum for any combination
* of protocols or protocol layering. The checksum is
* computed and set in a packet per the CHECKSUM_PARTIAL
* interface (see below).
*
* NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
* TCP or UDP packets over IPv4. These are specifically
* unencapsulated packets of the form IPv4|TCP or
* IPv4|UDP where the Protocol field in the IPv4 header
* is TCP or UDP. The IPv4 header may contain IP options
* This feature cannot be set in features for a device
* with NETIF_F_HW_CSUM also set. This feature is being
* DEPRECATED (see below).
*
* NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
* TCP or UDP packets over IPv6. These are specifically
* unencapsulated packets of the form IPv6|TCP or
* IPv4|UDP where the Next Header field in the IPv6
* header is either TCP or UDP. IPv6 extension headers
* are not supported with this feature. This feature
* cannot be set in features for a device with
* NETIF_F_HW_CSUM also set. This feature is being
* DEPRECATED (see below).
*
* NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
* This flag is used only used to disable the RX checksum
* feature for a device. The stack will accept receive
* checksum indication in packets received on a device
* regardless of whether NETIF_F_RXCSUM is set.
*
* B. Checksumming of received packets by device. Indication of checksum
* verification is in set skb->ip_summed. Possible values are:
*
* CHECKSUM_NONE:
*
* Device did not checksum this packet e.g. due to lack of capabilities.
* The packet contains full (though not verified) checksum in packet but
* not in skb->csum. Thus, skb->csum is undefined in this case.
*
* CHECKSUM_UNNECESSARY:
*
* The hardware you're dealing with doesn't calculate the full checksum
* (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
* for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
* if their checksums are okay. skb->csum is still undefined in this case
* though. A driver or device must never modify the checksum field in the
* packet even if checksum is verified.
*
* CHECKSUM_UNNECESSARY is applicable to following protocols:
* TCP: IPv6 and IPv4.
* UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
* zero UDP checksum for either IPv4 or IPv6, the networking stack
* may perform further validation in this case.
* GRE: only if the checksum is present in the header.
* SCTP: indicates the CRC in SCTP header has been validated.
* FCOE: indicates the CRC in FC frame has been validated.
*
* skb->csum_level indicates the number of consecutive checksums found in
* the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
* For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
* and a device is able to verify the checksums for UDP (possibly zero),
* GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
* two. If the device were only able to verify the UDP checksum and not
* GRE, either because it doesn't support GRE checksum of because GRE
* checksum is bad, skb->csum_level would be set to zero (TCP checksum is
* not considered in this case).
*
* CHECKSUM_COMPLETE:
*
* This is the most generic way. The device supplied checksum of the _whole_
* packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
* hardware doesn't need to parse L3/L4 headers to implement this.
*
* Notes:
* - Even if device supports only some protocols, but is able to produce
* skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
* - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
*
* CHECKSUM_PARTIAL:
*
* A checksum is set up to be offloaded to a device as described in the
* output description for CHECKSUM_PARTIAL. This may occur on a packet
* received directly from another Linux OS, e.g., a virtualized Linux kernel
* on the same host, or it may be set in the input path in GRO or remote
* checksum offload. For the purposes of checksum verification, the checksum
* referred to by skb->csum_start + skb->csum_offset and any preceding
* checksums in the packet are considered verified. Any checksums in the
* packet that are after the checksum being offloaded are not considered to
* be verified.
*
* C. Checksumming on transmit for non-GSO. The stack requests checksum offload
* in the skb->ip_summed for a packet. Values are:
*
* CHECKSUM_PARTIAL:
*
* The driver is required to checksum the packet as seen by hard_start_xmit()
* from skb->csum_start up to the end, and to record/write the checksum at
* offset skb->csum_start + skb->csum_offset. A driver may verify that the
* csum_start and csum_offset values are valid values given the length and
* offset of the packet, however they should not attempt to validate that the
* checksum refers to a legitimate transport layer checksum-- it is the
* purview of the stack to validate that csum_start and csum_offset are set
* correctly.
*
* When the stack requests checksum offload for a packet, the driver MUST
* ensure that the checksum is set correctly. A driver can either offload the
* checksum calculation to the device, or call skb_checksum_help (in the case
* that the device does not support offload for a particular checksum).
*
* NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
* NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
* checksum offload capability.
* skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
* on network device checksumming capabilities: if a packet does not match
* them, skb_checksum_help or skb_crc32c_help (depending on the value of
* csum_not_inet, see item D.) is called to resolve the checksum.
*
* CHECKSUM_NONE:
*
* The skb was already checksummed by the protocol, or a checksum is not
* required.
*
* CHECKSUM_UNNECESSARY:
*
* This has the same meaning on as CHECKSUM_NONE for checksum offload on
* output.
*
* CHECKSUM_COMPLETE:
* Not used in checksum output. If a driver observes a packet with this value
* set in skbuff, if should treat as CHECKSUM_NONE being set.
*
* D. Non-IP checksum (CRC) offloads
*
* NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
* offloading the SCTP CRC in a packet. To perform this offload the stack
* will set set csum_start and csum_offset accordingly, set ip_summed to
* CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
* the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
* A driver that supports both IP checksum offload and SCTP CRC32c offload
* must verify which offload is configured for a packet by testing the
* value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
* CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
*
* NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
* offloading the FCOE CRC in a packet. To perform this offload the stack
* will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
* accordingly. Note the there is no indication in the skbuff that the
* CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
* both IP checksum offload and FCOE CRC offload must verify which offload
* is configured for a packet presumably by inspecting packet headers.
*
* E. Checksumming on output with GSO.
*
* In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
* is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
* gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
* part of the GSO operation is implied. If a checksum is being offloaded
* with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
* are set to refer to the outermost checksum being offload (two offloaded
* checksums are possible with UDP encapsulation).
*/
/* Don't change this without changing skb_csum_unnecessary! */
#define CHECKSUM_NONE 0
#define CHECKSUM_UNNECESSARY 1
#define CHECKSUM_COMPLETE 2
#define CHECKSUM_PARTIAL 3
/* Maximum value in skb->csum_level */
#define SKB_MAX_CSUM_LEVEL 3
#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
#define SKB_WITH_OVERHEAD(X) \
((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
#define SKB_MAX_ORDER(X, ORDER) \
SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
/* return minimum truesize of one skb containing X bytes of data */
#define SKB_TRUESIZE(X) ((X) + \
SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
struct net_device;
struct scatterlist;
struct pipe_inode_info;
struct iov_iter;
struct napi_struct;
struct bpf_prog;
union bpf_attr;
struct skb_ext;
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
struct nf_bridge_info {
enum {
BRNF_PROTO_UNCHANGED,
BRNF_PROTO_8021Q,
BRNF_PROTO_PPPOE
} orig_proto:8;
u8 pkt_otherhost:1;
u8 in_prerouting:1;
u8 bridged_dnat:1;
__u16 frag_max_size;
struct net_device *physindev;
/* always valid & non-NULL from FORWARD on, for physdev match */
struct net_device *physoutdev;
union {
/* prerouting: detect dnat in orig/reply direction */
__be32 ipv4_daddr;
struct in6_addr ipv6_daddr;
/* after prerouting + nat detected: store original source
* mac since neigh resolution overwrites it, only used while
* skb is out in neigh layer.
*/
char neigh_header[8];
};
};
#endif
#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
/* Chain in tc_skb_ext will be used to share the tc chain with
* ovs recirc_id. It will be set to the current chain by tc
* and read by ovs to recirc_id.
*/
struct tc_skb_ext {
__u32 chain;
};
#endif
struct sk_buff_head {
/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;
__u32 qlen;
spinlock_t lock;
};
struct sk_buff;
/* To allow 64K frame to be packed as single skb without frag_list we
* require 64K/PAGE_SIZE pages plus 1 additional page to allow for
* buffers which do not start on a page boundary.
*
* Since GRO uses frags we allocate at least 16 regardless of page
* size.
*/
#if (65536/PAGE_SIZE + 1) < 16
#define MAX_SKB_FRAGS 16UL
#else
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
#endif
extern int sysctl_max_skb_frags;
/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
* segment using its current segmentation instead.
*/
#define GSO_BY_FRAGS 0xFFFF
typedef struct bio_vec skb_frag_t;
/**
* skb_frag_size() - Returns the size of a skb fragment
* @frag: skb fragment
*/
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
return frag->bv_len;
}
/**
* skb_frag_size_set() - Sets the size of a skb fragment
* @frag: skb fragment
* @size: size of fragment
*/
static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
{
frag->bv_len = size;
}
/**
* skb_frag_size_add() - Increments the size of a skb fragment by @delta
* @frag: skb fragment
* @delta: value to add
*/
static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
{
frag->bv_len += delta;
}
/**
* skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
* @frag: skb fragment
* @delta: value to subtract
*/
static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
frag->bv_len -= delta;
}
/**
* skb_frag_must_loop - Test if %p is a high memory page
* @p: fragment's page
*/
static inline bool skb_frag_must_loop(struct page *p)
{
#if defined(CONFIG_HIGHMEM)
if (PageHighMem(p))
return true;
#endif
return false;
}
/**
* skb_frag_foreach_page - loop over pages in a fragment
*
* @f: skb frag to operate on
* @f_off: offset from start of f->bv_page
* @f_len: length from f_off to loop over
* @p: (temp var) current page
* @p_off: (temp var) offset from start of current page,
* non-zero only on first page.
* @p_len: (temp var) length in current page,
* < PAGE_SIZE only on first and last page.
* @copied: (temp var) length so far, excluding current p_len.
*
* A fragment can hold a compound page, in which case per-page
* operations, notably kmap_atomic, must be called for each
* regular page.
*/
#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
p_off = (f_off) & (PAGE_SIZE - 1), \
p_len = skb_frag_must_loop(p) ? \
min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
copied = 0; \
copied < f_len; \
copied += p_len, p++, p_off = 0, \
p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
#define HAVE_HW_TIME_STAMP
/**
* struct skb_shared_hwtstamps - hardware time stamps
* @hwtstamp: hardware time stamp transformed into duration
* since arbitrary point in time
*
* Software time stamps generated by ktime_get_real() are stored in
* skb->tstamp.
*
* hwtstamps can only be compared against other hwtstamps from
* the same device.
*
* This structure is attached to packets as part of the
* &skb_shared_info. Use skb_hwtstamps() to get a pointer.
*/
struct skb_shared_hwtstamps {
ktime_t hwtstamp;
};
/* Definitions for tx_flags in struct skb_shared_info */
enum {
/* generate hardware time stamp */
SKBTX_HW_TSTAMP = 1 << 0,
/* generate software time stamp when queueing packet to NIC */
SKBTX_SW_TSTAMP = 1 << 1,
/* device driver is going to provide hardware time stamp */
SKBTX_IN_PROGRESS = 1 << 2,
/* device driver supports TX zero-copy buffers */
SKBTX_DEV_ZEROCOPY = 1 << 3,
/* generate wifi status information (where possible) */
SKBTX_WIFI_STATUS = 1 << 4,
/* This indicates at least one fragment might be overwritten
* (as in vmsplice(), sendfile() ...)
* If we need to compute a TX checksum, we'll need to copy
* all frags to avoid possible bad checksum
*/
SKBTX_SHARED_FRAG = 1 << 5,
/* generate software time stamp when entering packet scheduling */
SKBTX_SCHED_TSTAMP = 1 << 6,
};
#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
SKBTX_SCHED_TSTAMP)
#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
/*
* The callback notifies userspace to release buffers when skb DMA is done in
* lower device, the skb last reference should be 0 when calling this.
* The zerocopy_success argument is true if zero copy transmit occurred,
* false on data copy or out of memory error caused by data copy attempt.
* The ctx field is used to track device context.
* The desc field is used to track userspace buffer index.
*/
struct ubuf_info {
void (*callback)(struct ubuf_info *, bool zerocopy_success);
union {
struct {
unsigned long desc;
void *ctx;
};
struct {
u32 id;
u16 len;
u16 zerocopy:1;
u32 bytelen;
};
};
refcount_t refcnt;
struct mmpin {
struct user_struct *user;
unsigned int num_pg;
} mmp;
};
#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
void mm_unaccount_pinned_pages(struct mmpin *mmp);
struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
struct ubuf_info *uarg);
static inline void sock_zerocopy_get(struct ubuf_info *uarg)
{
refcount_inc(&uarg->refcnt);
}
void sock_zerocopy_put(struct ubuf_info *uarg);
void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
struct msghdr *msg, int len,
struct ubuf_info *uarg);
/* This data is invariant across clones and lives at
* the end of the header data, ie. at skb->end.
