summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/igb/igb_main.c
blob: bf8ef81f6c0e24441352867c35d17fabdb47c3ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2018 Intel Corporation. */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/netdevice.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <net/pkt_sched.h>
#include <net/pkt_cls.h>
#include <linux/net_tstamp.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/sctp.h>
#include <linux/if_ether.h>
#include <linux/aer.h>
#include <linux/prefetch.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <linux/pm_runtime.h>
#include <linux/etherdevice.h>
#ifdef CONFIG_IGB_DCA
#include <linux/dca.h>
#endif
#include <linux/i2c.h>
#include "igb.h"

enum queue_mode {
	QUEUE_MODE_STRICT_PRIORITY,
	QUEUE_MODE_STREAM_RESERVATION,
};

enum tx_queue_prio {
	TX_QUEUE_PRIO_HIGH,
	TX_QUEUE_PRIO_LOW,
};

char igb_driver_name[] = "igb";
static const char igb_driver_string[] =
				"Intel(R) Gigabit Ethernet Network Driver";
static const char igb_copyright[] =
				"Copyright (c) 2007-2014 Intel Corporation.";

static const struct e1000_info *igb_info_tbl[] = {
	[board_82575] = &e1000_82575_info,
};

static const struct pci_device_id igb_pci_tbl[] = {
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
	/* required last entry */
	{0, }
};

MODULE_DEVICE_TABLE(pci, igb_pci_tbl);

static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
static void igb_setup_mrqc(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void igb_remove(struct pci_dev *pdev);
static int igb_sw_init(struct igb_adapter *);
int igb_open(struct net_device *);
int igb_close(struct net_device *);
static void igb_configure(struct igb_adapter *);
static void igb_configure_tx(struct igb_adapter *);
static void igb_configure_rx(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
static void igb_set_rx_mode(struct net_device *);
static void igb_update_phy_info(struct timer_list *);
static void igb_watchdog(struct timer_list *);
static void igb_watchdog_task(struct work_struct *);
static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
static void igb_get_stats64(struct net_device *dev,
			    struct rtnl_link_stats64 *stats);
static int igb_change_mtu(struct net_device *, int);
static int igb_set_mac(struct net_device *, void *);
static void igb_set_uta(struct igb_adapter *adapter, bool set);
static irqreturn_t igb_intr(int irq, void *);
static irqreturn_t igb_intr_msi(int irq, void *);
static irqreturn_t igb_msix_other(int irq, void *);
static irqreturn_t igb_msix_ring(int irq, void *);
#ifdef CONFIG_IGB_DCA
static void igb_update_dca(struct igb_q_vector *);
static void igb_setup_dca(struct igb_adapter *);
#endif /* CONFIG_IGB_DCA */
static int igb_poll(struct napi_struct *, int);
static bool igb_clean_tx_irq(struct igb_q_vector *, int);
static int igb_clean_rx_irq(struct igb_q_vector *, int);
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
static void igb_reset_task(struct work_struct *);
static void igb_vlan_mode(struct net_device *netdev,
			  netdev_features_t features);
static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
static void igb_restore_vlan(struct igb_adapter *);
static void igb_rar_set_index(struct igb_adapter *, u32);
static void igb_ping_all_vfs(struct igb_adapter *);
static void igb_msg_task(struct igb_adapter *);
static void igb_vmm_control(struct igb_adapter *);
static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
static void igb_flush_mac_table(struct igb_adapter *);
static int igb_available_rars(struct igb_adapter *, u8);
static void igb_set_default_mac_filter(struct igb_adapter *);
static int igb_uc_sync(struct net_device *, const unsigned char *);
static int igb_uc_unsync(struct net_device *, const unsigned char *);
static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
static int igb_ndo_set_vf_vlan(struct net_device *netdev,
			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting);
static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
				bool setting);
static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
				 struct ifla_vf_info *ivi);
static void igb_check_vf_rate_limit(struct igb_adapter *);
static void igb_nfc_filter_exit(struct igb_adapter *adapter);
static void igb_nfc_filter_restore(struct igb_adapter *adapter);

