1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_JIFFIES_H
#define _LINUX_JIFFIES_H
#include <linux/cache.h>
#include <linux/math64.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <asm/param.h> /* for HZ */
#include <generated/timeconst.h>
/*
* The following defines establish the engineering parameters of the PLL
* model. The HZ variable establishes the timer interrupt frequency, 100 Hz
* for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
* OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
* nearest power of two in order to avoid hardware multiply operations.
*/
#if HZ >= 12 && HZ < 24
# define SHIFT_HZ 4
#elif HZ >= 24 && HZ < 48
# define SHIFT_HZ 5
#elif HZ >= 48 && HZ < 96
# define SHIFT_HZ 6
#elif HZ >= 96 && HZ < 192
# define SHIFT_HZ 7
#elif HZ >= 192 && HZ < 384
# define SHIFT_HZ 8
#elif HZ >= 384 && HZ < 768
# define SHIFT_HZ 9
#elif HZ >= 768 && HZ < 1536
# define SHIFT_HZ 10
#elif HZ >= 1536 && HZ < 3072
# define SHIFT_HZ 11
#elif HZ >= 3072 && HZ < 6144
# define SHIFT_HZ 12
#elif HZ >= 6144 && HZ < 12288
# define SHIFT_HZ 13
#else
# error Invalid value of HZ.
#endif
/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
* improve accuracy by shifting LSH bits, hence calculating:
* (NOM << LSH) / DEN
* This however means trouble for large NOM, because (NOM << LSH) may no
* longer fit in 32 bits. The following way of calculating this gives us
* some slack, under the following conditions:
* - (NOM / DEN) fits in (32 - LSH) bits.
* - (NOM % DEN) fits in (32 - LSH) bits.
*/
#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
+ ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
/* LATCH is used in the interval timer and ftape setup. */
#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */
extern int register_refined_jiffies(long clock_tick_rate);
/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
/* TICK_USEC is the time between ticks in usec assuming SHIFTED_HZ */
#define TICK_USEC ((USEC_PER_SEC + HZ/2) / HZ)
/* USER_TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
#define USER_TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
#ifndef __jiffy_arch_data
#define __jiffy_arch_data
#endif
/*
* The 64-bit value is not atomic - you MUST NOT read it
* without sampling the sequence number in jiffies_lock.
* get_jiffies_64() will do this for you as appropriate.
*/
extern u64 __cacheline_aligned_in_smp jiffies_64;
extern unsigned long volatile __cacheline_aligned_in_smp __jiffy_arch_data jiffies;
#if (BITS_PER_LONG < 64)
u64 get_jiffies_64(void);
#else
static inline u64 get_jiffies_64(void)
{
return (u64)jiffies;
}
#endif
/*
* These inlines deal with timer wrapping correctly. You are
* strongly encouraged to use them
* 1. Because people otherwise forget
* 2. Because if the timer wrap changes in future you won't have to
* alter your driver code.
*
* time_after(a,b) returns true if the time a is after time b.
*
* Do this with "<0" and ">=0" to only test the sign of the result. A
* good compiler would generate better code (and a really good compiler
* wouldn't care). Gcc is currently neither.
*/
#define time_after(a,b) \
(typecheck(unsigned long, a) && \
typecheck(unsigned long, b) && \
((long)((b) - (a)) < 0))
#define time_before(a,b) time_after(b,a)
#define time_after_eq(a,b) \
(typecheck(unsigned long, a) && \
typecheck(unsigned long, b) && \
((long)((a) - (b)) >= 0))
#define time_before_eq(a,b) time_after_eq(b,a)
/*
* Calculate whether a is in the range of [b, c].
*/
#define time_in_range(a,b,c) \
(time_after_eq(a,b) && \
time_before_eq(a,c))
/*
* Calculate whether a is in the range of [b, c).
*/
#define time_in_range_open(a,b,c) \
(time_after_eq(a,b) && \
time_before(a,c))
/* Same as above, but does so with platform independent 64bit types.
* These must be used when utilizing jiffies_64 (i.e. return value of
* get_jiffies_64() */
#define time_after64(a,b) \
(typecheck(__u64, a) && \
typecheck(__u64, b) && \
((__s64)((b) - (a)) < 0))
#define time_before64(a,b) time_after64(b,a)
#define time_after_eq64(a,b) \
(typecheck(__u64, a) && \
typecheck(__u64, b) && \
((__s64)((a) - (b)) >= 0))
#define time_before_eq64(a,b) time_after_eq64(b,a)
#define time_in_range64(a, b, c) \
(time_after_eq64(a, b) && \
time_before_eq64(a, c))
/*
* These four macros compare jiffies and 'a' for convenience.