*/
struct skb_shared_info {
__u8 __unused;
__u8 meta_len;
__u8 nr_frags;
__u8 tx_flags;
unsigned short gso_size;
/* Warning: this field is not always filled in (UFO)! */
unsigned short gso_segs;
struct sk_buff *frag_list;
struct skb_shared_hwtstamps hwtstamps;
unsigned int gso_type;
u32 tskey;
/*
* Warning : all fields before dataref are cleared in __alloc_skb()
*/
atomic_t dataref;
/* Intermediate layers must ensure that destructor_arg
* remains valid until skb destructor */
void * destructor_arg;
/* must be last field, see pskb_expand_head() */
skb_frag_t frags[MAX_SKB_FRAGS];
};
/* We divide dataref into two halves. The higher 16 bits hold references
* to the payload part of skb->data. The lower 16 bits hold references to
* the entire skb->data. A clone of a headerless skb holds the length of
* the header in skb->hdr_len.
*
* All users must obey the rule that the skb->data reference count must be
* greater than or equal to the payload reference count.
*
* Holding a reference to the payload part means that the user does not
* care about modifications to the header part of skb->data.
*/
#define SKB_DATAREF_SHIFT 16
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
enum {
SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
};
enum {
SKB_GSO_TCPV4 = 1 << 0,
/* This indicates the skb is from an untrusted source. */
SKB_GSO_DODGY = 1 << 1,
/* This indicates the tcp segment has CWR set. */
SKB_GSO_TCP_ECN = 1 << 2,
SKB_GSO_TCP_FIXEDID = 1 << 3,
SKB_GSO_TCPV6 = 1 << 4,
SKB_GSO_FCOE = 1 << 5,
SKB_GSO_GRE = 1 << 6,
SKB_GSO_GRE_CSUM = 1 << 7,
SKB_GSO_IPXIP4 = 1 << 8,
SKB_GSO_IPXIP6 = 1 << 9,
SKB_GSO_UDP_TUNNEL = 1 << 10,
SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
SKB_GSO_PARTIAL = 1 << 12,
SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
SKB_GSO_SCTP = 1 << 14,
SKB_GSO_ESP = 1 << 15,
SKB_GSO_UDP = 1 << 16,
SKB_GSO_UDP_L4 = 1 << 17,
};
#if BITS_PER_LONG > 32
#define NET_SKBUFF_DATA_USES_OFFSET 1
#endif
#ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t;
#else
typedef unsigned char *sk_buff_data_t;
#endif
/**
* struct sk_buff - socket buffer
* @next: Next buffer in list
* @prev: Previous buffer in list
* @tstamp: Time we arrived/left
* @rbnode: RB tree node, alternative to next/prev for netem/tcp
* @sk: Socket we are owned by
* @dev: Device we arrived on/are leaving by
* @cb: Control buffer. Free for use by every layer. Put private vars here
* @_skb_refdst: destination entry (with norefcount bit)
* @sp: the security path, used for xfrm
* @len: Length of actual data
* @data_len: Data length
* @mac_len: Length of link layer header
* @hdr_len: writable header length of cloned skb
* @csum: Checksum (must include start/offset pair)
* @csum_start: Offset from skb->head where checksumming should start
* @csum_offset: Offset from csum_start where checksum should be stored
* @priority: Packet queueing priority
* @ignore_df: allow local fragmentation
* @cloned: Head may be cloned (check refcnt to be sure)
* @ip_summed: Driver fed us an IP checksum
* @nohdr: Payload reference only, must not modify header
* @pkt_type: Packet class
* @fclone: skbuff clone status
* @ipvs_property: skbuff is owned by ipvs
* @offload_fwd_mark: Packet was L2-forwarded in hardware
* @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
* @tc_skip_classify: do not classify packet. set by IFB device
* @tc_at_ingress: used within tc_classify to distinguish in/egress
* @tc_redirected: packet was redirected by a tc action
* @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
* @peeked: this packet has been seen already, so stats have been
* done for it, don't do them again
* @nf_trace: netfilter packet trace flag
* @protocol: Packet protocol from driver
* @destructor: Destruct function
* @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
* @_nfct: Associated connection, if any (with nfctinfo bits)
* @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
* @skb_iif: ifindex of device we arrived on
* @tc_index: Traffic control index
* @hash: the packet hash
* @queue_mapping: Queue mapping for multiqueue devices
* @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
* @active_extensions: active extensions (skb_ext_id types)
* @ndisc_nodetype: router type (from link layer)
* @ooo_okay: allow the mapping of a socket to a queue to be changed
* @l4_hash: indicate hash is a canonical 4-tuple hash over transport
* ports.
* @sw_hash: indicates hash was computed in software stack
* @wifi_acked_valid: wifi_acked was set
* @wifi_acked: whether frame was acked on wifi or not
* @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
* @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
* @dst_pending_confirm: need to confirm neighbour
* @decrypted: Decrypted SKB
* @napi_id: id of the NAPI struct this skb came from
* @secmark: security marking
* @mark: Generic packet mark
* @vlan_proto: vlan encapsulation protocol
* @vlan_tci: vlan tag control information
* @inner_protocol: Protocol (encapsulation)
* @inner_transport_header: Inner transport layer header (encapsulation)
* @inner_network_header: Network layer header (encapsulation)
* @inner_mac_header: Link layer header (encapsulation)
* @transport_header: Transport layer header
* @network_header: Network layer header
* @mac_header: Link layer header
* @tail: Tail pointer
* @end: End pointer
* @head: Head of buffer
* @data: Data head pointer
* @truesize: Buffer size
* @users: User count - see {datagram,tcp}.c
* @extensions: allocated extensions, valid if active_extensions is nonzero
*/
struct sk_buff {
union {
struct {
/* These two members must be first. */
struct sk_buff *next;
struct sk_buff *prev;
union {
struct net_device *dev;
/* Some protocols might use this space to store information,
* while device pointer would be NULL.
* UDP receive path is one user.
*/
unsigned long dev_scratch;
};
};
struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
struct list_head list;
};
union {
struct sock *sk;
int ip_defrag_offset;
};
union {
ktime_t tstamp;
u64 skb_mstamp_ns; /* earliest departure time */
};
/*
* This is the control buffer. It is free to use for every
* layer. Please put your private variables there. If you
* want to keep them across layers you have to do a skb_clone()
* first. This is owned by whoever has the skb queued ATM.
*/
char cb[48] __aligned(8);
union {
struct {
unsigned long _skb_refdst;
void (*destructor)(struct sk_buff *skb);
};
struct list_head tcp_tsorted_anchor;
};
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
unsigned long _nfct;
#endif
unsigned int len,
data_len;
__u16 mac_len,
hdr_len;
/* Following fields are _not_ copied in __copy_skb_header()
* Note that queue_mapping is here mostly to fill a hole.
*/
__u16 queue_mapping;
/* if you move cloned around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define CLONED_MASK (1 << 7)
#else
#define CLONED_MASK 1
#endif
#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
__u8 __cloned_offset[0];
__u8 cloned:1,
nohdr:1,
fclone:2,
peeked:1,
head_frag:1,
pfmemalloc:1;
#ifdef CONFIG_SKB_EXTENSIONS
__u8 active_extensions;
#endif
/* fields enclosed in headers_start/headers_end are copied
* using a single memcpy() in __copy_skb_header()
*/
/* private: */
__u32 headers_start[0];
/* public: */
/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX (7 << 5)
#else
#define PKT_TYPE_MAX 7
#endif
#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
__u8 __pkt_type_offset[0];
__u8 pkt_type:3;
__u8 ignore_df:1;
__u8 nf_trace:1;
__u8 ip_summed:2;
__u8 ooo_okay:1;
__u8 l4_hash:1;
__u8 sw_hash:1;
__u8 wifi_acked_valid:1;
__u8 wifi_acked:1;
__u8 no_fcs:1;
/* Indicates the inner headers are valid in the skbuff. */
__u8 encapsulation:1;
__u8 encap_hdr_csum:1;
__u8 csum_valid:1;
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_VLAN_PRESENT_BIT 7
#else
#define PKT_VLAN_PRESENT_BIT 0
#endif
#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset)
__u8 __pkt_vlan_present_offset[0];
__u8 vlan_present:1;
__u8 csum_complete_sw:1;
__u8 csum_level:2;
__u8 csum_not_inet:1;
__u8 dst_pending_confirm:1;
#ifdef CONFIG_IPV6_NDISC_NODETYPE
__u8 ndisc_nodetype:2;
#endif
__u8 ipvs_property:1;
__u8 inner_protocol_type:1;
__u8 remcsum_offload:1;
#ifdef CONFIG_NET_SWITCHDEV
__u8 offload_fwd_mark:1;
__u8 offload_l3_fwd_mark:1;
#endif
#ifdef CONFIG_NET_CLS_ACT
__u8 tc_skip_classify:1;
__u8 tc_at_ingress:1;
__u8 tc_redirected:1;
__u8 tc_from_ingress:1;
#endif
#ifdef CONFIG_TLS_DEVICE
__u8 decrypted:1;
#endif
#ifdef CONFIG_NET_SCHED
__u16 tc_index; /* traffic control index */
#endif
union {
__wsum csum;
struct {
__u16 csum_start;
__u16 csum_offset;
};
};
__u32 priority;
int skb_iif;
__u32 hash;
__be16 vlan_proto;
__u16 vlan_tci;
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
union {
unsigned int napi_id;
unsigned int sender_cpu;
};
#endif
#ifdef CONFIG_NETWORK_SECMARK
__u32 secmark;
#endif
union {
__u32 mark;
__u32 reserved_tailroom;
};
union {
__be16 inner_protocol;
__u8 inner_ipproto;
};
__u16 inner_transport_header;
__u16 inner_network_header;
__u16 inner_mac_header;
__be16 protocol;
__u16 transport_header;
__u16 network_header;
__u16 mac_header;
/* private: */
__u32 headers_end[0];
/* public: */
/* These elements must be at the end, see alloc_skb() for details. */
sk_buff_data_t tail;
sk_buff_data_t end;
unsigned char *head,
*data;
unsigned int truesize;
refcount_t users;
#ifdef CONFIG_SKB_EXTENSIONS
/* only useable after checking ->active_extensions != 0 */
struct skb_ext *extensions;
#endif
};
#ifdef __KERNEL__
/*
* Handling routines are only of interest to the kernel
*/
#define SKB_ALLOC_FCLONE 0x01
#define SKB_ALLOC_RX 0x02
#define SKB_ALLOC_NAPI 0x04
/**
* skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
* @skb: buffer
*/
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
{
return unlikely(skb->pfmemalloc);
}
/*
* skb might have a dst pointer attached, refcounted or not.
* _skb_refdst low order bit is set if refcount was _not_ taken
*/
#define SKB_DST_NOREF 1UL
#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
/**
* skb_dst - returns skb dst_entry
* @skb: buffer
*
* Returns skb dst_entry, regardless of reference taken or not.
*/
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
{
/* If refdst was not refcounted, check we still are in a
* rcu_read_lock section
*/
WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
!rcu_read_lock_held() &&
!rcu_read_lock_bh_held());
return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
}
/**
* skb_dst_set - sets skb dst
* @skb: buffer
* @dst: dst entry
*
* Sets skb dst, assuming a reference was taken on dst and should
* be released by skb_dst_drop()
*/
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
{
skb->_skb_refdst = (unsigned long)dst;
}
/**
* skb_dst_set_noref - sets skb dst, hopefully, without taking reference
* @skb: buffer
* @dst: dst entry
*
* Sets skb dst, assuming a reference was not taken on dst.
* If dst entry is cached, we do not take reference and dst_release
* will be avoided by refdst_drop. If dst entry is not cached, we take
* reference, so that last dst_release can destroy the dst immediately.
*/
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
{
WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
}
/**
* skb_dst_is_noref - Test if skb dst isn't refcounted
* @skb: buffer
*/
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
{
return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
}
/**
* skb_rtable - Returns the skb &rtable
* @skb: buffer
*/
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
return (struct rtable *)skb_dst(skb);
}
/* For mangling skb->pkt_type from user space side from applications
* such as nft, tc, etc, we only allow a conservative subset of
* possible pkt_types to be set.
*/
static inline bool skb_pkt_type_ok(u32 ptype)
{
return ptype <= PACKET_OTHERHOST;
}
/**
* skb_napi_id - Returns the skb's NAPI id
* @skb: buffer
*/
static inline unsigned int skb_napi_id(const struct sk_buff *skb)
{
#ifdef CONFIG_NET_RX_BUSY_POLL
return skb->napi_id;
#else
return 0;
#endif
}
/**
* skb_unref - decrement the skb's reference count
* @skb: buffer
*
* Returns true if we can free the skb.