#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf);
static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
static int igb_disable_sriov(struct pci_dev *dev);
static int igb_pci_disable_sriov(struct pci_dev *dev);
#endif

static int igb_suspend(struct device *);
static int igb_resume(struct device *);
static int igb_runtime_suspend(struct device *dev);
static int igb_runtime_resume(struct device *dev);
static int igb_runtime_idle(struct device *dev);
static const struct dev_pm_ops igb_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
			igb_runtime_idle)
};
static void igb_shutdown(struct pci_dev *);
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
#ifdef CONFIG_IGB_DCA
static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
static struct notifier_block dca_notifier = {
	.notifier_call	= igb_notify_dca,
	.next		= NULL,
	.priority	= 0
};
#endif
#ifdef CONFIG_PCI_IOV
static unsigned int max_vfs;
module_param(max_vfs, uint, 0);
MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
#endif /* CONFIG_PCI_IOV */

static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
		     pci_channel_state_t);
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
static void igb_io_resume(struct pci_dev *);

static const struct pci_error_handlers igb_err_handler = {
	.error_detected = igb_io_error_detected,
	.slot_reset = igb_io_slot_reset,
	.resume = igb_io_resume,
};

static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);

static struct pci_driver igb_driver = {
	.name     = igb_driver_name,
	.id_table = igb_pci_tbl,
	.probe    = igb_probe,
	.remove   = igb_remove,
#ifdef CONFIG_PM
	.driver.pm = &igb_pm_ops,
#endif
	.shutdown = igb_shutdown,
	.sriov_configure = igb_pci_sriov_configure,
	.err_handler = &igb_err_handler
};

MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
MODULE_LICENSE("GPL v2");

#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

struct igb_reg_info {
	u32 ofs;
	char *name;
};

static const struct igb_reg_info igb_reg_info_tbl[] = {

	/* General Registers */
	{E1000_CTRL, "CTRL"},
	{E1000_STATUS, "STATUS"},
	{E1000_CTRL_EXT, "CTRL_EXT"},

	/* Interrupt Registers */
	{E1000_ICR, "ICR"},

	/* RX Registers */
	{E1000_RCTL, "RCTL"},
	{E1000_RDLEN(0), "RDLEN"},
	{E1000_RDH(0), "RDH"},
	{E1000_RDT(0), "RDT"},
	{E1000_RXDCTL(0), "RXDCTL"},
	{E1000_RDBAL(0), "RDBAL"},
	{E1000_RDBAH(0), "RDBAH"},

	/* TX Registers */
	{E1000_TCTL, "TCTL"},
	{E1000_TDBAL(0), "TDBAL"},
	{E1000_TDBAH(0), "TDBAH"},
	{E1000_TDLEN(0), "TDLEN"},
	{E1000_TDH(0), "TDH"},
	{E1000_TDT(0), "TDT"},
	{E1000_TXDCTL(0), "TXDCTL"},
	{E1000_TDFH, "TDFH"},
	{E1000_TDFT, "TDFT"},
	{E1000_TDFHS, "TDFHS"},
	{E1000_TDFPC, "TDFPC"},

	/* List Terminator */
	{}
};

/* igb_regdump - register printout routine */
static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
{
	int n = 0;
	char rname[16];
	u32 regs[8];

	switch (reginfo->ofs) {
	case E1000_RDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDLEN(n));
		break;
	case E1000_RDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDH(n));
		break;
	case E1000_RDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDT(n));
		break;
	case E1000_RXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RXDCTL(n));
		break;
	case E1000_RDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAL(n));
		break;
	case E1000_RDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_RDBAH(n));
		break;
	case E1000_TDBAL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAL(n));
		break;
	case E1000_TDBAH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDBAH(n));
		break;
	case E1000_TDLEN(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDLEN(n));
		break;
	case E1000_TDH(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDH(n));
		break;
	case E1000_TDT(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TDT(n));
		break;
	case E1000_TXDCTL(0):
		for (n = 0; n < 4; n++)
			regs[n] = rd32(E1000_TXDCTL(n));
		break;
	default:
		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
		return;
	}

	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
		regs[2], regs[3]);
}

/* igb_dump - Print registers, Tx-rings and Rx-rings */
static void igb_dump(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_reg_info *reginfo;
	struct igb_ring *tx_ring;
	union e1000_adv_tx_desc *tx_desc;
	struct my_u0 { __le64 a; __le64 b; } *u0;
	struct igb_ring *rx_ring;
	union e1000_adv_rx_desc *rx_desc;
	u32 staterr;
	u16 i, n;

	if (!netif_msg_hw(adapter))
		return;

	/* Print netdevice Info */
	if (netdev) {
		dev_info(&adapter->pdev->dev, "Net device Info\n");
		pr_info("Device Name     state            trans_start\n");
		pr_info("%-15s %016lX %016lX\n", netdev->name,
			netdev->state, dev_trans_start(netdev));
	}