*/
/* time_is_before_jiffies(a) return true if a is before jiffies */
#define time_is_before_jiffies(a) time_after(jiffies, a)
#define time_is_before_jiffies64(a) time_after64(get_jiffies_64(), a)
/* time_is_after_jiffies(a) return true if a is after jiffies */
#define time_is_after_jiffies(a) time_before(jiffies, a)
#define time_is_after_jiffies64(a) time_before64(get_jiffies_64(), a)
/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
#define time_is_before_eq_jiffies64(a) time_after_eq64(get_jiffies_64(), a)
/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
#define time_is_after_eq_jiffies64(a) time_before_eq64(get_jiffies_64(), a)
/*
* Have the 32 bit jiffies value wrap 5 minutes after boot
* so jiffies wrap bugs show up earlier.
*/
#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
/*
* Change timeval to jiffies, trying to avoid the
* most obvious overflows..
*
* And some not so obvious.
*
* Note that we don't want to return LONG_MAX, because
* for various timeout reasons we often end up having
* to wait "jiffies+1" in order to guarantee that we wait
* at _least_ "jiffies" - so "jiffies+1" had better still
* be positive.
*/
#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
extern unsigned long preset_lpj;
/*
* We want to do realistic conversions of time so we need to use the same
* values the update wall clock code uses as the jiffies size. This value
* is: TICK_NSEC (which is defined in timex.h). This
* is a constant and is in nanoseconds. We will use scaled math
* with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and
* NSEC_JIFFIE_SC. Note that these defines contain nothing but
* constants and so are computed at compile time. SHIFT_HZ (computed in
* timex.h) adjusts the scaling for different HZ values.
* Scaled math??? What is that?
*
* Scaled math is a way to do integer math on values that would,
* otherwise, either overflow, underflow, or cause undesired div
* instructions to appear in the execution path. In short, we "scale"
* up the operands so they take more bits (more precision, less
* underflow), do the desired operation and then "scale" the result back
* by the same amount. If we do the scaling by shifting we avoid the
* costly mpy and the dastardly div instructions.
* Suppose, for example, we want to convert from seconds to jiffies
* where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The
* simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
* observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
* might calculate at compile time, however, the result will only have
* about 3-4 bits of precision (less for smaller values of HZ).
*
* So, we scale as follows:
* jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
* jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
* Then we make SCALE a power of two so:
* jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
* Now we define:
* #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
* jiff = (sec * SEC_CONV) >> SCALE;
*
* Often the math we use will expand beyond 32-bits so we tell C how to
* do this and pass the 64-bit result of the mpy through the ">> SCALE"
* which should take the result back to 32-bits. We want this expansion
* to capture as much precision as possible. At the same time we don't
* want to overflow so we pick the SCALE to avoid this. In this file,
* that means using a different scale for each range of HZ values (as
* defined in timex.h).
*
* For those who want to know, gcc will give a 64-bit result from a "*"
* operator if the result is a long long AND at least one of the
* operands is cast to long long (usually just prior to the "*" so as
* not to confuse it into thinking it really has a 64-bit operand,
* which, buy the way, it can do, but it takes more code and at least 2
* mpys).
* We also need to be aware that one second in nanoseconds is only a
* couple of bits away from overflowing a 32-bit word, so we MUST use
* 64-bits to get the full range time in nanoseconds.
*/
/*
* Here are the scales we will use. One for seconds, nanoseconds and
* microseconds.
*
* Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
* check if the sign bit is set. If not, we bump the shift count by 1.
* (Gets an extra bit of precision where we can use it.)
* We know it is set for HZ = 1024 and HZ = 100 not for 1000.
* Haven't tested others.
* Limits of cpp (for #if expressions) only long (no long long), but
* then we only need the most signicant bit.
*/
#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
#undef SEC_JIFFIE_SC
#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
#endif
#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
TICK_NSEC -1) / (u64)TICK_NSEC))
#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
TICK_NSEC -1) / (u64)TICK_NSEC))
/*
* The maximum jiffie value is (MAX_INT >> 1). Here we translate that
* into seconds. The 64-bit case will overflow if we are not careful,
* so use the messy SH_DIV macro to do it. Still all constants.