*/
static inline bool skb_unref(struct sk_buff *skb)
{
if (unlikely(!skb))
return false;
if (likely(refcount_read(&skb->users) == 1))
smp_rmb();
else if (likely(!refcount_dec_and_test(&skb->users)))
return false;
return true;
}
void skb_release_head_state(struct sk_buff *skb);
void kfree_skb(struct sk_buff *skb);
void kfree_skb_list(struct sk_buff *segs);
void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
void skb_tx_error(struct sk_buff *skb);
void consume_skb(struct sk_buff *skb);
void __consume_stateless_skb(struct sk_buff *skb);
void __kfree_skb(struct sk_buff *skb);
extern struct kmem_cache *skbuff_head_cache;
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
bool *fragstolen, int *delta_truesize);
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
int node);
struct sk_buff *__build_skb(void *data, unsigned int frag_size);
struct sk_buff *build_skb(void *data, unsigned int frag_size);
struct sk_buff *build_skb_around(struct sk_buff *skb,
void *data, unsigned int frag_size);
/**
* alloc_skb - allocate a network buffer
* @size: size to allocate
* @priority: allocation mask
*
* This function is a convenient wrapper around __alloc_skb().
*/
static inline struct sk_buff *alloc_skb(unsigned int size,
gfp_t priority)
{
return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
}
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
unsigned long data_len,
int max_page_order,
int *errcode,
gfp_t gfp_mask);
struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
/* Layout of fast clones : [skb1][skb2][fclone_ref] */
struct sk_buff_fclones {
struct sk_buff skb1;
struct sk_buff skb2;
refcount_t fclone_ref;
};
/**
* skb_fclone_busy - check if fclone is busy
* @sk: socket
* @skb: buffer
*
* Returns true if skb is a fast clone, and its clone is not freed.
* Some drivers call skb_orphan() in their ndo_start_xmit(),
* so we also check that this didnt happen.
*/
static inline bool skb_fclone_busy(const struct sock *sk,
const struct sk_buff *skb)
{
const struct sk_buff_fclones *fclones;
fclones = container_of(skb, struct sk_buff_fclones, skb1);
return skb->fclone == SKB_FCLONE_ORIG &&
refcount_read(&fclones->fclone_ref) > 1 &&
fclones->skb2.sk == sk;
}
/**
* alloc_skb_fclone - allocate a network buffer from fclone cache
* @size: size to allocate
* @priority: allocation mask
*
* This function is a convenient wrapper around __alloc_skb().
*/
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
gfp_t priority)
{
return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
}
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
void skb_headers_offset_update(struct sk_buff *skb, int off);
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
gfp_t gfp_mask, bool fclone);
static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
gfp_t gfp_mask)
{
return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
}
int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
unsigned int headroom);
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
int newtailroom, gfp_t priority);
int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
int offset, int len);
int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
int offset, int len);
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
/**
* skb_pad - zero pad the tail of an skb
* @skb: buffer to pad
* @pad: space to pad
*
* Ensure that a buffer is followed by a padding area that is zero
* filled. Used by network drivers which may DMA or transfer data
* beyond the buffer end onto the wire.
*
* May return error in out of memory cases. The skb is freed on error.
*/
static inline int skb_pad(struct sk_buff *skb, int pad)
{
return __skb_pad(skb, pad, true);
}
#define dev_kfree_skb(a) consume_skb(a)
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
int offset, size_t size);
struct skb_seq_state {
__u32 lower_offset;
__u32 upper_offset;
__u32 frag_idx;
__u32 stepped_offset;
struct sk_buff *root_skb;
struct sk_buff *cur_skb;
__u8 *frag_data;
};
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
unsigned int to, struct skb_seq_state *st);
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
struct skb_seq_state *st);
void skb_abort_seq_read(struct skb_seq_state *st);
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
unsigned int to, struct ts_config *config);
/*
* Packet hash types specify the type of hash in skb_set_hash.
*
* Hash types refer to the protocol layer addresses which are used to
* construct a packet's hash. The hashes are used to differentiate or identify
* flows of the protocol layer for the hash type. Hash types are either
* layer-2 (L2), layer-3 (L3), or layer-4 (L4).
*
* Properties of hashes:
*
* 1) Two packets in different flows have different hash values
* 2) Two packets in the same flow should have the same hash value
*
* A hash at a higher layer is considered to be more specific. A driver should
* set the most specific hash possible.
*
* A driver cannot indicate a more specific hash than the layer at which a hash
* was computed. For instance an L3 hash cannot be set as an L4 hash.
*
* A driver may indicate a hash level which is less specific than the
* actual layer the hash was computed on. For instance, a hash computed
* at L4 may be considered an L3 hash. This should only be done if the
* driver can't unambiguously determine that the HW computed the hash at
* the higher layer. Note that the "should" in the second property above
* permits this.
*/
enum pkt_hash_types {
PKT_HASH_TYPE_NONE, /* Undefined type */
PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
};
static inline void skb_clear_hash(struct sk_buff *skb)
{
skb->hash = 0;
skb->sw_hash = 0;
skb->l4_hash = 0;
}
static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
{
if (!skb->l4_hash)
skb_clear_hash(skb);
}
static inline void
__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
{
skb->l4_hash = is_l4;
skb->sw_hash = is_sw;
skb->hash = hash;
}
static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
/* Used by drivers to set hash from HW */
__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
}
static inline void
__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
{
__skb_set_hash(skb, hash, true, is_l4);
}
void __skb_get_hash(struct sk_buff *skb);
u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
u32 skb_get_poff(const struct sk_buff *skb);
u32 __skb_get_poff(const struct sk_buff *skb, void *data,
const struct flow_keys_basic *keys, int hlen);
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
void *data, int hlen_proto);
static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
int thoff, u8 ip_proto)
{
return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
}
void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
const struct flow_dissector_key *key,
unsigned int key_count);
#ifdef CONFIG_NET
int skb_flow_dissector_prog_query(const union bpf_attr *attr,
union bpf_attr __user *uattr);
int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
struct bpf_prog *prog);
int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
#else
static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
return -EOPNOTSUPP;
}
static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
struct bpf_prog *prog)
{
return -EOPNOTSUPP;
}
static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
{
return -EOPNOTSUPP;
}
#endif
struct bpf_flow_dissector;
bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
__be16 proto, int nhoff, int hlen, unsigned int flags);
bool __skb_flow_dissect(const struct net *net,
const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container,
void *data, __be16 proto, int nhoff, int hlen,
unsigned int flags);
static inline bool skb_flow_dissect(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container, unsigned int flags)
{
return __skb_flow_dissect(NULL, skb, flow_dissector,
target_container, NULL, 0, 0, 0, flags);
}
static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
struct flow_keys *flow,
unsigned int flags)
{
memset(flow, 0, sizeof(*flow));
return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
flow, NULL, 0, 0, 0, flags);
}
static inline bool
skb_flow_dissect_flow_keys_basic(const struct net *net,
const struct sk_buff *skb,
struct flow_keys_basic *flow, void *data,
__be16 proto, int nhoff, int hlen,
unsigned int flags)
{
memset(flow, 0, sizeof(*flow));
return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
data, proto, nhoff, hlen, flags);
}
void skb_flow_dissect_meta(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container);
/* Gets a skb connection tracking info, ctinfo map should be a
* a map of mapsize to translate enum ip_conntrack_info states
* to user states.
*/
void
skb_flow_dissect_ct(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container,
u16 *ctinfo_map,
size_t mapsize);
void
skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
struct flow_dissector *flow_dissector,
void *target_container);
static inline __u32 skb_get_hash(struct sk_buff *skb)
{
if (!skb->l4_hash && !skb->sw_hash)
__skb_get_hash(skb);
return skb->hash;
}
static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
{
if (!skb->l4_hash && !skb->sw_hash) {
struct flow_keys keys;
__u32 hash = __get_hash_from_flowi6(fl6, &keys);
__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
}
return skb->hash;
}
__u32 skb_get_hash_perturb(const struct sk_buff *skb,
const siphash_key_t *perturb);
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
{
return skb->hash;
}
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
{
to->hash = from->hash;
to->sw_hash = from->sw_hash;
to->l4_hash = from->l4_hash;
};
static inline void skb_copy_decrypted(struct sk_buff *to,
const struct sk_buff *from)
{
#ifdef CONFIG_TLS_DEVICE
to->decrypted = from->decrypted;
#endif
}
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
return skb->head + skb->end;
}
static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
return skb->end;
}
#else
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
return skb->end;
}
static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
return skb->end - skb->head;
}
#endif
/* Internal */
#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
{
return &skb_shinfo(skb)->hwtstamps;
}
static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
{
bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
return is_zcopy ? skb_uarg(skb) : NULL;
}
static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
bool *have_ref)
{
if (skb && uarg && !skb_zcopy(skb)) {
if (unlikely(have_ref && *have_ref))
*have_ref = false;
else
sock_zerocopy_get(uarg);
skb_shinfo(skb)->destructor_arg = uarg;
skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
}
}
static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
{
skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
}
static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
{
return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
}
static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
{
return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
}
/* Release a reference on a zerocopy structure */
static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
{
struct ubuf_info *uarg = skb_zcopy(skb);
if (uarg) {
if (skb_zcopy_is_nouarg(skb)) {
/* no notification callback */
} else if (uarg->callback == sock_zerocopy_callback) {
uarg->zerocopy = uarg->zerocopy && zerocopy;
sock_zerocopy_put(uarg);
} else {
uarg->callback(uarg, zerocopy);
}
skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
}
}
/* Abort a zerocopy operation and revert zckey on error in send syscall */
static inline void skb_zcopy_abort(struct sk_buff *skb)
{
struct ubuf_info *uarg = skb_zcopy(skb);
if (uarg) {
sock_zerocopy_put_abort(uarg, false);
skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
}
}
static inline void skb_mark_not_on_list(struct sk_buff *skb)
{
skb->next = NULL;
}
static inline void skb_list_del_init(struct sk_buff *skb)
{
__list_del_entry(&skb->list);
skb_mark_not_on_list(skb);
}
/**
* skb_queue_empty - check if a queue is empty
* @list: queue head
*
* Returns true if the queue is empty, false otherwise.
*/
static inline int skb_queue_empty(const struct sk_buff_head *list)
{
return list->next == (const struct sk_buff *) list;
}
/**
* skb_queue_empty_lockless - check if a queue is empty
* @list: queue head
*
* Returns true if the queue is empty, false otherwise.
* This variant can be used in lockless contexts.
*/
static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
{
return READ_ONCE(list->next) == (const struct sk_buff *) list;
}
/**
* skb_queue_is_last - check if skb is the last entry in the queue
* @list: queue head
* @skb: buffer
*
* Returns true if @skb is the last buffer on the list.
*/
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
const struct sk_buff *skb)
{
return skb->next == (const struct sk_buff *) list;
}
/**
* skb_queue_is_first - check if skb is the first entry in the queue
* @list: queue head
* @skb: buffer
*
* Returns true if @skb is the first buffer on the list.
*/
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
const struct sk_buff *skb)
{
return skb->prev == (const struct sk_buff *) list;
}
/**
* skb_queue_next - return the next packet in the queue
* @list: queue head
* @skb: current buffer
*
* Return the next packet in @list after @skb. It is only valid to
* call this if skb_queue_is_last() evaluates to false.
*/
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
const struct sk_buff *skb)
{
/* This BUG_ON may seem severe, but if we just return then we
* are going to dereference garbage.
*/
BUG_ON(skb_queue_is_last(list, skb));
return skb->next;
}
/**
* skb_queue_prev - return the prev packet in the queue
* @list: queue head
* @skb: current buffer
*
* Return the prev packet in @list before @skb. It is only valid to
* call this if skb_queue_is_first() evaluates to false.
*/
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
const struct sk_buff *skb)
{
/* This BUG_ON may seem severe, but if we just return then we
* are going to dereference garbage.
*/
BUG_ON(skb_queue_is_first(list, skb));
return skb->prev;
}
/**
* skb_get - reference buffer
* @skb: buffer to reference
*
* Makes another reference to a socket buffer and returns a pointer
* to the buffer.
*/
static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
refcount_inc(&skb->users);
return skb;
}
/*
* If users == 1, we are the only owner and can avoid redundant atomic changes.
*/
/**
* skb_cloned - is the buffer a clone
* @skb: buffer to check
*
* Returns true if the buffer was generated with skb_clone() and is
* one of multiple shared copies of the buffer. Cloned buffers are
* shared data so must not be written to under normal circumstances.
*/
static inline int skb_cloned(const struct sk_buff *skb)
{
return skb->cloned &&
(atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
}
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
might_sleep_if(gfpflags_allow_blocking(pri));
if (skb_cloned(skb))
return pskb_expand_head(skb, 0, 0, pri);
return 0;
}
/**
* skb_header_cloned - is the header a clone
* @skb: buffer to check
*
* Returns true if modifying the header part of the buffer requires
* the data to be copied.
