summaryrefslogtreecommitdiff
path: root/include/linux/sched.h
blob: ac0fed4c31307faf7c67ac0ca791ad91b27155ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

#include <uapi/linux/sched.h>

#include <linux/sched/prio.h>

#include <linux/capability.h>
#include <linux/mutex.h>
#include <linux/plist.h>
#include <linux/mm_types.h>
#include <asm/ptrace.h>

#include <linux/sem.h>
#include <linux/shm.h>
#include <linux/signal.h>
#include <linux/signal_types.h>
#include <linux/pid.h>
#include <linux/seccomp.h>
#include <linux/rculist.h>
#include <linux/rtmutex.h>

#include <linux/resource.h>
#include <linux/hrtimer.h>
#include <linux/kcov.h>
#include <linux/task_io_accounting.h>
#include <linux/latencytop.h>
#include <linux/cred.h>
#include <linux/gfp.h>
#include <linux/topology.h>
#include <linux/magic.h>
#include <linux/cgroup-defs.h>

#include <asm/current.h>

struct sched_attr;
struct sched_param;

struct futex_pi_state;
struct robust_list_head;
struct bio_list;
struct fs_struct;
struct perf_event_context;
struct blk_plug;
struct filename;
struct nameidata;

struct signal_struct;
struct sighand_struct;

struct seq_file;
struct cfs_rq;
struct task_group;

/*
 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 *
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
 */
#define TASK_RUNNING		0
#define TASK_INTERRUPTIBLE	1
#define TASK_UNINTERRUPTIBLE	2
#define __TASK_STOPPED		4
#define __TASK_TRACED		8
/* in tsk->exit_state */
#define EXIT_DEAD		16
#define EXIT_ZOMBIE		32
#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
/* in tsk->state again */
#define TASK_DEAD		64
#define TASK_WAKEKILL		128
#define TASK_WAKING		256
#define TASK_PARKED		512
#define TASK_NOLOAD		1024
#define TASK_NEW		2048
#define TASK_STATE_MAX		4096

#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn"

/* Convenience macros for the sake of set_current_state */
#define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
#define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
#define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)

#define TASK_IDLE		(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)

/* Convenience macros for the sake of wake_up */
#define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
#define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)

/* get_task_state() */
#define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
				 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)

#define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
#define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
#define task_is_stopped_or_traced(task)	\
			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
#define task_contributes_to_load(task)	\
				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
				 (task->flags & PF_FROZEN) == 0 && \
				 (task->state & TASK_NOLOAD) == 0)

#ifdef CONFIG_DEBUG_ATOMIC_SLEEP

#define __set_current_state(state_value)			\
	do {							\
		current->task_state_change = _THIS_IP_;		\
		current->state = (state_value);			\
	} while (0)
#define set_current_state(state_value)				\
	do {							\
		current->task_state_change = _THIS_IP_;		\
		smp_store_mb(current->state, (state_value));	\
	} while (0)

#else
/*
 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *
 *   for (;;) {
 *	set_current_state(TASK_UNINTERRUPTIBLE);
 *	if (!need_sleep)
 *		break;
 *
 *	schedule();
 *   }
 *   __set_current_state(TASK_RUNNING);
 *
 * If the caller does not need such serialisation (because, for instance, the
 * condition test and condition change and wakeup are under the same lock) then
 * use __set_current_state().
 *
 * The above is typically ordered against the wakeup, which does:
 *
 *	need_sleep = false;
 *	wake_up_state(p, TASK_UNINTERRUPTIBLE);
 *
 * Where wake_up_state() (and all other wakeup primitives) imply enough
 * barriers to order the store of the variable against wakeup.
 *
 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 *
 * This is obviously fine, since they both store the exact same value.
 *
 * Also see the comments of try_to_wake_up().
 */
#define __set_current_state(state_value)		\
	do { current->state = (state_value); } while (0)
#define set_current_state(state_value)			\
	smp_store_mb(current->state, (state_value))

#endif

/* Task command name length */
#define TASK_COMM_LEN 16

#include <linux/spinlock.h>

/*
 * This serializes "schedule()" and also protects
 * the run-queue from deletions/modifications (but
 * _adding_ to the beginning of the run-queue has
 * a separate lock).
 */
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;

struct task_struct;

#ifdef CONFIG_PROVE_RCU
extern int lockdep_tasklist_lock_is_held(void);
#endif /* #ifdef CONFIG_PROVE_RCU */

extern void sched_init(void);
extern void sched_init_smp(void);
extern asmlinkage void schedule_tail(struct task_struct *prev);
extern void init_idle(struct task_struct *idle, int cpu);
extern void init_idle_bootup_task(struct task_struct *idle);

extern cpumask_var_t cpu_isolated_map;

extern int runqueue_is_locked(int cpu);

extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void scheduler_tick(void);
extern int sched_cpu_starting(unsigned int cpu);
extern int sched_cpu_activate(unsigned int cpu);
extern int sched_cpu_deactivate(unsigned int cpu);

#ifdef CONFIG_HOTPLUG_CPU
extern int sched_cpu_dying(unsigned int cpu);
#else
# define sched_cpu_dying	NULL
#endif

#define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
extern signed long schedule_timeout(signed long timeout);
extern signed long schedule_timeout_interruptible(signed long timeout);
extern signed long schedule_timeout_killable(signed long timeout);
extern signed long schedule_timeout_uninterruptible(signed long timeout);
extern signed long schedule_timeout_idle(signed long timeout);
asmlinkage void schedule(void);
extern void schedule_preempt_disabled(void);

extern int __must_check io_schedule_prepare(void);
extern void io_schedule_finish(int token);
extern long io_schedule_timeout(long timeout);
extern void io_schedule(void);

void __noreturn do_task_dead(void);

struct nsproxy;

/**
 * struct prev_cputime - snaphsot of system and user cputime
 * @utime: time spent in user mode
 * @stime: time spent in system mode
 * @lock: protects the above two fields
 *
 * Stores previous user/system time values such that we can guarantee
 * monotonicity.
 */
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
	u64 utime;
	u64 stime;
	raw_spinlock_t lock;
#endif
};

static inline void prev_cputime_init(struct prev_cputime *prev)
{
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
	prev->utime = prev->stime = 0;
	raw_spin_lock_init(&prev->lock);
#endif
}