*/
#if BITS_PER_LONG < 64
# define MAX_SEC_IN_JIFFIES \
(long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
#else /* take care of overflow on 64 bits machines */
# define MAX_SEC_IN_JIFFIES \
(SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
#endif
/*
* Convert various time units to each other:
*/
extern unsigned int jiffies_to_msecs(const unsigned long j);
extern unsigned int jiffies_to_usecs(const unsigned long j);
static inline u64 jiffies_to_nsecs(const unsigned long j)
{
return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
}
extern u64 jiffies64_to_nsecs(u64 j);
extern u64 jiffies64_to_msecs(u64 j);
extern unsigned long __msecs_to_jiffies(const unsigned int m);
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
/*
* HZ is equal to or smaller than 1000, and 1000 is a nice round
* multiple of HZ, divide with the factor between them, but round
* upwards:
*/
static inline unsigned long _msecs_to_jiffies(const unsigned int m)
{
return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
}
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
/*
* HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
* simply multiply with the factor between them.
*
* But first make sure the multiplication result cannot overflow:
*/
static inline unsigned long _msecs_to_jiffies(const unsigned int m)
{
if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
return MAX_JIFFY_OFFSET;
return m * (HZ / MSEC_PER_SEC);
}
#else
/*
* Generic case - multiply, round and divide. But first check that if
* we are doing a net multiplication, that we wouldn't overflow:
*/
static inline unsigned long _msecs_to_jiffies(const unsigned int m)
{
if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
return MAX_JIFFY_OFFSET;
return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
}
#endif
/**
* msecs_to_jiffies: - convert milliseconds to jiffies
* @m: time in milliseconds
*
* conversion is done as follows:
*
* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
*
* - 'too large' values [that would result in larger than
* MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
*
* - all other values are converted to jiffies by either multiplying
* the input value by a factor or dividing it with a factor and
* handling any 32-bit overflows.
* for the details see __msecs_to_jiffies()
*
* msecs_to_jiffies() checks for the passed in value being a constant
* via __builtin_constant_p() allowing gcc to eliminate most of the
* code, __msecs_to_jiffies() is called if the value passed does not
* allow constant folding and the actual conversion must be done at
* runtime.
* the HZ range specific helpers _msecs_to_jiffies() are called both
* directly here and from __msecs_to_jiffies() in the case where
* constant folding is not possible.
*/
static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
{
if (__builtin_constant_p(m)) {
if ((int)m < 0)
return MAX_JIFFY_OFFSET;
return _msecs_to_jiffies(m);
} else {
return __msecs_to_jiffies(m);
}
}
extern unsigned long __usecs_to_jiffies(const unsigned int u);
#if !(USEC_PER_SEC % HZ)
static inline unsigned long _usecs_to_jiffies(const unsigned int u)
{
return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
}
#else
static inline unsigned long _usecs_to_jiffies(const unsigned int u)
{
return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
>> USEC_TO_HZ_SHR32;
}
#endif
/**
* usecs_to_jiffies: - convert microseconds to jiffies
* @u: time in microseconds
*
* conversion is done as follows:
*
* - 'too large' values [that would result in larger than
* MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
*
* - all other values are converted to jiffies by either multiplying
* the input value by a factor or dividing it with a factor and
* handling any 32-bit overflows as for msecs_to_jiffies.
*
* usecs_to_jiffies() checks for the passed in value being a constant
* via __builtin_constant_p() allowing gcc to eliminate most of the
* code, __usecs_to_jiffies() is called if the value passed does not
* allow constant folding and the actual conversion must be done at
* runtime.
* the HZ range specific helpers _usecs_to_jiffies() are called both
* directly here and from __msecs_to_jiffies() in the case where
* constant folding is not possible.
*/
static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
{
if (__builtin_constant_p(u)) {
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
return MAX_JIFFY_OFFSET;
return _usecs_to_jiffies(u);
} else {
return __usecs_to_jiffies(u);
}
}
extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
extern void jiffies_to_timespec64(const unsigned long jiffies,
struct timespec64 *value);
extern clock_t jiffies_to_clock_t(unsigned long x);
static inline clock_t jiffies_delta_to_clock_t(long delta)
{
return jiffies_to_clock_t(max(0L, delta));
}
static inline unsigned int jiffies_delta_to_msecs(long delta)
{
return jiffies_to_msecs(max(0L, delta));
}
extern unsigned long clock_t_to_jiffies(unsigned long x);
extern u64 jiffies_64_to_clock_t(u64 x);
extern u64 nsec_to_clock_t(u64 x);
extern u64 nsecs_to_jiffies64(u64 n);
extern unsigned long nsecs_to_jiffies(u64 n);
#define TIMESTAMP_SIZE 30
#endif
|