*/
static inline int skb_header_cloned(const struct sk_buff *skb)
{
int dataref;
if (!skb->cloned)
return 0;
dataref = atomic_read(&skb_shinfo(skb)->dataref);
dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
return dataref != 1;
}
static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
{
might_sleep_if(gfpflags_allow_blocking(pri));
if (skb_header_cloned(skb))
return pskb_expand_head(skb, 0, 0, pri);
return 0;
}
/**
* __skb_header_release - release reference to header
* @skb: buffer to operate on
*/
static inline void __skb_header_release(struct sk_buff *skb)
{
skb->nohdr = 1;
atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
}
/**
* skb_shared - is the buffer shared
* @skb: buffer to check
*
* Returns true if more than one person has a reference to this
* buffer.
*/
static inline int skb_shared(const struct sk_buff *skb)
{
return refcount_read(&skb->users) != 1;
}
/**
* skb_share_check - check if buffer is shared and if so clone it
* @skb: buffer to check
* @pri: priority for memory allocation
*
* If the buffer is shared the buffer is cloned and the old copy
* drops a reference. A new clone with a single reference is returned.
* If the buffer is not shared the original buffer is returned. When
* being called from interrupt status or with spinlocks held pri must
* be GFP_ATOMIC.
*
* NULL is returned on a memory allocation failure.
*/
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
{
might_sleep_if(gfpflags_allow_blocking(pri));
if (skb_shared(skb)) {
struct sk_buff *nskb = skb_clone(skb, pri);
if (likely(nskb))
consume_skb(skb);
else
kfree_skb(skb);
skb = nskb;
}
return skb;
}
/*
* Copy shared buffers into a new sk_buff. We effectively do COW on
* packets to handle cases where we have a local reader and forward
* and a couple of other messy ones. The normal one is tcpdumping
* a packet thats being forwarded.
*/
/**
* skb_unshare - make a copy of a shared buffer
* @skb: buffer to check
* @pri: priority for memory allocation
*
* If the socket buffer is a clone then this function creates a new
* copy of the data, drops a reference count on the old copy and returns
* the new copy with the reference count at 1. If the buffer is not a clone
* the original buffer is returned. When called with a spinlock held or
* from interrupt state @pri must be %GFP_ATOMIC
*
* %NULL is returned on a memory allocation failure.
*/
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
gfp_t pri)
{
might_sleep_if(gfpflags_allow_blocking(pri));
if (skb_cloned(skb)) {
struct sk_buff *nskb = skb_copy(skb, pri);
/* Free our shared copy */
if (likely(nskb))
consume_skb(skb);
else
kfree_skb(skb);
skb = nskb;
}
return skb;
}
/**
* skb_peek - peek at the head of an &sk_buff_head
* @list_: list to peek at
*
* Peek an &sk_buff. Unlike most other operations you _MUST_
* be careful with this one. A peek leaves the buffer on the
* list and someone else may run off with it. You must hold
* the appropriate locks or have a private queue to do this.
*
* Returns %NULL for an empty list or a pointer to the head element.
* The reference count is not incremented and the reference is therefore
* volatile. Use with caution.
*/
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
{
struct sk_buff *skb = list_->next;
if (skb == (struct sk_buff *)list_)
skb = NULL;
return skb;
}
/**
* __skb_peek - peek at the head of a non-empty &sk_buff_head
* @list_: list to peek at
*
* Like skb_peek(), but the caller knows that the list is not empty.
*/
static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
{
return list_->next;
}
/**
* skb_peek_next - peek skb following the given one from a queue
* @skb: skb to start from
* @list_: list to peek at
*
* Returns %NULL when the end of the list is met or a pointer to the
* next element. The reference count is not incremented and the
* reference is therefore volatile. Use with caution.
*/
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
const struct sk_buff_head *list_)
{
struct sk_buff *next = skb->next;
if (next == (struct sk_buff *)list_)
next = NULL;
return next;
}
/**
* skb_peek_tail - peek at the tail of an &sk_buff_head
* @list_: list to peek at
*
* Peek an &sk_buff. Unlike most other operations you _MUST_
* be careful with this one. A peek leaves the buffer on the
* list and someone else may run off with it. You must hold
* the appropriate locks or have a private queue to do this.
*
* Returns %NULL for an empty list or a pointer to the tail element.
* The reference count is not incremented and the reference is therefore
* volatile. Use with caution.
*/
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
{
struct sk_buff *skb = READ_ONCE(list_->prev);
if (skb == (struct sk_buff *)list_)
skb = NULL;
return skb;
}
/**
* skb_queue_len - get queue length
* @list_: list to measure
*
* Return the length of an &sk_buff queue.
*/
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
return list_->qlen;
}
/**
* __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
* @list: queue to initialize
*
* This initializes only the list and queue length aspects of
* an sk_buff_head object. This allows to initialize the list
* aspects of an sk_buff_head without reinitializing things like
* the spinlock. It can also be used for on-stack sk_buff_head
* objects where the spinlock is known to not be used.
*/
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
list->prev = list->next = (struct sk_buff *)list;
list->qlen = 0;
}
/*
* This function creates a split out lock class for each invocation;
* this is needed for now since a whole lot of users of the skb-queue
* infrastructure in drivers have different locking usage (in hardirq)
* than the networking core (in softirq only). In the long run either the
* network layer or drivers should need annotation to consolidate the
* main types of usage into 3 classes.
*/
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
spin_lock_init(&list->lock);
__skb_queue_head_init(list);
}
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
struct lock_class_key *class)
{
skb_queue_head_init(list);
lockdep_set_class(&list->lock, class);
}
/*
* Insert an sk_buff on a list.
*
* The "__skb_xxxx()" functions are the non-atomic ones that
* can only be called with interrupts disabled.
*/
static inline void __skb_insert(struct sk_buff *newsk,
struct sk_buff *prev, struct sk_buff *next,
struct sk_buff_head *list)
{
/* See skb_queue_empty_lockless() and skb_peek_tail()
* for the opposite READ_ONCE()
*/
WRITE_ONCE(newsk->next, next);
WRITE_ONCE(newsk->prev, prev);
WRITE_ONCE(next->prev, newsk);
WRITE_ONCE(prev->next, newsk);
list->qlen++;
}
static inline void __skb_queue_splice(const struct sk_buff_head *list,
struct sk_buff *prev,
struct sk_buff *next)
{
struct sk_buff *first = list->next;
struct sk_buff *last = list->prev;
WRITE_ONCE(first->prev, prev);
WRITE_ONCE(prev->next, first);
WRITE_ONCE(last->next, next);
WRITE_ONCE(next->prev, last);
}
/**
* skb_queue_splice - join two skb lists, this is designed for stacks
* @list: the new list to add
* @head: the place to add it in the first list
*/
static inline void skb_queue_splice(const struct sk_buff_head *list,
struct sk_buff_head *head)
{
if (!skb_queue_empty(list)) {
__skb_queue_splice(list, (struct sk_buff *) head, head->next);
head->qlen += list->qlen;
}
}
/**
* skb_queue_splice_init - join two skb lists and reinitialise the emptied list
* @list: the new list to add
* @head: the place to add it in the first list
*
* The list at @list is reinitialised
*/
static inline void skb_queue_splice_init(struct sk_buff_head *list,
struct sk_buff_head *head)
{
if (!skb_queue_empty(list)) {
__skb_queue_splice(list, (struct sk_buff *) head, head->next);
head->qlen += list->qlen;
__skb_queue_head_init(list);
}
}
/**
* skb_queue_splice_tail - join two skb lists, each list being a queue
* @list: the new list to add
* @head: the place to add it in the first list
*/
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
struct sk_buff_head *head)
{
if (!skb_queue_empty(list)) {
__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
head->qlen += list->qlen;
}
}
/**
* skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
* @list: the new list to add
* @head: the place to add it in the first list
*
* Each of the lists is a queue.
* The list at @list is reinitialised
*/
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
struct sk_buff_head *head)
{
if (!skb_queue_empty(list)) {
__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
head->qlen += list->qlen;
__skb_queue_head_init(list);
}
}
/**
* __skb_queue_after - queue a buffer at the list head
* @list: list to use
* @prev: place after this buffer
* @newsk: buffer to queue
*
* Queue a buffer int the middle of a list. This function takes no locks
* and you must therefore hold required locks before calling it.
*
* A buffer cannot be placed on two lists at the same time.
*/
static inline void __skb_queue_after(struct sk_buff_head *list,
struct sk_buff *prev,
struct sk_buff *newsk)
{
__skb_insert(newsk, prev, prev->next, list);
}
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
struct sk_buff_head *list);
static inline void __skb_queue_before(struct sk_buff_head *list,
struct sk_buff *next,
struct sk_buff *newsk)
{
__skb_insert(newsk, next->prev, next, list);
}
/**
* __skb_queue_head - queue a buffer at the list head
* @list: list to use
* @newsk: buffer to queue
*
* Queue a buffer at the start of a list. This function takes no locks
* and you must therefore hold required locks before calling it.
*
* A buffer cannot be placed on two lists at the same time.
*/
static inline void __skb_queue_head(struct sk_buff_head *list,
struct sk_buff *newsk)
{
__skb_queue_after(list, (struct sk_buff *)list, newsk);
}
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
/**
* __skb_queue_tail - queue a buffer at the list tail
* @list: list to use
* @newsk: buffer to queue
*
* Queue a buffer at the end of a list. This function takes no locks
* and you must therefore hold required locks before calling it.
*
* A buffer cannot be placed on two lists at the same time.
*/
static inline void __skb_queue_tail(struct sk_buff_head *list,
struct sk_buff *newsk)
{
__skb_queue_before(list, (struct sk_buff *)list, newsk);
}
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
/*
* remove sk_buff from list. _Must_ be called atomically, and with
* the list known..
*/
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
struct sk_buff *next, *prev;
list->qlen--;
next = skb->next;
prev = skb->prev;
skb->next = skb->prev = NULL;
WRITE_ONCE(next->prev, prev);
WRITE_ONCE(prev->next, next);
}
/**
* __skb_dequeue - remove from the head of the queue
* @list: list to dequeue from
*
* Remove the head of the list. This function does not take any locks
* so must be used with appropriate locks held only. The head item is
* returned or %NULL if the list is empty.
*/
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
struct sk_buff *skb = skb_peek(list);
if (skb)
__skb_unlink(skb, list);
return skb;
}
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
/**
* __skb_dequeue_tail - remove from the tail of the queue
* @list: list to dequeue from
*
* Remove the tail of the list. This function does not take any locks
* so must be used with appropriate locks held only. The tail item is
* returned or %NULL if the list is empty.
*/
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
struct sk_buff *skb = skb_peek_tail(list);
if (skb)
__skb_unlink(skb, list);
return skb;
}
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
{
return skb->data_len;
}
static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
return skb->len - skb->data_len;
}
static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
{
unsigned int i, len = 0;
for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
return len;
}
static inline unsigned int skb_pagelen(const struct sk_buff *skb)
{
return skb_headlen(skb) + __skb_pagelen(skb);
}
/**
* __skb_fill_page_desc - initialise a paged fragment in an skb
* @skb: buffer containing fragment to be initialised
* @i: paged fragment index to initialise
* @page: the page to use for this fragment
* @off: the offset to the data with @page
* @size: the length of the data
*
* Initialises the @i'th fragment of @skb to point to &size bytes at
* offset @off within @page.
*
* Does not take any additional reference on the fragment.
*/
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
struct page *page, int off, int size)
{
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
/*
* Propagate page pfmemalloc to the skb if we can. The problem is
* that not all callers have unique ownership of the page but rely
* on page_is_pfmemalloc doing the right thing(tm).
*/
frag->bv_page = page;
frag->bv_offset = off;
skb_frag_size_set(frag, size);
page = compound_head(page);
if (page_is_pfmemalloc(page))
skb->pfmemalloc = true;
}
/**
* skb_fill_page_desc - initialise a paged fragment in an skb
* @skb: buffer containing fragment to be initialised
* @i: paged fragment index to initialise
* @page: the page to use for this fragment
* @off: the offset to the data with @page
* @size: the length of the data
*
* As per __skb_fill_page_desc() -- initialises the @i'th fragment of
* @skb to point to @size bytes at offset @off within @page. In
* addition updates @skb such that @i is the last fragment.
*
* Does not take any additional reference on the fragment.