/**
 * struct task_cputime - collected CPU time counts
 * @utime:		time spent in user mode, in nanoseconds
 * @stime:		time spent in kernel mode, in nanoseconds
 * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
 *
 * This structure groups together three kinds of CPU time that are tracked for
 * threads and thread groups.  Most things considering CPU time want to group
 * these counts together and treat all three of them in parallel.
 */
struct task_cputime {
	u64 utime;
	u64 stime;
	unsigned long long sum_exec_runtime;
};

/* Alternate field names when used to cache expirations. */
#define virt_exp	utime
#define prof_exp	stime
#define sched_exp	sum_exec_runtime

/*
 * This is the atomic variant of task_cputime, which can be used for
 * storing and updating task_cputime statistics without locking.
 */
struct task_cputime_atomic {
	atomic64_t utime;
	atomic64_t stime;
	atomic64_t sum_exec_runtime;
};

#define INIT_CPUTIME_ATOMIC \
	(struct task_cputime_atomic) {				\
		.utime = ATOMIC64_INIT(0),			\
		.stime = ATOMIC64_INIT(0),			\
		.sum_exec_runtime = ATOMIC64_INIT(0),		\
	}

#define PREEMPT_DISABLED	(PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)

/*
 * Disable preemption until the scheduler is running -- use an unconditional
 * value so that it also works on !PREEMPT_COUNT kernels.
 *
 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
 */
#define INIT_PREEMPT_COUNT	PREEMPT_OFFSET

/*
 * Initial preempt_count value; reflects the preempt_count schedule invariant
 * which states that during context switches:
 *
 *    preempt_count() == 2*PREEMPT_DISABLE_OFFSET
 *
 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
 * Note: See finish_task_switch().
 */
#define FORK_PREEMPT_COUNT	(2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)

/**
 * struct thread_group_cputimer - thread group interval timer counts
 * @cputime_atomic:	atomic thread group interval timers.
 * @running:		true when there are timers running and
 *			@cputime_atomic receives updates.
 * @checking_timer:	true when a thread in the group is in the
 *			process of checking for thread group timers.
 *
 * This structure contains the version of task_cputime, above, that is
 * used for thread group CPU timer calculations.
 */
struct thread_group_cputimer {
	struct task_cputime_atomic cputime_atomic;
	bool running;
	bool checking_timer;
};

#include <linux/rwsem.h>
struct autogroup;

struct backing_dev_info;
struct reclaim_state;

#ifdef CONFIG_SCHED_INFO
struct sched_info {
	/* cumulative counters */
	unsigned long pcount;	      /* # of times run on this cpu */
	unsigned long long run_delay; /* time spent waiting on a runqueue */

	/* timestamps */
	unsigned long long last_arrival,/* when we last ran on a cpu */
			   last_queued;	/* when we were last queued to run */
};
#endif /* CONFIG_SCHED_INFO */

struct task_delay_info;

static inline int sched_info_on(void)
{
#ifdef CONFIG_SCHEDSTATS
	return 1;
#elif defined(CONFIG_TASK_DELAY_ACCT)
	extern int delayacct_on;
	return delayacct_on;
#else
	return 0;
#endif
}

#ifdef CONFIG_SCHEDSTATS
void force_schedstat_enabled(void);
#endif

/*
 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 * has a few: load, load_avg, util_avg, freq, and capacity.
 *
 * We define a basic fixed point arithmetic range, and then formalize
 * all these metrics based on that basic range.
 */
# define SCHED_FIXEDPOINT_SHIFT	10
# define SCHED_FIXEDPOINT_SCALE	(1L << SCHED_FIXEDPOINT_SHIFT)

struct io_context;			/* See blkdev.h */


#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
extern void prefetch_stack(struct task_struct *t);
#else
static inline void prefetch_stack(struct task_struct *t) { }
#endif

struct audit_context;		/* See audit.c */
struct mempolicy;
struct pipe_inode_info;
struct uts_namespace;

struct load_weight {
	unsigned long weight;
	u32 inv_weight;
};

/*
 * The load_avg/util_avg accumulates an infinite geometric series
 * (see __update_load_avg() in kernel/sched/fair.c).
 *
 * [load_avg definition]
 *
 *   load_avg = runnable% * scale_load_down(load)
 *
 * where runnable% is the time ratio that a sched_entity is runnable.
 * For cfs_rq, it is the aggregated load_avg of all runnable and
 * blocked sched_entities.
 *
 * load_avg may also take frequency scaling into account:
 *
 *   load_avg = runnable% * scale_load_down(load) * freq%
 *
 * where freq% is the CPU frequency normalized to the highest frequency.
 *
 * [util_avg definition]
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE
 *
 * where running% is the time ratio that a sched_entity is running on
 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
 * and blocked sched_entities.
 *
 * util_avg may also factor frequency scaling and CPU capacity scaling:
 *
 *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
 *
 * where freq% is the same as above, and capacity% is the CPU capacity
 * normalized to the greatest capacity (due to uarch differences, etc).
 *
 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
 * we therefore scale them to as large a range as necessary. This is for
 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
 *
 * [Overflow issue]
 *
 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 * with the highest load (=88761), always runnable on a single cfs_rq,
 * and should not overflow as the number already hits PID_MAX_LIMIT.
 *
 * For all other cases (including 32-bit kernels), struct load_weight's
 * weight will overflow first before we do, because:
 *
 *    Max(load_avg) <= Max(load.weight)
 *
 * Then it is the load_weight's responsibility to consider overflow
 * issues.
 */
struct sched_avg {
	u64 last_update_time, load_sum;
	u32 util_sum, period_contrib;
	unsigned long load_avg, util_avg;
};

#ifdef CONFIG_SCHEDSTATS
struct sched_statistics {
	u64			wait_start;
	u64			wait_max;
	u64			wait_count;
	u64			wait_sum;
	u64			iowait_count;
	u64			iowait_sum;

	u64			sleep_start;
	u64			sleep_max;
	s64			sum_sleep_runtime;

	u64			block_start;
	u64			block_max;
	u64			exec_max;
	u64			slice_max;

	u64			nr_migrations_cold;
	u64			nr_failed_migrations_affine;
	u64			nr_failed_migrations_running;
	u64			nr_failed_migrations_hot;
	u64			nr_forced_migrations;

	u64			nr_wakeups;
	u64			nr_wakeups_sync;
	u64			nr_wakeups_migrate;
	u64			nr_wakeups_local;
	u64			nr_wakeups_remote;
	u64			nr_wakeups_affine;
	u64			nr_wakeups_affine_attempts;
	u64			nr_wakeups_passive;
	u64			nr_wakeups_idle;
};
#endif

struct sched_entity {
	struct load_weight	load;		/* for load-balancing */
	struct rb_node		run_node;
	struct list_head	group_node;
	unsigned int		on_rq;

	u64			exec_start;
	u64			sum_exec_runtime;
	u64			vruntime;
	u64			prev_sum_exec_runtime;

	u64			nr_migrations;