*/
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
struct page *page, int off, int size)
{
__skb_fill_page_desc(skb, i, page, off, size);
skb_shinfo(skb)->nr_frags = i + 1;
}
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
int size, unsigned int truesize);
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
unsigned int truesize);
#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
return skb->head + skb->tail;
}
static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
skb->tail = skb->data - skb->head;
}
static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
skb_reset_tail_pointer(skb);
skb->tail += offset;
}
#else /* NET_SKBUFF_DATA_USES_OFFSET */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
return skb->tail;
}
static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
skb->tail = skb->data;
}
static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
skb->tail = skb->data + offset;
}
#endif /* NET_SKBUFF_DATA_USES_OFFSET */
/*
* Add data to an sk_buff
*/
void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
void *skb_put(struct sk_buff *skb, unsigned int len);
static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
{
void *tmp = skb_tail_pointer(skb);
SKB_LINEAR_ASSERT(skb);
skb->tail += len;
skb->len += len;
return tmp;
}
static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
{
void *tmp = __skb_put(skb, len);
memset(tmp, 0, len);
return tmp;
}
static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
unsigned int len)
{
void *tmp = __skb_put(skb, len);
memcpy(tmp, data, len);
return tmp;
}
static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
{
*(u8 *)__skb_put(skb, 1) = val;
}
static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
{
void *tmp = skb_put(skb, len);
memset(tmp, 0, len);
return tmp;
}
static inline void *skb_put_data(struct sk_buff *skb, const void *data,
unsigned int len)
{
void *tmp = skb_put(skb, len);
memcpy(tmp, data, len);
return tmp;
}
static inline void skb_put_u8(struct sk_buff *skb, u8 val)
{
*(u8 *)skb_put(skb, 1) = val;
}
void *skb_push(struct sk_buff *skb, unsigned int len);
static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
{
skb->data -= len;
skb->len += len;
return skb->data;
}
void *skb_pull(struct sk_buff *skb, unsigned int len);
static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
{
skb->len -= len;
BUG_ON(skb->len < skb->data_len);
return skb->data += len;
}
static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
{
return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}
void *__pskb_pull_tail(struct sk_buff *skb, int delta);
static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
{
if (len > skb_headlen(skb) &&
!__pskb_pull_tail(skb, len - skb_headlen(skb)))
return NULL;
skb->len -= len;
return skb->data += len;
}
static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
{
return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}
static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
{
if (likely(len <= skb_headlen(skb)))
return true;
if (unlikely(len > skb->len))
return false;
return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
}
void skb_condense(struct sk_buff *skb);
/**
* skb_headroom - bytes at buffer head
* @skb: buffer to check
*
* Return the number of bytes of free space at the head of an &sk_buff.
*/
static inline unsigned int skb_headroom(const struct sk_buff *skb)
{
return skb->data - skb->head;
}
/**
* skb_tailroom - bytes at buffer end
* @skb: buffer to check
*
* Return the number of bytes of free space at the tail of an sk_buff
*/
static inline int skb_tailroom(const struct sk_buff *skb)
{
return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
}
/**
* skb_availroom - bytes at buffer end
* @skb: buffer to check
*
* Return the number of bytes of free space at the tail of an sk_buff
* allocated by sk_stream_alloc()
*/
static inline int skb_availroom(const struct sk_buff *skb)
{
if (skb_is_nonlinear(skb))
return 0;
return skb->end - skb->tail - skb->reserved_tailroom;
}
/**
* skb_reserve - adjust headroom
* @skb: buffer to alter
* @len: bytes to move
*
* Increase the headroom of an empty &sk_buff by reducing the tail
* room. This is only allowed for an empty buffer.
*/
static inline void skb_reserve(struct sk_buff *skb, int len)
{
skb->data += len;
skb->tail += len;
}
/**
* skb_tailroom_reserve - adjust reserved_tailroom
* @skb: buffer to alter
* @mtu: maximum amount of headlen permitted
* @needed_tailroom: minimum amount of reserved_tailroom
*
* Set reserved_tailroom so that headlen can be as large as possible but
* not larger than mtu and tailroom cannot be smaller than
* needed_tailroom.
* The required headroom should already have been reserved before using
* this function.
*/
static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
unsigned int needed_tailroom)
{
SKB_LINEAR_ASSERT(skb);
if (mtu < skb_tailroom(skb) - needed_tailroom)
/* use at most mtu */
skb->reserved_tailroom = skb_tailroom(skb) - mtu;
else
/* use up to all available space */
skb->reserved_tailroom = needed_tailroom;
}
#define ENCAP_TYPE_ETHER 0
#define ENCAP_TYPE_IPPROTO 1
static inline void skb_set_inner_protocol(struct sk_buff *skb,
__be16 protocol)
{
skb->inner_protocol = protocol;
skb->inner_protocol_type = ENCAP_TYPE_ETHER;
}
static inline void skb_set_inner_ipproto(struct sk_buff *skb,
__u8 ipproto)
{
skb->inner_ipproto = ipproto;
skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
}
static inline void skb_reset_inner_headers(struct sk_buff *skb)
{
skb->inner_mac_header = skb->mac_header;
skb->inner_network_header = skb->network_header;
skb->inner_transport_header = skb->transport_header;
}
static inline void skb_reset_mac_len(struct sk_buff *skb)
{
skb->mac_len = skb->network_header - skb->mac_header;
}
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
*skb)
{
return skb->head + skb->inner_transport_header;
}
static inline int skb_inner_transport_offset(const struct sk_buff *skb)
{
return skb_inner_transport_header(skb) - skb->data;
}
static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
{
skb->inner_transport_header = skb->data - skb->head;
}
static inline void skb_set_inner_transport_header(struct sk_buff *skb,
const int offset)
{
skb_reset_inner_transport_header(skb);
skb->inner_transport_header += offset;
}
static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
{
return skb->head + skb->inner_network_header;
}
static inline void skb_reset_inner_network_header(struct sk_buff *skb)
{
skb->inner_network_header = skb->data - skb->head;
}
static inline void skb_set_inner_network_header(struct sk_buff *skb,
const int offset)
{
skb_reset_inner_network_header(skb);
skb->inner_network_header += offset;
}
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
{
return skb->head + skb->inner_mac_header;
}
static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
{
skb->inner_mac_header = skb->data - skb->head;
}
static inline void skb_set_inner_mac_header(struct sk_buff *skb,
const int offset)
{
skb_reset_inner_mac_header(skb);
skb->inner_mac_header += offset;
}
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
{
return skb->transport_header != (typeof(skb->transport_header))~0U;
}
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
return skb->head + skb->transport_header;
}
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
skb->transport_header = skb->data - skb->head;
}
static inline void skb_set_transport_header(struct sk_buff *skb,
const int offset)
{
skb_reset_transport_header(skb);
skb->transport_header += offset;
}
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
return skb->head + skb->network_header;
}
static inline void skb_reset_network_header(struct sk_buff *skb)
{
skb->network_header = skb->data - skb->head;
}
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
skb_reset_network_header(skb);
skb->network_header += offset;
}
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
{
return skb->head + skb->mac_header;
}
static inline int skb_mac_offset(const struct sk_buff *skb)
{
return skb_mac_header(skb) - skb->data;
}
static inline u32 skb_mac_header_len(const struct sk_buff *skb)
{
return skb->network_header - skb->mac_header;
}
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
{
return skb->mac_header != (typeof(skb->mac_header))~0U;
}
static inline void skb_reset_mac_header(struct sk_buff *skb)
{
skb->mac_header = skb->data - skb->head;
}
static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
skb_reset_mac_header(skb);
skb->mac_header += offset;
}
static inline void skb_pop_mac_header(struct sk_buff *skb)
{
skb->mac_header = skb->network_header;
}
static inline void skb_probe_transport_header(struct sk_buff *skb)
{
struct flow_keys_basic keys;
if (skb_transport_header_was_set(skb))
return;
if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
NULL, 0, 0, 0, 0))
skb_set_transport_header(skb, keys.control.thoff);
}
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
{
if (skb_mac_header_was_set(skb)) {
const unsigned char *old_mac = skb_mac_header(skb);
skb_set_mac_header(skb, -skb->mac_len);
memmove(skb_mac_header(skb), old_mac, skb->mac_len);
}
}
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
{
return skb->csum_start - skb_headroom(skb);
}
static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
{
return skb->head + skb->csum_start;
}
static inline int skb_transport_offset(const struct sk_buff *skb)
{
return skb_transport_header(skb) - skb->data;
}
static inline u32 skb_network_header_len(const struct sk_buff *skb)
{
return skb->transport_header - skb->network_header;
}
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
{
return skb->inner_transport_header - skb->inner_network_header;
}
static inline int skb_network_offset(const struct sk_buff *skb)
{
return skb_network_header(skb) - skb->data;
}
static inline int skb_inner_network_offset(const struct sk_buff *skb)
{
return skb_inner_network_header(skb) - skb->data;
}
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
{
return pskb_may_pull(skb, skb_network_offset(skb) + len);
}
/*
* CPUs often take a performance hit when accessing unaligned memory
* locations. The actual performance hit varies, it can be small if the
* hardware handles it or large if we have to take an exception and fix it
* in software.
*
* Since an ethernet header is 14 bytes network drivers often end up with
* the IP header at an unaligned offset. The IP header can be aligned by
* shifting the start of the packet by 2 bytes. Drivers should do this
* with:
*
* skb_reserve(skb, NET_IP_ALIGN);
*
* The downside to this alignment of the IP header is that the DMA is now
* unaligned. On some architectures the cost of an unaligned DMA is high
* and this cost outweighs the gains made by aligning the IP header.
*
* Since this trade off varies between architectures, we allow NET_IP_ALIGN
* to be overridden.
*/
#ifndef NET_IP_ALIGN
#define NET_IP_ALIGN 2
#endif
/*
* The networking layer reserves some headroom in skb data (via
* dev_alloc_skb). This is used to avoid having to reallocate skb data when
* the header has to grow. In the default case, if the header has to grow
* 32 bytes or less we avoid the reallocation.
*
* Unfortunately this headroom changes the DMA alignment of the resulting
* network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
* on some architectures. An architecture can override this value,
* perhaps setting it to a cacheline in size (since that will maintain
* cacheline alignment of the DMA). It must be a power of 2.
*
* Various parts of the networking layer expect at least 32 bytes of
* headroom, you should not reduce this.
*
* Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
* to reduce average number of cache lines per packet.
* get_rps_cpus() for example only access one 64 bytes aligned block :
* NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
*/
#ifndef NET_SKB_PAD
#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
#endif
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
{
if (WARN_ON(skb_is_nonlinear(skb)))
return;
skb->len = len;
skb_set_tail_pointer(skb, len);
}
static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
__skb_set_length(skb, len);
}
void skb_trim(struct sk_buff *skb, unsigned int len);
static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
if (skb->data_len)
return ___pskb_trim(skb, len);
__skb_trim(skb, len);
return 0;
}
static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}
/**
* pskb_trim_unique - remove end from a paged unique (not cloned) buffer
* @skb: buffer to alter
* @len: new length
*
* This is identical to pskb_trim except that the caller knows that
* the skb is not cloned so we should never get an error due to out-
* of-memory.
*/
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
{
int err = pskb_trim(skb, len);
BUG_ON(err);
}
static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
{
unsigned int diff = len - skb->len;
if (skb_tailroom(skb) < diff) {
int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
GFP_ATOMIC);
if (ret)
return ret;
}
__skb_set_length(skb, len);
return 0;
}
/**
* skb_orphan - orphan a buffer
* @skb: buffer to orphan
*
* If a buffer currently has an owner then we call the owner's
* destructor function and make the @skb unowned. The buffer continues
* to exist but is no longer charged to its former owner.
*/
static inline void skb_orphan(struct sk_buff *skb)
{
if (skb->destructor) {
skb->destructor(skb);
skb->destructor = NULL;
skb->sk = NULL;
} else {
BUG_ON(skb->sk);
}
}
/**
* skb_orphan_frags - orphan the frags contained in a buffer
* @skb: buffer to orphan frags from
* @gfp_mask: allocation mask for replacement pages
*
* For each frag in the SKB which needs a destructor (i.e. has an
* owner) create a copy of that frag and release the original
* page by calling the destructor.
*/
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
{
if (likely(!skb_zcopy(skb)))
return 0;
if (!skb_zcopy_is_nouarg(skb) &&
skb_uarg(skb)->callback == sock_zerocopy_callback)
return 0;
return skb_copy_ubufs(skb, gfp_mask);
}
/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
{
if (likely(!skb_zcopy(skb)))
return 0;
return skb_copy_ubufs(skb, gfp_mask);
}
/**
* __skb_queue_purge - empty a list
* @list: list to empty
*
* Delete all buffers on an &sk_buff list. Each buffer is removed from
* the list and one reference dropped. This function does not take the
* list lock and the caller must hold the relevant locks to use it.