#ifdef CONFIG_SCHEDSTATS
	struct sched_statistics statistics;
#endif

#ifdef CONFIG_FAIR_GROUP_SCHED
	int			depth;
	struct sched_entity	*parent;
	/* rq on which this entity is (to be) queued: */
	struct cfs_rq		*cfs_rq;
	/* rq "owned" by this entity/group: */
	struct cfs_rq		*my_q;
#endif

#ifdef CONFIG_SMP
	/*
	 * Per entity load average tracking.
	 *
	 * Put into separate cache line so it does not
	 * collide with read-mostly values above.
	 */
	struct sched_avg	avg ____cacheline_aligned_in_smp;
#endif
};

struct sched_rt_entity {
	struct list_head run_list;
	unsigned long timeout;
	unsigned long watchdog_stamp;
	unsigned int time_slice;
	unsigned short on_rq;
	unsigned short on_list;

	struct sched_rt_entity *back;
#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity	*parent;
	/* rq on which this entity is (to be) queued: */
	struct rt_rq		*rt_rq;
	/* rq "owned" by this entity/group: */
	struct rt_rq		*my_q;
#endif
};

struct sched_dl_entity {
	struct rb_node	rb_node;

	/*
	 * Original scheduling parameters. Copied here from sched_attr
	 * during sched_setattr(), they will remain the same until
	 * the next sched_setattr().
	 */
	u64 dl_runtime;		/* maximum runtime for each instance	*/
	u64 dl_deadline;	/* relative deadline of each instance	*/
	u64 dl_period;		/* separation of two instances (period) */
	u64 dl_bw;		/* dl_runtime / dl_deadline		*/

	/*
	 * Actual scheduling parameters. Initialized with the values above,
	 * they are continously updated during task execution. Note that
	 * the remaining runtime could be < 0 in case we are in overrun.
	 */
	s64 runtime;		/* remaining runtime for this instance	*/
	u64 deadline;		/* absolute deadline for this instance	*/
	unsigned int flags;	/* specifying the scheduler behaviour	*/

	/*
	 * Some bool flags:
	 *
	 * @dl_throttled tells if we exhausted the runtime. If so, the
	 * task has to wait for a replenishment to be performed at the
	 * next firing of dl_timer.
	 *
	 * @dl_boosted tells if we are boosted due to DI. If so we are
	 * outside bandwidth enforcement mechanism (but only until we
	 * exit the critical section);
	 *
	 * @dl_yielded tells if task gave up the cpu before consuming
	 * all its available runtime during the last job.
	 */
	int dl_throttled, dl_boosted, dl_yielded;

	/*
	 * Bandwidth enforcement timer. Each -deadline task has its
	 * own bandwidth to be enforced, thus we need one timer per task.
	 */
	struct hrtimer dl_timer;
};

union rcu_special {
	struct {
		u8 blocked;
		u8 need_qs;
		u8 exp_need_qs;
		u8 pad;	/* Otherwise the compiler can store garbage here. */
	} b; /* Bits. */
	u32 s; /* Set of bits. */
};
struct rcu_node;

enum perf_event_task_context {
	perf_invalid_context = -1,
	perf_hw_context = 0,
	perf_sw_context,
	perf_nr_task_contexts,
};

struct wake_q_node {
	struct wake_q_node *next;
};

/* Track pages that require TLB flushes */
struct tlbflush_unmap_batch {
	/*
	 * Each bit set is a CPU that potentially has a TLB entry for one of
	 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
	 */
	struct cpumask cpumask;

	/* True if any bit in cpumask is set */
	bool flush_required;

	/*
	 * If true then the PTE was dirty when unmapped. The entry must be
	 * flushed before IO is initiated or a stale TLB entry potentially
	 * allows an update without redirtying the page.
	 */
	bool writable;
};

struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/*
	 * For reasons of header soup (see current_thread_info()), this
	 * must be the first element of task_struct.
	 */
	struct thread_info thread_info;
#endif
	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
	void *stack;
	atomic_t usage;
	unsigned int flags;	/* per process flags, defined below */
	unsigned int ptrace;

#ifdef CONFIG_SMP
	struct llist_node wake_entry;
	int on_cpu;
#ifdef CONFIG_THREAD_INFO_IN_TASK
	unsigned int cpu;	/* current CPU */
#endif
	unsigned int wakee_flips;
	unsigned long wakee_flip_decay_ts;
	struct task_struct *last_wakee;

	int wake_cpu;
#endif
	int on_rq;

	int prio, static_prio, normal_prio;
	unsigned int rt_priority;
	const struct sched_class *sched_class;
	struct sched_entity se;
	struct sched_rt_entity rt;
#ifdef CONFIG_CGROUP_SCHED
	struct task_group *sched_task_group;
#endif
	struct sched_dl_entity dl;

#ifdef CONFIG_PREEMPT_NOTIFIERS
	/* list of struct preempt_notifier: */
	struct hlist_head preempt_notifiers;
#endif

#ifdef CONFIG_BLK_DEV_IO_TRACE
	unsigned int btrace_seq;
#endif

	unsigned int policy;
	int nr_cpus_allowed;
	cpumask_t cpus_allowed;

#ifdef CONFIG_PREEMPT_RCU
	int rcu_read_lock_nesting;
	union rcu_special rcu_read_unlock_special;
	struct list_head rcu_node_entry;
	struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
	unsigned long rcu_tasks_nvcsw;
	bool rcu_tasks_holdout;
	struct list_head rcu_tasks_holdout_list;
	int rcu_tasks_idle_cpu;
#endif /* #ifdef CONFIG_TASKS_RCU */

#ifdef CONFIG_SCHED_INFO
	struct sched_info sched_info;
#endif

	struct list_head tasks;
#ifdef CONFIG_SMP
	struct plist_node pushable_tasks;
	struct rb_node pushable_dl_tasks;
#endif

	struct mm_struct *mm, *active_mm;

	/* Per-thread vma caching: */
	struct vmacache vmacache;

#if defined(SPLIT_RSS_COUNTING)
	struct task_rss_stat	rss_stat;
#endif
/* task state */
	int exit_state;
	int exit_code, exit_signal;
	int pdeath_signal;  /*  The signal sent when the parent dies  */
	unsigned long jobctl;	/* JOBCTL_*, siglock protected */

	/* Used for emulating ABI behavior of previous Linux versions */
	unsigned int personality;

	/* scheduler bits, serialized by scheduler locks */
	unsigned sched_reset_on_fork:1;
	unsigned sched_contributes_to_load:1;
	unsigned sched_migrated:1;
	unsigned sched_remote_wakeup:1;
	unsigned :0; /* force alignment to the next boundary */

	/* unserialized, strictly 'current' */
	unsigned in_execve:1; /* bit to tell LSMs we're in execve */
	unsigned in_iowait:1;
#if !defined(TIF_RESTORE_SIGMASK)
	unsigned restore_sigmask:1;
#endif
#ifdef CONFIG_MEMCG
	unsigned memcg_may_oom:1;
#ifndef CONFIG_SLOB
	unsigned memcg_kmem_skip_account:1;
#endif
#endif
#ifdef CONFIG_COMPAT_BRK
	unsigned brk_randomized:1;
#endif

	unsigned long atomic_flags; /* Flags needing atomic access. */

	struct restart_block restart_block;

	pid_t pid;
	pid_t tgid;

#ifdef CONFIG_CC_STACKPROTECTOR
	/* Canary value for the -fstack-protector gcc feature */
	unsigned long stack_canary;
#endif
	/*
	 * pointers to (original) parent process, youngest child, younger sibling,
	 * older sibling, respectively.  (p->father can be replaced with
	 * p->real_parent->pid)
	 */
	struct task_struct __rcu *real_parent; /* real parent process */
	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
	/*
	 * children/sibling forms the list of my natural children
	 */
	struct list_head children;	/* list of my children */
	struct list_head sibling;	/* linkage in my parent's children list */
	struct task_struct *group_leader;	/* threadgroup leader */

	/*
	 * ptraced is the list of tasks this task is using ptrace on.
	 * This includes both natural children and PTRACE_ATTACH targets.
	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
	 */
	struct list_head ptraced;
	struct list_head ptrace_entry;

	/* PID/PID hash table linkage. */
	struct pid_link pids[PIDTYPE_MAX];
	struct list_head thread_group;
	struct list_head thread_node;

	struct completion *vfork_done;		/* for vfork() */
	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */

	u64 utime, stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
	u64 utimescaled, stimescaled;
#endif
	u64 gtime;
	struct prev_cputime prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
	seqcount_t vtime_seqcount;
	unsigned long long vtime_snap;
	enum {
		/* Task is sleeping or running in a CPU with VTIME inactive */
		VTIME_INACTIVE = 0,
		/* Task runs in userspace in a CPU with VTIME active */
		VTIME_USER,
		/* Task runs in kernelspace in a CPU with VTIME active */
		VTIME_SYS,
	} vtime_snap_whence;
#endif

#ifdef CONFIG_NO_HZ_FULL
	atomic_t tick_dep_mask;
#endif
	unsigned long nvcsw, nivcsw; /* context switch counts */
	u64 start_time;		/* monotonic time in nsec */
	u64 real_start_time;	/* boot based time in nsec */
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
	unsigned long min_flt, maj_flt;

#ifdef CONFIG_POSIX_TIMERS
	struct task_cputime cputime_expires;
	struct list_head cpu_timers[3];
#endif

/* process credentials */
	const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */
	const struct cred __rcu *real_cred; /* objective and real subjective task
					 * credentials (COW) */
	const struct cred __rcu *cred;	/* effective (overridable) subjective task
					 * credentials (COW) */
	char comm[TASK_COMM_LEN]; /* executable name excluding path
				     - access with [gs]et_task_comm (which lock
				       it with task_lock())
				     - initialized normally by setup_new_exec */
/* file system info */
	struct nameidata *nameidata;
#ifdef CONFIG_SYSVIPC
/* ipc stuff */
	struct sysv_sem sysvsem;
	struct sysv_shm sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
/* hung task detection */
	unsigned long last_switch_count;
#endif
/* filesystem information */
	struct fs_struct *fs;
/* open file information */
	struct files_struct *files;
/* namespaces */
	struct nsproxy *nsproxy;
/* signal handlers */
	struct signal_struct *signal;
	struct sighand_struct *sighand;

	sigset_t blocked, real_blocked;
	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
	struct sigpending pending;

	unsigned long sas_ss_sp;
	size_t sas_ss_size;
	unsigned sas_ss_flags;

	struct callback_head *task_works;

	struct audit_context *audit_context;
#ifdef CONFIG_AUDITSYSCALL
	kuid_t loginuid;
	unsigned int sessionid;
#endif
	struct seccomp seccomp;

/* Thread group tracking */
   	u32 parent_exec_id;
   	u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
 * mempolicy */
	spinlock_t alloc_lock;

	/* Protection of the PI data structures: */
	raw_spinlock_t pi_lock;

	struct wake_q_node wake_q;

#ifdef CONFIG_RT_MUTEXES
	/* PI waiters blocked on a rt_mutex held by this task */
	struct rb_root pi_waiters;
	struct rb_node *pi_waiters_leftmost;
	/* Deadlock detection and priority inheritance handling */
	struct rt_mutex_waiter *pi_blocked_on;
#endif

#ifdef CONFIG_DEBUG_MUTEXES
	/* mutex deadlock detection */
	struct mutex_waiter *blocked_on;
#endif
#ifdef CONFIG_TRACE_IRQFLAGS
	unsigned int irq_events;
	unsigned long hardirq_enable_ip;
	unsigned long hardirq_disable_ip;
	unsigned int hardirq_enable_event;
	unsigned int hardirq_disable_event;
	int hardirqs_enabled;
	int hardirq_context;
	unsigned long softirq_disable_ip;
	unsigned long softirq_enable_ip;
	unsigned int softirq_disable_event;
	unsigned int softirq_enable_event;
	int softirqs_enabled;
	int softirq_context;
#endif
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL
	u64 curr_chain_key;
	int lockdep_depth;
	unsigned int lockdep_recursion;
	struct held_lock held_locks[MAX_LOCK_DEPTH];
	gfp_t lockdep_reclaim_gfp;
#endif
#ifdef CONFIG_UBSAN
	unsigned int in_ubsan;
#endif

/* journalling filesystem info */
	void *journal_info;