*/
static inline void __skb_queue_purge(struct sk_buff_head *list)
{
struct sk_buff *skb;
while ((skb = __skb_dequeue(list)) != NULL)
kfree_skb(skb);
}
void skb_queue_purge(struct sk_buff_head *list);
unsigned int skb_rbtree_purge(struct rb_root *root);
void *netdev_alloc_frag(unsigned int fragsz);
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
gfp_t gfp_mask);
/**
* netdev_alloc_skb - allocate an skbuff for rx on a specific device
* @dev: network device to receive on
* @length: length to allocate
*
* Allocate a new &sk_buff and assign it a usage count of one. The
* buffer has unspecified headroom built in. Users should allocate
* the headroom they think they need without accounting for the
* built in space. The built in space is used for optimisations.
*
* %NULL is returned if there is no free memory. Although this function
* allocates memory it can be called from an interrupt.
*/
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
unsigned int length)
{
return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}
/* legacy helper around __netdev_alloc_skb() */
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
gfp_t gfp_mask)
{
return __netdev_alloc_skb(NULL, length, gfp_mask);
}
/* legacy helper around netdev_alloc_skb() */
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
return netdev_alloc_skb(NULL, length);
}
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
unsigned int length, gfp_t gfp)
{
struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
if (NET_IP_ALIGN && skb)
skb_reserve(skb, NET_IP_ALIGN);
return skb;
}
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
unsigned int length)
{
return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
}
static inline void skb_free_frag(void *addr)
{
page_frag_free(addr);
}
void *napi_alloc_frag(unsigned int fragsz);
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
unsigned int length, gfp_t gfp_mask);
static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
unsigned int length)
{
return __napi_alloc_skb(napi, length, GFP_ATOMIC);
}
void napi_consume_skb(struct sk_buff *skb, int budget);
void __kfree_skb_flush(void);
void __kfree_skb_defer(struct sk_buff *skb);
/**
* __dev_alloc_pages - allocate page for network Rx
* @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
* @order: size of the allocation
*
* Allocate a new page.
*
* %NULL is returned if there is no free memory.
*/
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
unsigned int order)
{
/* This piece of code contains several assumptions.
* 1. This is for device Rx, therefor a cold page is preferred.
* 2. The expectation is the user wants a compound page.
* 3. If requesting a order 0 page it will not be compound
* due to the check to see if order has a value in prep_new_page
* 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
* code in gfp_to_alloc_flags that should be enforcing this.
*/
gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
}
static inline struct page *dev_alloc_pages(unsigned int order)
{
return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
}
/**
* __dev_alloc_page - allocate a page for network Rx
* @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
*
* Allocate a new page.
*
* %NULL is returned if there is no free memory.
*/
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
{
return __dev_alloc_pages(gfp_mask, 0);
}
static inline struct page *dev_alloc_page(void)
{
return dev_alloc_pages(0);
}
/**
* skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
* @page: The page that was allocated from skb_alloc_page
* @skb: The skb that may need pfmemalloc set
*/
static inline void skb_propagate_pfmemalloc(struct page *page,
struct sk_buff *skb)
{
if (page_is_pfmemalloc(page))
skb->pfmemalloc = true;
}
/**
* skb_frag_off() - Returns the offset of a skb fragment
* @frag: the paged fragment
*/
static inline unsigned int skb_frag_off(const skb_frag_t *frag)
{
return frag->bv_offset;
}
/**
* skb_frag_off_add() - Increments the offset of a skb fragment by @delta
* @frag: skb fragment
* @delta: value to add
*/
static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
{
frag->bv_offset += delta;
}
/**
* skb_frag_off_set() - Sets the offset of a skb fragment
* @frag: skb fragment
* @offset: offset of fragment
*/
static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
{
frag->bv_offset = offset;
}
/**
* skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
* @fragto: skb fragment where offset is set
* @fragfrom: skb fragment offset is copied from
*/
static inline void skb_frag_off_copy(skb_frag_t *fragto,
const skb_frag_t *fragfrom)
{
fragto->bv_offset = fragfrom->bv_offset;
}
/**
* skb_frag_page - retrieve the page referred to by a paged fragment
* @frag: the paged fragment
*
* Returns the &struct page associated with @frag.
*/
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
return frag->bv_page;
}
/**
* __skb_frag_ref - take an addition reference on a paged fragment.
* @frag: the paged fragment
*
* Takes an additional reference on the paged fragment @frag.
*/
static inline void __skb_frag_ref(skb_frag_t *frag)
{
get_page(skb_frag_page(frag));
}
/**
* skb_frag_ref - take an addition reference on a paged fragment of an skb.
* @skb: the buffer
* @f: the fragment offset.
*
* Takes an additional reference on the @f'th paged fragment of @skb.
*/
static inline void skb_frag_ref(struct sk_buff *skb, int f)
{
__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
}
/**
* __skb_frag_unref - release a reference on a paged fragment.
* @frag: the paged fragment
*
* Releases a reference on the paged fragment @frag.
*/
static inline void __skb_frag_unref(skb_frag_t *frag)
{
put_page(skb_frag_page(frag));
}
/**
* skb_frag_unref - release a reference on a paged fragment of an skb.
* @skb: the buffer
* @f: the fragment offset
*
* Releases a reference on the @f'th paged fragment of @skb.
*/
static inline void skb_frag_unref(struct sk_buff *skb, int f)
{
__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
}
/**
* skb_frag_address - gets the address of the data contained in a paged fragment
* @frag: the paged fragment buffer
*
* Returns the address of the data within @frag. The page must already
* be mapped.
*/
static inline void *skb_frag_address(const skb_frag_t *frag)
{
return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
}
/**
* skb_frag_address_safe - gets the address of the data contained in a paged fragment
* @frag: the paged fragment buffer
*
* Returns the address of the data within @frag. Checks that the page
* is mapped and returns %NULL otherwise.
*/
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
void *ptr = page_address(skb_frag_page(frag));
if (unlikely(!ptr))
return NULL;
return ptr + skb_frag_off(frag);
}
/**
* skb_frag_page_copy() - sets the page in a fragment from another fragment
* @fragto: skb fragment where page is set
* @fragfrom: skb fragment page is copied from
*/
static inline void skb_frag_page_copy(skb_frag_t *fragto,
const skb_frag_t *fragfrom)
{
fragto->bv_page = fragfrom->bv_page;
}
/**
* __skb_frag_set_page - sets the page contained in a paged fragment
* @frag: the paged fragment
* @page: the page to set
*
* Sets the fragment @frag to contain @page.
*/
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
{
frag->bv_page = page;
}
/**
* skb_frag_set_page - sets the page contained in a paged fragment of an skb
* @skb: the buffer
* @f: the fragment offset
* @page: the page to set
*
* Sets the @f'th fragment of @skb to contain @page.
*/
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
struct page *page)
{
__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
}
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
/**
* skb_frag_dma_map - maps a paged fragment via the DMA API
* @dev: the device to map the fragment to
* @frag: the paged fragment to map
* @offset: the offset within the fragment (starting at the
* fragment's own offset)
* @size: the number of bytes to map
* @dir: the direction of the mapping (``PCI_DMA_*``)
*
* Maps the page associated with @frag to @device.
*/
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
const skb_frag_t *frag,
size_t offset, size_t size,
enum dma_data_direction dir)
{
return dma_map_page(dev, skb_frag_page(frag),
skb_frag_off(frag) + offset, size, dir);
}
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
gfp_t gfp_mask)
{
return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
}
static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
gfp_t gfp_mask)
{
return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
}
/**
* skb_clone_writable - is the header of a clone writable
* @skb: buffer to check
* @len: length up to which to write
*
* Returns true if modifying the header part of the cloned buffer
* does not requires the data to be copied.
*/
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
{
return !skb_header_cloned(skb) &&
skb_headroom(skb) + len <= skb->hdr_len;
}
static inline int skb_try_make_writable(struct sk_buff *skb,
unsigned int write_len)
{
return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
}
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
int cloned)
{
int delta = 0;
if (headroom > skb_headroom(skb))
delta = headroom - skb_headroom(skb);
if (delta || cloned)
return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
GFP_ATOMIC);
return 0;
}
/**
* skb_cow - copy header of skb when it is required
* @skb: buffer to cow
* @headroom: needed headroom
*
* If the skb passed lacks sufficient headroom or its data part
* is shared, data is reallocated. If reallocation fails, an error
* is returned and original skb is not changed.
*
* The result is skb with writable area skb->head...skb->tail
* and at least @headroom of space at head.
*/
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
return __skb_cow(skb, headroom, skb_cloned(skb));
}
/**
* skb_cow_head - skb_cow but only making the head writable
* @skb: buffer to cow
* @headroom: needed headroom
*
* This function is identical to skb_cow except that we replace the
* skb_cloned check by skb_header_cloned. It should be used when
* you only need to push on some header and do not need to modify
* the data.
*/
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
{
return __skb_cow(skb, headroom, skb_header_cloned(skb));
}
/**
* skb_padto - pad an skbuff up to a minimal size
* @skb: buffer to pad
* @len: minimal length
*
* Pads up a buffer to ensure the trailing bytes exist and are
* blanked. If the buffer already contains sufficient data it
* is untouched. Otherwise it is extended. Returns zero on
* success. The skb is freed on error.
*/
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
{
unsigned int size = skb->len;
if (likely(size >= len))
return 0;
return skb_pad(skb, len - size);
}
/**
* __skb_put_padto - increase size and pad an skbuff up to a minimal size
* @skb: buffer to pad
* @len: minimal length
* @free_on_error: free buffer on error
*
* Pads up a buffer to ensure the trailing bytes exist and are
* blanked. If the buffer already contains sufficient data it
* is untouched. Otherwise it is extended. Returns zero on
* success. The skb is freed on error if @free_on_error is true.
*/
static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
bool free_on_error)
{
unsigned int size = skb->len;
if (unlikely(size < len)) {
len -= size;
if (__skb_pad(skb, len, free_on_error))
return -ENOMEM;
__skb_put(skb, len);
}
return 0;
}
/**
* skb_put_padto - increase size and pad an skbuff up to a minimal size
* @skb: buffer to pad
* @len: minimal length
*
* Pads up a buffer to ensure the trailing bytes exist and are
* blanked. If the buffer already contains sufficient data it
* is untouched. Otherwise it is extended. Returns zero on
* success. The skb is freed on error.
*/
static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
{
return __skb_put_padto(skb, len, true);
}
static inline int skb_add_data(struct sk_buff *skb,
struct iov_iter *from, int copy)
{
const int off = skb->len;
if (skb->ip_summed == CHECKSUM_NONE) {
__wsum csum = 0;
if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
&csum, from)) {
skb->csum = csum_block_add(skb->csum, csum, off);
return 0;
}
} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
return 0;
__skb_trim(skb, off);
return -EFAULT;
}
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
const struct page *page, int off)
{
if (skb_zcopy(skb))
return false;
if (i) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
return page == skb_frag_page(frag) &&
off == skb_frag_off(frag) + skb_frag_size(frag);
}
return false;
}
static inline int __skb_linearize(struct sk_buff *skb)
{
return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
}
/**
* skb_linearize - convert paged skb to linear one
* @skb: buffer to linarize
*
* If there is no free memory -ENOMEM is returned, otherwise zero
* is returned and the old skb data released.
*/
static inline int skb_linearize(struct sk_buff *skb)
{
return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
}
/**
* skb_has_shared_frag - can any frag be overwritten
* @skb: buffer to test
*
* Return true if the skb has at least one frag that might be modified
* by an external entity (as in vmsplice()/sendfile())
*/
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
{
return skb_is_nonlinear(skb) &&
skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
}
/**
* skb_linearize_cow - make sure skb is linear and writable
* @skb: buffer to process
*
* If there is no free memory -ENOMEM is returned, otherwise zero
* is returned and the old skb data released.
*/
static inline int skb_linearize_cow(struct sk_buff *skb)
{
return skb_is_nonlinear(skb) || skb_cloned(skb) ?
__skb_linearize(skb) : 0;
}
static __always_inline void
__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
unsigned int off)
{
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->csum = csum_block_sub(skb->csum,
csum_partial(start, len, 0), off);
else if (skb->ip_summed == CHECKSUM_PARTIAL &&
skb_checksum_start_offset(skb) < 0)
skb->ip_summed = CHECKSUM_NONE;
}
/**
* skb_postpull_rcsum - update checksum for received skb after pull
* @skb: buffer to update
* @start: start of data before pull
* @len: length of data pulled
*
* After doing a pull on a received packet, you need to call this to
* update the CHECKSUM_COMPLETE checksum, or set ip_summed to
* CHECKSUM_NONE so that it can be recomputed from scratch.
*/
static inline void skb_postpull_rcsum(struct sk_buff *skb,
const void *start, unsigned int len)
{
__skb_postpull_rcsum(skb, start, len, 0);
}
static __always_inline void
__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
unsigned int off)
{
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->csum = csum_block_add(skb->csum,
csum_partial(start, len, 0), off);
}
/**
* skb_postpush_rcsum - update checksum for received skb after push
* @skb: buffer to update
* @start: start of data after push
* @len: length of data pushed
*
* After doing a push on a received packet, you need to call this to
* update the CHECKSUM_COMPLETE checksum.