/* stacked block device info */
	struct bio_list *bio_list;

#ifdef CONFIG_BLOCK
/* stack plugging */
	struct blk_plug *plug;
#endif

/* VM state */
	struct reclaim_state *reclaim_state;

	struct backing_dev_info *backing_dev_info;

	struct io_context *io_context;

	unsigned long ptrace_message;
	siginfo_t *last_siginfo; /* For ptrace use.  */
	struct task_io_accounting ioac;
#if defined(CONFIG_TASK_XACCT)
	u64 acct_rss_mem1;	/* accumulated rss usage */
	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
	u64 acct_timexpd;	/* stime + utime since last update */
#endif
#ifdef CONFIG_CPUSETS
	nodemask_t mems_allowed;	/* Protected by alloc_lock */
	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
	int cpuset_mem_spread_rotor;
	int cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
	/* Control Group info protected by css_set_lock */
	struct css_set __rcu *cgroups;
	/* cg_list protected by css_set_lock and tsk->alloc_lock */
	struct list_head cg_list;
#endif
#ifdef CONFIG_INTEL_RDT_A
	int closid;
#endif
#ifdef CONFIG_FUTEX
	struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
	struct compat_robust_list_head __user *compat_robust_list;
#endif
	struct list_head pi_state_list;
	struct futex_pi_state *pi_state_cache;
#endif
#ifdef CONFIG_PERF_EVENTS
	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
	struct mutex perf_event_mutex;
	struct list_head perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
	unsigned long preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
	short il_next;
	short pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
	int numa_scan_seq;
	unsigned int numa_scan_period;
	unsigned int numa_scan_period_max;
	int numa_preferred_nid;
	unsigned long numa_migrate_retry;
	u64 node_stamp;			/* migration stamp  */
	u64 last_task_numa_placement;
	u64 last_sum_exec_runtime;
	struct callback_head numa_work;

	struct list_head numa_entry;
	struct numa_group *numa_group;

	/*
	 * numa_faults is an array split into four regions:
	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
	 * in this precise order.
	 *
	 * faults_memory: Exponential decaying average of faults on a per-node
	 * basis. Scheduling placement decisions are made based on these
	 * counts. The values remain static for the duration of a PTE scan.
	 * faults_cpu: Track the nodes the process was running on when a NUMA
	 * hinting fault was incurred.
	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
	 * during the current scan window. When the scan completes, the counts
	 * in faults_memory and faults_cpu decay and these values are copied.
	 */
	unsigned long *numa_faults;
	unsigned long total_numa_faults;

	/*
	 * numa_faults_locality tracks if faults recorded during the last
	 * scan window were remote/local or failed to migrate. The task scan
	 * period is adapted based on the locality of the faults with different
	 * weights depending on whether they were shared or private faults
	 */
	unsigned long numa_faults_locality[3];

	unsigned long numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */

#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
	struct tlbflush_unmap_batch tlb_ubc;
#endif

	struct rcu_head rcu;

	/*
	 * cache last used pipe for splice
	 */
	struct pipe_inode_info *splice_pipe;

	struct page_frag task_frag;

#ifdef CONFIG_TASK_DELAY_ACCT
	struct task_delay_info		*delays;
#endif

#ifdef CONFIG_FAULT_INJECTION
	int make_it_fail;
#endif
	/*
	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
	 * balance_dirty_pages() for some dirty throttling pause
	 */
	int nr_dirtied;
	int nr_dirtied_pause;
	unsigned long dirty_paused_when; /* start of a write-and-pause period */

#ifdef CONFIG_LATENCYTOP
	int latency_record_count;
	struct latency_record latency_record[LT_SAVECOUNT];
#endif
	/*
	 * time slack values; these are used to round up poll() and
	 * select() etc timeout values. These are in nanoseconds.
	 */
	u64 timer_slack_ns;
	u64 default_timer_slack_ns;

#ifdef CONFIG_KASAN
	unsigned int kasan_depth;
#endif
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	/* Index of current stored address in ret_stack */
	int curr_ret_stack;
	/* Stack of return addresses for return function tracing */
	struct ftrace_ret_stack	*ret_stack;
	/* time stamp for last schedule */
	unsigned long long ftrace_timestamp;
	/*
	 * Number of functions that haven't been traced
	 * because of depth overrun.
	 */
	atomic_t trace_overrun;
	/* Pause for the tracing */
	atomic_t tracing_graph_pause;
#endif
#ifdef CONFIG_TRACING
	/* state flags for use by tracers */
	unsigned long trace;
	/* bitmask and counter of trace recursion */
	unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
#ifdef CONFIG_KCOV
	/* Coverage collection mode enabled for this task (0 if disabled). */
	enum kcov_mode kcov_mode;
	/* Size of the kcov_area. */
	unsigned	kcov_size;
	/* Buffer for coverage collection. */
	void		*kcov_area;
	/* kcov desciptor wired with this task or NULL. */
	struct kcov	*kcov;
#endif
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg_in_oom;
	gfp_t memcg_oom_gfp_mask;
	int memcg_oom_order;

	/* number of pages to reclaim on returning to userland */
	unsigned int memcg_nr_pages_over_high;
#endif
#ifdef CONFIG_UPROBES
	struct uprobe_task *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
	unsigned int	sequential_io;
	unsigned int	sequential_io_avg;
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
	unsigned long	task_state_change;
#endif
	int pagefault_disabled;
#ifdef CONFIG_MMU
	struct task_struct *oom_reaper_list;
#endif
#ifdef CONFIG_VMAP_STACK
	struct vm_struct *stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
	/* A live task holds one reference. */
	atomic_t stack_refcount;
#endif
/* CPU-specific state of this task */
	struct thread_struct thread;
/*
 * WARNING: on x86, 'thread_struct' contains a variable-sized
 * structure.  It *MUST* be at the end of 'task_struct'.
 *
 * Do not put anything below here!
 */
};

#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
extern int arch_task_struct_size __read_mostly;
#else
# define arch_task_struct_size (sizeof(struct task_struct))
#endif

#ifdef CONFIG_VMAP_STACK
static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
{
	return t->stack_vm_area;
}
#else
static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t)
{
	return NULL;
}
#endif

static inline struct pid *task_pid(struct task_struct *task)
{
	return task->pids[PIDTYPE_PID].pid;
}

static inline struct pid *task_tgid(struct task_struct *task)
{
	return task->group_leader->pids[PIDTYPE_PID].pid;
}

/*
 * Without tasklist or rcu lock it is not safe to dereference
 * the result of task_pgrp/task_session even if task == current,
 * we can race with another thread doing sys_setsid/sys_setpgid.
 */
static inline struct pid *task_pgrp(struct task_struct *task)
{
	return task->group_leader->pids[PIDTYPE_PGID].pid;
}

static inline struct pid *task_session(struct task_struct *task)
{
	return task->group_leader->pids[PIDTYPE_SID].pid;
}

struct pid_namespace;

/*
 * the helpers to get the task's different pids as they are seen
 * from various namespaces
 *
 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
 *                     current.
 * task_xid_nr_ns()  : id seen from the ns specified;
 *
 * set_task_vxid()   : assigns a virtual id to a task;
 *
 * see also pid_nr() etc in include/linux/pid.h
 */
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
			struct pid_namespace *ns);

static inline pid_t task_pid_nr(struct task_struct *tsk)
{
	return tsk->pid;
}

static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
					struct pid_namespace *ns)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
}

static inline pid_t task_pid_vnr(struct task_struct *tsk)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
}


static inline pid_t task_tgid_nr(struct task_struct *tsk)
{
	return tsk->tgid;
}

pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
	return pid_vnr(task_tgid(tsk));
}


static inline int pid_alive(const struct task_struct *p);
static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
{
	pid_t pid = 0;

	rcu_read_lock();
	if (pid_alive(tsk))
		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
	rcu_read_unlock();

	return pid;
}

static inline pid_t task_ppid_nr(const struct task_struct *tsk)
{
	return task_ppid_nr_ns(tsk, &init_pid_ns);
}

static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
					struct pid_namespace *ns)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
}

static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
}


static inline pid_t task_session_nr_ns(struct task_struct *tsk,
					struct pid_namespace *ns)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
}

static inline pid_t task_session_vnr(struct task_struct *tsk)
{
	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
}

/* obsolete, do not use */
static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
	return task_pgrp_nr_ns(tsk, &init_pid_ns);
}

/**
 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 *
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
 *
 * Return: 1 if the process is alive. 0 otherwise.
 */
static inline int pid_alive(const struct task_struct *p)
{
	return p->pids[PIDTYPE_PID].pid != NULL;
}

/**
 * is_global_init - check if a task structure is init. Since init
 * is free to have sub-threads we need to check tgid.
 * @tsk: Task structure to be checked.
 *
 * Check if a task structure is the first user space task the kernel created.
 *
 * Return: 1 if the task structure is init. 0 otherwise.
 */
static inline int is_global_init(struct task_struct *tsk)
{
	return task_tgid_nr(tsk) == 1;
}

extern struct pid *cad_pid;

extern void free_task(struct task_struct *tsk);
#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)

extern void __put_task_struct(struct task_struct *t);

static inline void put_task_struct(struct task_struct *t)
{
	if (atomic_dec_and_test(&t->usage))
		__put_task_struct(t);
}

struct task_struct *task_rcu_dereference(struct task_struct **ptask);
struct task_struct *try_get_task_struct(struct task_struct **ptask);

#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
extern void task_cputime(struct task_struct *t,
			 u64 *utime, u64 *stime);
extern u64 task_gtime(struct task_struct *t);
#else
static inline void task_cputime(struct task_struct *t,
				u64 *utime, u64 *stime)
{
	*utime = t->utime;
	*stime = t->stime;
}

static inline u64 task_gtime(struct task_struct *t)
{
	return t->gtime;
}
#endif

#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
static inline void task_cputime_scaled(struct task_struct *t,
				       u64 *utimescaled,
				       u64 *stimescaled)
{
	*utimescaled = t->utimescaled;
	*stimescaled = t->stimescaled;
}
#else
static inline void task_cputime_scaled(struct task_struct *t,
				       u64 *utimescaled,
				       u64 *stimescaled)
{
	task_cputime(t, utimescaled, stimescaled);
}
#endif

extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);
extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st);

/*
 * Per process flags
 */
#define PF_IDLE		0x00000002	/* I am an IDLE thread */
#define PF_EXITING	0x00000004	/* getting shut down */
#define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
#define PF_VCPU		0x00000010	/* I'm a virtual CPU */
#define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
#define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
#define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
#define PF_DUMPCORE	0x00000200	/* dumped core */
#define PF_SIGNALED	0x00000400	/* killed by a signal */
#define PF_MEMALLOC	0x00000800	/* Allocating memory */
#define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
#define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
#define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
#define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
#define PF_FROZEN	0x00010000	/* frozen for system suspend */
#define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
#define PF_KSWAPD	0x00040000	/* I am kswapd */
#define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
#define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
#define PF_KTHREAD	0x00200000	/* I am a kernel thread */
#define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
#define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
#define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
#define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
#define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
#define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */

/*
 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
 */
#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
#define clear_used_math() clear_stopped_child_used_math(current)
#define set_used_math() set_stopped_child_used_math(current)
#define conditional_stopped_child_used_math(condition, child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
#define conditional_used_math(condition) \
	conditional_stopped_child_used_math(condition, current)
#define copy_to_stopped_child_used_math(child) \
	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)

/* Per-process atomic flags. */
#define PFA_NO_NEW_PRIVS 0	/* May not gain new privileges. */
#define PFA_SPREAD_PAGE  1      /* Spread page cache over cpuset */
#define PFA_SPREAD_SLAB  2      /* Spread some slab caches over cpuset */
#define PFA_LMK_WAITING  3      /* Lowmemorykiller is waiting */


#define TASK_PFA_TEST(name, func)					\
	static inline bool task_##func(struct task_struct *p)		\
	{ return test_bit(PFA_##name, &p->atomic_flags); }
#define TASK_PFA_SET(name, func)					\
	static inline void task_set_##func(struct task_struct *p)	\
	{ set_bit(PFA_##name, &p->atomic_flags); }
#define TASK_PFA_CLEAR(name, func)					\
	static inline void task_clear_##func(struct task_struct *p)	\
	{ clear_bit(PFA_##name, &p->atomic_flags); }

TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)

TASK_PFA_TEST(SPREAD_PAGE, spread_page)
TASK_PFA_SET(SPREAD_PAGE, spread_page)
TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)

TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
TASK_PFA_SET(SPREAD_SLAB, spread_slab)
TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)