*/
static inline void skb_postpush_rcsum(struct sk_buff *skb,
const void *start, unsigned int len)
{
__skb_postpush_rcsum(skb, start, len, 0);
}
void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
/**
* skb_push_rcsum - push skb and update receive checksum
* @skb: buffer to update
* @len: length of data pulled
*
* This function performs an skb_push on the packet and updates
* the CHECKSUM_COMPLETE checksum. It should be used on
* receive path processing instead of skb_push unless you know
* that the checksum difference is zero (e.g., a valid IP header)
* or you are setting ip_summed to CHECKSUM_NONE.
*/
static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
{
skb_push(skb, len);
skb_postpush_rcsum(skb, skb->data, len);
return skb->data;
}
int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
/**
* pskb_trim_rcsum - trim received skb and update checksum
* @skb: buffer to trim
* @len: new length
*
* This is exactly the same as pskb_trim except that it ensures the
* checksum of received packets are still valid after the operation.
* It can change skb pointers.
*/
static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
if (likely(len >= skb->len))
return 0;
return pskb_trim_rcsum_slow(skb, len);
}
static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->ip_summed = CHECKSUM_NONE;
__skb_trim(skb, len);
return 0;
}
static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
{
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->ip_summed = CHECKSUM_NONE;
return __skb_grow(skb, len);
}
#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
#define skb_rb_first(root) rb_to_skb(rb_first(root))
#define skb_rb_last(root) rb_to_skb(rb_last(root))
#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
#define skb_queue_walk(queue, skb) \
for (skb = (queue)->next; \
skb != (struct sk_buff *)(queue); \
skb = skb->next)
#define skb_queue_walk_safe(queue, skb, tmp) \
for (skb = (queue)->next, tmp = skb->next; \
skb != (struct sk_buff *)(queue); \
skb = tmp, tmp = skb->next)
#define skb_queue_walk_from(queue, skb) \
for (; skb != (struct sk_buff *)(queue); \
skb = skb->next)
#define skb_rbtree_walk(skb, root) \
for (skb = skb_rb_first(root); skb != NULL; \
skb = skb_rb_next(skb))
#define skb_rbtree_walk_from(skb) \
for (; skb != NULL; \
skb = skb_rb_next(skb))
#define skb_rbtree_walk_from_safe(skb, tmp) \
for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
skb = tmp)
#define skb_queue_walk_from_safe(queue, skb, tmp) \
for (tmp = skb->next; \
skb != (struct sk_buff *)(queue); \
skb = tmp, tmp = skb->next)
#define skb_queue_reverse_walk(queue, skb) \
for (skb = (queue)->prev; \
skb != (struct sk_buff *)(queue); \
skb = skb->prev)
#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
for (skb = (queue)->prev, tmp = skb->prev; \
skb != (struct sk_buff *)(queue); \
skb = tmp, tmp = skb->prev)
#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
for (tmp = skb->prev; \
skb != (struct sk_buff *)(queue); \
skb = tmp, tmp = skb->prev)
static inline bool skb_has_frag_list(const struct sk_buff *skb)
{
return skb_shinfo(skb)->frag_list != NULL;
}
static inline void skb_frag_list_init(struct sk_buff *skb)
{
skb_shinfo(skb)->frag_list = NULL;
}
#define skb_walk_frags(skb, iter) \
for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
const struct sk_buff *skb);
struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
struct sk_buff_head *queue,
unsigned int flags,
void (*destructor)(struct sock *sk,
struct sk_buff *skb),
int *off, int *err,
struct sk_buff **last);
struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
void (*destructor)(struct sock *sk,
struct sk_buff *skb),
int *off, int *err,
struct sk_buff **last);
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
void (*destructor)(struct sock *sk,
struct sk_buff *skb),
int *off, int *err);
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
int *err);
__poll_t datagram_poll(struct file *file, struct socket *sock,
struct poll_table_struct *wait);
int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
struct iov_iter *to, int size);
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
struct msghdr *msg, int size)
{
return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
}
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
struct msghdr *msg);
int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
struct iov_iter *to, int len,
struct ahash_request *hash);
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
struct iov_iter *from, int len);
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
static inline void skb_free_datagram_locked(struct sock *sk,
struct sk_buff *skb)
{
__skb_free_datagram_locked(sk, skb, 0);
}
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
int len, __wsum csum);
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
struct pipe_inode_info *pipe, unsigned int len,
unsigned int flags);
int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
int len);
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
int len, int hlen);
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
int skb_ensure_writable(struct sk_buff *skb, int write_len);
int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
int skb_vlan_pop(struct sk_buff *skb);
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
int mac_len);
int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len);
int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
int skb_mpls_dec_ttl(struct sk_buff *skb);
struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
gfp_t gfp);
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
{
return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
}
static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
{
return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
}
struct skb_checksum_ops {
__wsum (*update)(const void *mem, int len, __wsum wsum);
__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
};
extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
__wsum csum, const struct skb_checksum_ops *ops);
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
__wsum csum);
static inline void * __must_check
__skb_header_pointer(const struct sk_buff *skb, int offset,
int len, void *data, int hlen, void *buffer)
{
if (hlen - offset >= len)
return data + offset;
if (!skb ||
skb_copy_bits(skb, offset, buffer, len) < 0)
return NULL;
return buffer;
}
static inline void * __must_check
skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
{
return __skb_header_pointer(skb, offset, len, skb->data,
skb_headlen(skb), buffer);
}
/**
* skb_needs_linearize - check if we need to linearize a given skb
* depending on the given device features.
* @skb: socket buffer to check
* @features: net device features
*
* Returns true if either:
* 1. skb has frag_list and the device doesn't support FRAGLIST, or
* 2. skb is fragmented and the device does not support SG.
*/
static inline bool skb_needs_linearize(struct sk_buff *skb,
netdev_features_t features)
{
return skb_is_nonlinear(skb) &&
((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
}
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
void *to,
const unsigned int len)
{
memcpy(to, skb->data, len);
}
static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
const int offset, void *to,
const unsigned int len)
{
memcpy(to, skb->data + offset, len);
}
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
const void *from,
const unsigned int len)
{
memcpy(skb->data, from, len);
}
static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
const int offset,
const void *from,
const unsigned int len)
{
memcpy(skb->data + offset, from, len);
}
void skb_init(void);
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
{
return skb->tstamp;
}
/**
* skb_get_timestamp - get timestamp from a skb
* @skb: skb to get stamp from
* @stamp: pointer to struct __kernel_old_timeval to store stamp in
*
* Timestamps are stored in the skb as offsets to a base timestamp.
* This function converts the offset back to a struct timeval and stores
* it in stamp.
*/
static inline void skb_get_timestamp(const struct sk_buff *skb,
struct __kernel_old_timeval *stamp)
{
*stamp = ns_to_kernel_old_timeval(skb->tstamp);
}
static inline void skb_get_new_timestamp(const struct sk_buff *skb,
struct __kernel_sock_timeval *stamp)
{
struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
stamp->tv_sec = ts.tv_sec;
stamp->tv_usec = ts.tv_nsec / 1000;
}
static inline void skb_get_timestampns(const struct sk_buff *skb,
struct timespec *stamp)
{
*stamp = ktime_to_timespec(skb->tstamp);
}
static inline void skb_get_new_timestampns(const struct sk_buff *skb,
struct __kernel_timespec *stamp)
{
struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
stamp->tv_sec = ts.tv_sec;
stamp->tv_nsec = ts.tv_nsec;
}
static inline void __net_timestamp(struct sk_buff *skb)
{
skb->tstamp = ktime_get_real();
}
static inline ktime_t net_timedelta(ktime_t t)
{
return ktime_sub(ktime_get_real(), t);
}
static inline ktime_t net_invalid_timestamp(void)
{
return 0;
}
static inline u8 skb_metadata_len(const struct sk_buff *skb)
{
return skb_shinfo(skb)->meta_len;
}
static inline void *skb_metadata_end(const struct sk_buff *skb)
{
return skb_mac_header(skb);
}
static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
const struct sk_buff *skb_b,
u8 meta_len)
{
const void *a = skb_metadata_end(skb_a);
const void *b = skb_metadata_end(skb_b);
/* Using more efficient varaiant than plain call to memcmp(). */
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
u64 diffs = 0;
switch (meta_len) {
#define __it(x, op) (x -= sizeof(u##op))
#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
case 32: diffs |= __it_diff(a, b, 64);
/* fall through */
case 24: diffs |= __it_diff(a, b, 64);
/* fall through */
case 16: diffs |= __it_diff(a, b, 64);
/* fall through */
case 8: diffs |= __it_diff(a, b, 64);
break;
case 28: diffs |= __it_diff(a, b, 64);
/* fall through */
case 20: diffs |= __it_diff(a, b, 64);
/* fall through */
case 12: diffs |= __it_diff(a, b, 64);
/* fall through */
case 4: diffs |= __it_diff(a, b, 32);
break;
}
return diffs;
#else
return memcmp(a - meta_len, b - meta_len, meta_len);
#endif
}
static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
const struct sk_buff *skb_b)
{
u8 len_a = skb_metadata_len(skb_a);
u8 len_b = skb_metadata_len(skb_b);
if (!(len_a | len_b))
return false;
return len_a != len_b ?
true : __skb_metadata_differs(skb_a, skb_b, len_a);
}
static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
{
skb_shinfo(skb)->meta_len = meta_len;
}
static inline void skb_metadata_clear(struct sk_buff *skb)
{
skb_metadata_set(skb, 0);
}
struct sk_buff *skb_clone_sk(struct sk_buff *skb);
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
void skb_clone_tx_timestamp(struct sk_buff *skb);
bool skb_defer_rx_timestamp(struct sk_buff *skb);
#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
{
}
static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
{
return false;
}
#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
/**
* skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
*
* PHY drivers may accept clones of transmitted packets for
* timestamping via their phy_driver.txtstamp method. These drivers
* must call this function to return the skb back to the stack with a
* timestamp.
*
* @skb: clone of the the original outgoing packet
* @hwtstamps: hardware time stamps
*
*/
void skb_complete_tx_timestamp(struct sk_buff *skb,
struct skb_shared_hwtstamps *hwtstamps);
void __skb_tstamp_tx(struct sk_buff *orig_skb,
struct skb_shared_hwtstamps *hwtstamps,
struct sock *sk, int tstype);
/**
* skb_tstamp_tx - queue clone of skb with send time stamps
* @orig_skb: the original outgoing packet
* @hwtstamps: hardware time stamps, may be NULL if not available
*
* If the skb has a socket associated, then this function clones the
* skb (thus sharing the actual data and optional structures), stores
* the optional hardware time stamping information (if non NULL) or
* generates a software time stamp (otherwise), then queues the clone
* to the error queue of the socket. Errors are silently ignored.
*/
void skb_tstamp_tx(struct sk_buff *orig_skb,
struct skb_shared_hwtstamps *hwtstamps);
/**
* skb_tx_timestamp() - Driver hook for transmit timestamping
*
* Ethernet MAC Drivers should call this function in their hard_xmit()
* function immediately before giving the sk_buff to the MAC hardware.
*
* Specifically, one should make absolutely sure that this function is
* called before TX completion of this packet can trigger. Otherwise
* the packet could potentially already be freed.
*
* @skb: A socket buffer.
*/
static inline void skb_tx_timestamp(struct sk_buff *skb)
{
skb_clone_tx_timestamp(skb);
if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
skb_tstamp_tx(skb, NULL);
}
/**
* skb_complete_wifi_ack - deliver skb with wifi status
*
* @skb: the original outgoing packet
* @acked: ack status
*
*/
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
__sum16 __skb_checksum_complete(struct sk_buff *skb);
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
{
return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
skb->csum_valid ||
(skb->ip_summed == CHECKSUM_PARTIAL &&
skb_checksum_start_offset(skb) >= 0));
}
/**
* skb_checksum_complete - Calculate checksum of an entire packet
* @skb: packet to process
*
* This function calculates the checksum over the entire packet plus
* the value of skb->csum. The latter can be used to supply the
* checksum of a pseudo header as used by TCP/UDP. It returns the
* checksum.
*
* For protocols that contain complete checksums such as ICMP/TCP/UDP,
* this function can be used to verify that checksum on received
* packets. In that case the function should return zero if the
* checksum is correct. In particular, this function will return zero
* if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
* hardware has already verified the correctness of the checksum.
*/
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
{
return skb_csum_unnecessary(skb) ?