TASK_PFA_TEST(LMK_WAITING, lmk_waiting)
TASK_PFA_SET(LMK_WAITING, lmk_waiting)

static inline void rcu_copy_process(struct task_struct *p)
{
#ifdef CONFIG_PREEMPT_RCU
	p->rcu_read_lock_nesting = 0;
	p->rcu_read_unlock_special.s = 0;
	p->rcu_blocked_node = NULL;
	INIT_LIST_HEAD(&p->rcu_node_entry);
#endif /* #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_TASKS_RCU
	p->rcu_tasks_holdout = false;
	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
	p->rcu_tasks_idle_cpu = -1;
#endif /* #ifdef CONFIG_TASKS_RCU */
}

static inline void tsk_restore_flags(struct task_struct *task,
				unsigned long orig_flags, unsigned long flags)
{
	task->flags &= ~flags;
	task->flags |= orig_flags & flags;
}

extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
				     const struct cpumask *trial);
extern int task_can_attach(struct task_struct *p,
			   const struct cpumask *cs_cpus_allowed);
#ifdef CONFIG_SMP
extern void do_set_cpus_allowed(struct task_struct *p,
			       const struct cpumask *new_mask);

extern int set_cpus_allowed_ptr(struct task_struct *p,
				const struct cpumask *new_mask);
#else
static inline void do_set_cpus_allowed(struct task_struct *p,
				      const struct cpumask *new_mask)
{
}
static inline int set_cpus_allowed_ptr(struct task_struct *p,
				       const struct cpumask *new_mask)
{
	if (!cpumask_test_cpu(0, new_mask))
		return -EINVAL;
	return 0;
}
#endif

#ifndef cpu_relax_yield
#define cpu_relax_yield() cpu_relax()
#endif

extern unsigned long long
task_sched_runtime(struct task_struct *task);

/* sched_exec is called by processes performing an exec */
#ifdef CONFIG_SMP
extern void sched_exec(void);
#else
#define sched_exec()   {}
#endif

#ifdef CONFIG_HOTPLUG_CPU
extern void idle_task_exit(void);
#else
static inline void idle_task_exit(void) {}
#endif

extern int yield_to(struct task_struct *p, bool preempt);
extern void set_user_nice(struct task_struct *p, long nice);
extern int task_prio(const struct task_struct *p);
/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 *
 * Return: The nice value [ -20 ... 0 ... 19 ].
 */
static inline int task_nice(const struct task_struct *p)
{
	return PRIO_TO_NICE((p)->static_prio);
}
extern int can_nice(const struct task_struct *p, const int nice);
extern int task_curr(const struct task_struct *p);
extern int idle_cpu(int cpu);
extern int sched_setscheduler(struct task_struct *, int,
			      const struct sched_param *);
extern int sched_setscheduler_nocheck(struct task_struct *, int,
				      const struct sched_param *);
extern int sched_setattr(struct task_struct *,
			 const struct sched_attr *);
extern struct task_struct *idle_task(int cpu);
/**
 * is_idle_task - is the specified task an idle task?
 * @p: the task in question.
 *
 * Return: 1 if @p is an idle task. 0 otherwise.
 */
static inline bool is_idle_task(const struct task_struct *p)
{
	return !!(p->flags & PF_IDLE);
}
extern struct task_struct *curr_task(int cpu);
extern void ia64_set_curr_task(int cpu, struct task_struct *p);

void yield(void);

union thread_union {
#ifndef CONFIG_THREAD_INFO_IN_TASK
	struct thread_info thread_info;
#endif
	unsigned long stack[THREAD_SIZE/sizeof(long)];
};

#ifndef __HAVE_ARCH_KSTACK_END
static inline int kstack_end(void *addr)
{
	/* Reliable end of stack detection:
	 * Some APM bios versions misalign the stack
	 */
	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
}
#endif

extern union thread_union init_thread_union;
extern struct task_struct init_task;

extern struct pid_namespace init_pid_ns;

/*
 * find a task by one of its numerical ids
 *
 * find_task_by_pid_ns():
 *      finds a task by its pid in the specified namespace
 * find_task_by_vpid():
 *      finds a task by its virtual pid
 *
 * see also find_vpid() etc in include/linux/pid.h
 */

extern struct task_struct *find_task_by_vpid(pid_t nr);
extern struct task_struct *find_task_by_pid_ns(pid_t nr,
		struct pid_namespace *ns);

extern int wake_up_state(struct task_struct *tsk, unsigned int state);
extern int wake_up_process(struct task_struct *tsk);
extern void wake_up_new_task(struct task_struct *tsk);
#ifdef CONFIG_SMP
 extern void kick_process(struct task_struct *tsk);
#else
 static inline void kick_process(struct task_struct *tsk) { }
#endif
extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
extern void sched_dead(struct task_struct *p);

extern void proc_caches_init(void);

extern void release_task(struct task_struct * p);

#ifdef CONFIG_HAVE_COPY_THREAD_TLS
extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
			struct task_struct *, unsigned long);
#else
extern int copy_thread(unsigned long, unsigned long, unsigned long,
			struct task_struct *);

/* Architectures that haven't opted into copy_thread_tls get the tls argument
 * via pt_regs, so ignore the tls argument passed via C. */
static inline int copy_thread_tls(
		unsigned long clone_flags, unsigned long sp, unsigned long arg,
		struct task_struct *p, unsigned long tls)
{
	return copy_thread(clone_flags, sp, arg, p);
}
#endif
extern void flush_thread(void);

#ifdef CONFIG_HAVE_EXIT_THREAD
extern void exit_thread(struct task_struct *tsk);
#else
static inline void exit_thread(struct task_struct *tsk)
{
}
#endif

extern void exit_files(struct task_struct *);

extern void exit_itimers(struct signal_struct *);

extern void do_group_exit(int);

extern int do_execve(struct filename *,
		     const char __user * const __user *,
		     const char __user * const __user *);
extern int do_execveat(int, struct filename *,
		       const char __user * const __user *,
		       const char __user * const __user *,
		       int);
extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
struct task_struct *fork_idle(int);
extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);

extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
static inline void set_task_comm(struct task_struct *tsk, const char *from)
{
	__set_task_comm(tsk, from, false);
}
extern char *get_task_comm(char *to, struct task_struct *tsk);

#ifdef CONFIG_SMP
void scheduler_ipi(void);
extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
#else
static inline void scheduler_ipi(void) { }
static inline unsigned long wait_task_inactive(struct task_struct *p,
					       long match_state)
{
	return 1;
}
#endif

/*
 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
 * pins the final release of task.io_context.  Also protects ->cpuset and
 * ->cgroup.subsys[]. And ->vfork_done.
 *
 * Nests both inside and outside of read_lock(&tasklist_lock).
 * It must not be nested with write_lock_irq(&tasklist_lock),
 * neither inside nor outside.
 */
static inline void task_lock(struct task_struct *p)
{
	spin_lock(&p->alloc_lock);
}

static inline void task_unlock(struct task_struct *p)
{
	spin_unlock(&p->alloc_lock);
}

#ifdef CONFIG_THREAD_INFO_IN_TASK

static inline struct thread_info *task_thread_info(struct task_struct *task)
{
	return &task->thread_info;
}

/*
 * When accessing the stack of a non-current task that might exit, use
 * try_get_task_stack() instead.  task_stack_page will return a pointer
 * that could get freed out from under you.
 */
static inline void *task_stack_page(const struct task_struct *task)
{
	return task->stack;
}

#define setup_thread_stack(new,old)	do { } while(0)

static inline unsigned long *end_of_stack(const struct task_struct *task)
{
	return task->stack;
}

#elif !defined(__HAVE_THREAD_FUNCTIONS)

#define task_thread_info(task)	((struct thread_info *)(task)->stack)
#define task_stack_page(task)	((void *)(task)->stack)

static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
{
	*task_thread_info(p) = *task_thread_info(org);
	task_thread_info(p)->task = p;
}

/*
 * Return the address of the last usable long on the stack.
 *
 * When the stack grows down, this is just above the thread
 * info struct. Going any lower will corrupt the threadinfo.
 *
 * When the stack grows up, this is the highest address.
 * Beyond that position, we corrupt data on the next page.
 */
static inline unsigned long *end_of_stack(struct task_struct *p)
{
#ifdef CONFIG_STACK_GROWSUP
	return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
#else
	return (unsigned long *)(task_thread_info(p) + 1);
#endif
}

#endif

#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline void *try_get_task_stack(struct task_struct *tsk)
{
	return atomic_inc_not_zero(&tsk->stack_refcount) ?
		task_stack_page(tsk) : NULL;
}

extern void put_task_stack(struct task_struct *tsk);
#else
static inline void *try_get_task_stack(struct task_struct *tsk)
{
	return task_stack_page(tsk);
}

static inline void put_task_stack(struct task_struct *tsk) {}
#endif

#define task_stack_end_corrupted(task) \
		(*(end_of_stack(task)) != STACK_END_MAGIC)

static inline int object_is_on_stack(void *obj)
{
	void *stack = task_stack_page(current);

	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
}

extern void thread_stack_cache_init(void);

#ifdef CONFIG_DEBUG_STACK_USAGE
static inline unsigned long stack_not_used(struct task_struct *p)
{
	unsigned long *n = end_of_stack(p);

	do { 	/* Skip over canary */
# ifdef CONFIG_STACK_GROWSUP
		n--;
# else
		n++;
# endif
	} while (!*n);

# ifdef CONFIG_STACK_GROWSUP
	return (unsigned long)end_of_stack(p) - (unsigned long)n;
# else
	return (unsigned long)n - (unsigned long)end_of_stack(p);
# endif
}
#endif
extern void set_task_stack_end_magic(struct task_struct *tsk);

/* set thread flags in other task's structures
 * - see asm/thread_info.h for TIF_xxxx flags available
 */
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	set_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	clear_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
{
	return test_ti_thread_flag(task_thread_info(tsk), flag);
}

static inline void set_tsk_need_resched(struct task_struct *tsk)
{
	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline void clear_tsk_need_resched(struct task_struct *tsk)
{
	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
}

static inline int test_tsk_need_resched(struct task_struct *tsk)
{
	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
}

/*
 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 * cond_resched_softirq() will enable bhs before scheduling.
 */
#ifndef CONFIG_PREEMPT
extern int _cond_resched(void);
#else
static inline int _cond_resched(void) { return 0; }
#endif

#define cond_resched() ({			\
	___might_sleep(__FILE__, __LINE__, 0);	\
	_cond_resched();			\
})

extern int __cond_resched_lock(spinlock_t *lock);

#define cond_resched_lock(lock) ({				\
	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
	__cond_resched_lock(lock);				\
})

extern int __cond_resched_softirq(void);

#define cond_resched_softirq() ({					\
	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
	__cond_resched_softirq();					\
})

static inline void cond_resched_rcu(void)
{
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
	rcu_read_unlock();
	cond_resched();
	rcu_read_lock();
#endif
}

/*
 * Does a critical section need to be broken due to another
 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
 * but a general need for low latency)
 */
static inline int spin_needbreak(spinlock_t *lock)
{
#ifdef CONFIG_PREEMPT
	return spin_is_contended(lock);
#else
	return 0;
#endif
}

static __always_inline bool need_resched(void)
{
	return unlikely(tif_need_resched());
}

/*
 * Thread group CPU time accounting.
 */
void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);

/*
 * Wrappers for p->thread_info->cpu access. No-op on UP.
 */
#ifdef CONFIG_SMP

static inline unsigned int task_cpu(const struct task_struct *p)
{
#ifdef CONFIG_THREAD_INFO_IN_TASK
	return p->cpu;
#else
	return task_thread_info(p)->cpu;
#endif
}

static inline int task_node(const struct task_struct *p)
{
	return cpu_to_node(task_cpu(p));
}

extern void set_task_cpu(struct task_struct *p, unsigned int cpu);

#else

static inline unsigned int task_cpu(const struct task_struct *p)
{
	return 0;
}

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
{
}

#endif /* CONFIG_SMP */

/*
 * In order to reduce various lock holder preemption latencies provide an
 * interface to see if a vCPU is currently running or not.
 *
 * This allows us to terminate optimistic spin loops and block, analogous to
 * the native optimistic spin heuristic of testing if the lock owner task is
 * running or not.
 */
#ifndef vcpu_is_preempted
# define vcpu_is_preempted(cpu)	false
#endif

extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
extern long sched_getaffinity(pid_t pid, struct cpumask *mask);

#ifdef CONFIG_CGROUP_SCHED
extern struct task_group root_task_group;
#endif /* CONFIG_CGROUP_SCHED */

extern int task_can_switch_user(struct user_struct *up,
					struct task_struct *tsk);

#ifndef TASK_SIZE_OF
#define TASK_SIZE_OF(tsk)	TASK_SIZE
#endif

#endif