0 : __skb_checksum_complete(skb);
}
static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
{
if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
if (skb->csum_level == 0)
skb->ip_summed = CHECKSUM_NONE;
else
skb->csum_level--;
}
}
static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
{
if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
skb->csum_level++;
} else if (skb->ip_summed == CHECKSUM_NONE) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum_level = 0;
}
}
/* Check if we need to perform checksum complete validation.
*
* Returns true if checksum complete is needed, false otherwise
* (either checksum is unnecessary or zero checksum is allowed).
*/
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
bool zero_okay,
__sum16 check)
{
if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
skb->csum_valid = 1;
__skb_decr_checksum_unnecessary(skb);
return false;
}
return true;
}
/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
* in checksum_init.
*/
#define CHECKSUM_BREAK 76
/* Unset checksum-complete
*
* Unset checksum complete can be done when packet is being modified
* (uncompressed for instance) and checksum-complete value is
* invalidated.
*/
static inline void skb_checksum_complete_unset(struct sk_buff *skb)
{
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->ip_summed = CHECKSUM_NONE;
}
/* Validate (init) checksum based on checksum complete.
*
* Return values:
* 0: checksum is validated or try to in skb_checksum_complete. In the latter
* case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
* checksum is stored in skb->csum for use in __skb_checksum_complete
* non-zero: value of invalid checksum
*
*/
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
bool complete,
__wsum psum)
{
if (skb->ip_summed == CHECKSUM_COMPLETE) {
if (!csum_fold(csum_add(psum, skb->csum))) {
skb->csum_valid = 1;
return 0;
}
}
skb->csum = psum;
if (complete || skb->len <= CHECKSUM_BREAK) {
__sum16 csum;
csum = __skb_checksum_complete(skb);
skb->csum_valid = !csum;
return csum;
}
return 0;
}
static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
{
return 0;
}
/* Perform checksum validate (init). Note that this is a macro since we only
* want to calculate the pseudo header which is an input function if necessary.
* First we try to validate without any computation (checksum unnecessary) and
* then calculate based on checksum complete calling the function to compute
* pseudo header.
*
* Return values:
* 0: checksum is validated or try to in skb_checksum_complete
* non-zero: value of invalid checksum
*/
#define __skb_checksum_validate(skb, proto, complete, \
zero_okay, check, compute_pseudo) \
({ \
__sum16 __ret = 0; \
skb->csum_valid = 0; \
if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
__ret = __skb_checksum_validate_complete(skb, \
complete, compute_pseudo(skb, proto)); \
__ret; \
})
#define skb_checksum_init(skb, proto, compute_pseudo) \
__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
#define skb_checksum_validate(skb, proto, compute_pseudo) \
__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
#define skb_checksum_validate_zero_check(skb, proto, check, \
compute_pseudo) \
__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
#define skb_checksum_simple_validate(skb) \
__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
{
return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
}
static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
{
skb->csum = ~pseudo;
skb->ip_summed = CHECKSUM_COMPLETE;
}
#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
do { \
if (__skb_checksum_convert_check(skb)) \
__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
} while (0)
static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
u16 start, u16 offset)
{
skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
skb->csum_offset = offset - start;
}
/* Update skbuf and packet to reflect the remote checksum offload operation.
* When called, ptr indicates the starting point for skb->csum when
* ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
* here, skb_postpull_rcsum is done so skb->csum start is ptr.
*/
static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
int start, int offset, bool nopartial)
{
__wsum delta;
if (!nopartial) {
skb_remcsum_adjust_partial(skb, ptr, start, offset);
return;
}
if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
__skb_checksum_complete(skb);
skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
}
delta = remcsum_adjust(ptr, skb->csum, start, offset);
/* Adjust skb->csum since we changed the packet */
skb->csum = csum_add(skb->csum, delta);
}
static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
return (void *)(skb->_nfct & NFCT_PTRMASK);
#else
return NULL;
#endif
}
static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
return skb->_nfct;
#else
return 0UL;
#endif
}
static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
skb->_nfct = nfct;
#endif
}
#ifdef CONFIG_SKB_EXTENSIONS
enum skb_ext_id {
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
SKB_EXT_BRIDGE_NF,
#endif
#ifdef CONFIG_XFRM
SKB_EXT_SEC_PATH,
#endif
#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
TC_SKB_EXT,
#endif
SKB_EXT_NUM, /* must be last */
};
/**
* struct skb_ext - sk_buff extensions
* @refcnt: 1 on allocation, deallocated on 0
* @offset: offset to add to @data to obtain extension address
* @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
* @data: start of extension data, variable sized
*
* Note: offsets/lengths are stored in chunks of 8 bytes, this allows
* to use 'u8' types while allowing up to 2kb worth of extension data.
*/
struct skb_ext {
refcount_t refcnt;
u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
u8 chunks; /* same */
char data[0] __aligned(8);
};
void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
void __skb_ext_put(struct skb_ext *ext);
static inline void skb_ext_put(struct sk_buff *skb)
{
if (skb->active_extensions)
__skb_ext_put(skb->extensions);
}
static inline void __skb_ext_copy(struct sk_buff *dst,
const struct sk_buff *src)
{
dst->active_extensions = src->active_extensions;
if (src->active_extensions) {
struct skb_ext *ext = src->extensions;
refcount_inc(&ext->refcnt);
dst->extensions = ext;
}
}
static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
{
skb_ext_put(dst);
__skb_ext_copy(dst, src);
}
static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
{
return !!ext->offset[i];
}
static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
{
return skb->active_extensions & (1 << id);
}
static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
{
if (skb_ext_exist(skb, id))
__skb_ext_del(skb, id);
}
static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
{
if (skb_ext_exist(skb, id)) {
struct skb_ext *ext = skb->extensions;
return (void *)ext + (ext->offset[id] << 3);
}
return NULL;
}
static inline void skb_ext_reset(struct sk_buff *skb)
{
if (unlikely(skb->active_extensions)) {
__skb_ext_put(skb->extensions);
skb->active_extensions = 0;
}
}
static inline bool skb_has_extensions(struct sk_buff *skb)
{
return unlikely(skb->active_extensions);
}
#else
static inline void skb_ext_put(struct sk_buff *skb) {}
static inline void skb_ext_reset(struct sk_buff *skb) {}
static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
#endif /* CONFIG_SKB_EXTENSIONS */
static inline void nf_reset_ct(struct sk_buff *skb)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
nf_conntrack_put(skb_nfct(skb));
skb->_nfct = 0;
#endif
}
static inline void nf_reset_trace(struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
skb->nf_trace = 0;
#endif
}
static inline void ipvs_reset(struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_IP_VS)
skb->ipvs_property = 0;
#endif
}
/* Note: This doesn't put any conntrack info in dst. */
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
bool copy)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
dst->_nfct = src->_nfct;
nf_conntrack_get(skb_nfct(src));
#endif
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
if (copy)
dst->nf_trace = src->nf_trace;
#endif
}
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
nf_conntrack_put(skb_nfct(dst));
#endif
__nf_copy(dst, src, true);
}
#ifdef CONFIG_NETWORK_SECMARK
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{
to->secmark = from->secmark;
}
static inline void skb_init_secmark(struct sk_buff *skb)
{
skb->secmark = 0;
}
#else
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{ }
static inline void skb_init_secmark(struct sk_buff *skb)
{ }
#endif
static inline int secpath_exists(const struct sk_buff *skb)
{
#ifdef CONFIG_XFRM
return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
#else
return 0;
#endif
}
static inline bool skb_irq_freeable(const struct sk_buff *skb)
{
return !skb->destructor &&
!secpath_exists(skb) &&
!skb_nfct(skb) &&
!skb->_skb_refdst &&
!skb_has_frag_list(skb);
}
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
{
skb->queue_mapping = queue_mapping;
}
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
{
return skb->queue_mapping;
}
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
{
to->queue_mapping = from->queue_mapping;
}
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
{
skb->queue_mapping = rx_queue + 1;
}
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
{
return skb->queue_mapping - 1;
}
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
{
return skb->queue_mapping != 0;
}
static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
{
skb->dst_pending_confirm = val;
}
static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
{
return skb->dst_pending_confirm != 0;
}
static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
{
#ifdef CONFIG_XFRM
return skb_ext_find(skb, SKB_EXT_SEC_PATH);
#else
return NULL;
#endif
}
/* Keeps track of mac header offset relative to skb->head.
* It is useful for TSO of Tunneling protocol. e.g. GRE.
* For non-tunnel skb it points to skb_mac_header() and for
* tunnel skb it points to outer mac header.
* Keeps track of level of encapsulation of network headers.
*/
struct skb_gso_cb {
union {
int mac_offset;
int data_offset;
};
int encap_level;
__wsum csum;
__u16 csum_start;
};
#define SKB_SGO_CB_OFFSET 32
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
{
return (skb_mac_header(inner_skb) - inner_skb->head) -
SKB_GSO_CB(inner_skb)->mac_offset;
}
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
{
int new_headroom, headroom;
int ret;
headroom = skb_headroom(skb);
ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
if (ret)
return ret;
new_headroom = skb_headroom(skb);
SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
return 0;
}
static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
{
/* Do not update partial checksums if remote checksum is enabled. */
if (skb->remcsum_offload)
return;
SKB_GSO_CB(skb)->csum = res;
SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
}
/* Compute the checksum for a gso segment. First compute the checksum value
* from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
* then add in skb->csum (checksum from csum_start to end of packet).
* skb->csum and csum_start are then updated to reflect the checksum of the
* resultant packet starting from the transport header-- the resultant checksum
* is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
* header.
*/
static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
{
unsigned char *csum_start = skb_transport_header(skb);
int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
__wsum partial = SKB_GSO_CB(skb)->csum;
SKB_GSO_CB(skb)->csum = res;
SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
return csum_fold(csum_partial(csum_start, plen, partial));
}
static inline bool skb_is_gso(const struct sk_buff *skb)
{
return skb_shinfo(skb)->gso_size;
}
/* Note: Should be called only if skb_is_gso(skb) is true */
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
{
return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
}
/* Note: Should be called only if skb_is_gso(skb) is true */
static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
{
return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
}
/* Note: Should be called only if skb_is_gso(skb) is true */
static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
{
return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
}
static inline void skb_gso_reset(struct sk_buff *skb)
{
skb_shinfo(skb)->gso_size = 0;
skb_shinfo(skb)->gso_segs = 0;
skb_shinfo(skb)->gso_type = 0;
}
static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
u16 increment)
{
if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
return;
shinfo->gso_size += increment;
}
static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
u16 decrement)
{
if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
return;
shinfo->gso_size -= decrement;
}
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
static inline bool skb_warn_if_lro(const struct sk_buff *skb)
{
/* LRO sets gso_size but not gso_type, whereas if GSO is really
* wanted then gso_type will be set. */
const struct skb_shared_info *shinfo = skb_shinfo(skb);
if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
unlikely(shinfo->gso_type == 0)) {
__skb_warn_lro_forwarding(skb);
return true;
}
return false;
}
static inline void skb_forward_csum(struct sk_buff *skb)
{
/* Unfortunately we don't support this one. Any brave souls? */
if (skb->ip_summed == CHECKSUM_COMPLETE)
skb->ip_summed = CHECKSUM_NONE;
}
/**
* skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
* @skb: skb to check
*
* fresh skbs have their ip_summed set to CHECKSUM_NONE.
* Instead of forcing ip_summed to CHECKSUM_NONE, we can
* use this helper, to document places where we make this assertion.
*/
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
{
#ifdef DEBUG
BUG_ON(skb->ip_summed != CHECKSUM_NONE);
#endif
}
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
unsigned int transport_len,
__sum16(*skb_chkf)(struct sk_buff *skb));
/**
* skb_head_is_locked - Determine if the skb->head is locked down
* @skb: skb to check
*
* The head on skbs build around a head frag can be removed if they are
* not cloned. This function returns true if the skb head is locked down
* due to either being allocated via kmalloc, or by being a clone with
* multiple references to the head.
*/
static inline bool skb_head_is_locked(const struct sk_buff *skb)
{
return !skb->head_frag || skb_cloned(skb);
}
/* Local Checksum Offload.
* Compute outer checksum based on the assumption that the
* inner checksum will be offloaded later.
* See Documentation/networking/checksum-offloads.rst for
* explanation of how this works.
* Fill in outer checksum adjustment (e.g. with sum of outer
* pseudo-header) before calling.
* Also ensure that inner checksum is in linear data area.
*/
static inline __wsum lco_csum(struct sk_buff *skb)
{
unsigned char *csum_start = skb_checksum_start(skb);
unsigned char *l4_hdr = skb_transport_header(skb);
__wsum partial;
/* Start with complement of inner checksum adjustment */
partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
skb->csum_offset));
/* Add in checksum of our headers (incl. outer checksum
* adjustment filled in by caller) and return result.
*/
return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
}
#endif /* __KERNEL__ */
#endif /* _LINUX_SKBUFF_H */
|