	/* Print Registers */
	dev_info(&adapter->pdev->dev, "Register Dump\n");
	pr_info(" Register Name   Value\n");
	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
	     reginfo->name; reginfo++) {
		igb_regdump(hw, reginfo);
	}

	/* Print TX Ring Summary */
	if (!netdev || !netif_running(netdev))
		goto exit;

	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
	for (n = 0; n < adapter->num_tx_queues; n++) {
		struct igb_tx_buffer *buffer_info;
		tx_ring = adapter->tx_ring[n];
		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
			n, tx_ring->next_to_use, tx_ring->next_to_clean,
			(u64)dma_unmap_addr(buffer_info, dma),
			dma_unmap_len(buffer_info, len),
			buffer_info->next_to_watch,
			(u64)buffer_info->time_stamp);
	}

	/* Print TX Rings */
	if (!netif_msg_tx_done(adapter))
		goto rx_ring_summary;

	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");

	/* Transmit Descriptor Formats
	 *
	 * Advanced Transmit Descriptor
	 *   +--------------------------------------------------------------+
	 * 0 |         Buffer Address [63:0]                                |
	 *   +--------------------------------------------------------------+
	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
	 *   +--------------------------------------------------------------+
	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
	 */

	for (n = 0; n < adapter->num_tx_queues; n++) {
		tx_ring = adapter->tx_ring[n];
		pr_info("------------------------------------\n");
		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");

		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
			const char *next_desc;
			struct igb_tx_buffer *buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, i);
			buffer_info = &tx_ring->tx_buffer_info[i];
			u0 = (struct my_u0 *)tx_desc;
			if (i == tx_ring->next_to_use &&
			    i == tx_ring->next_to_clean)
				next_desc = " NTC/U";
			else if (i == tx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == tx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
				i, le64_to_cpu(u0->a),
				le64_to_cpu(u0->b),
				(u64)dma_unmap_addr(buffer_info, dma),
				dma_unmap_len(buffer_info, len),
				buffer_info->next_to_watch,
				(u64)buffer_info->time_stamp,
				buffer_info->skb, next_desc);

			if (netif_msg_pktdata(adapter) && buffer_info->skb)
				print_hex_dump(KERN_INFO, "",
					DUMP_PREFIX_ADDRESS,
					16, 1, buffer_info->skb->data,
					dma_unmap_len(buffer_info, len),
					true);
		}
	}

	/* Print RX Rings Summary */
rx_ring_summary:
	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
	pr_info("Queue [NTU] [NTC]\n");
	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		pr_info(" %5d %5X %5X\n",
			n, rx_ring->next_to_use, rx_ring->next_to_clean);
	}

	/* Print RX Rings */
	if (!netif_msg_rx_status(adapter))
		goto exit;

	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");

	/* Advanced Receive Descriptor (Read) Format
	 *    63                                           1        0
	 *    +-----------------------------------------------------+
	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
	 *    +----------------------------------------------+------+
	 *  8 |       Header Buffer Address [63:1]           |  DD  |
	 *    +-----------------------------------------------------+
	 *
	 *
	 * Advanced Receive Descriptor (Write-Back) Format
	 *
	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
	 *   +------------------------------------------------------+
	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
	 *   | Checksum   Ident  |   |           |    | Type | Type |
	 *   +------------------------------------------------------+
	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
	 *   +------------------------------------------------------+
	 *   63       48 47    32 31            20 19               0
	 */

	for (n = 0; n < adapter->num_rx_queues; n++) {
		rx_ring = adapter->rx_ring[n];
		pr_info("------------------------------------\n");
		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
		pr_info("------------------------------------\n");
		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");

		for (i = 0; i < rx_ring->count; i++) {
			const char *next_desc;
			struct igb_rx_buffer *buffer_info;
			buffer_info = &rx_ring->rx_buffer_info[i];
			rx_desc = IGB_RX_DESC(rx_ring, i);
			u0 = (struct my_u0 *)rx_desc;
			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);

			if (i == rx_ring->next_to_use)
				next_desc = " NTU";
			else if (i == rx_ring->next_to_clean)
				next_desc = " NTC";
			else
				next_desc = "";

			if (staterr & E1000_RXD_STAT_DD) {
				/* Descriptor Done */
				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
					"RWB", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					next_desc);
			} else {
				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
					"R  ", i,
					le64_to_cpu(u0->a),
					le64_to_cpu(u0->b),
					(u64)buffer_info->dma,
					next_desc);

				if (netif_msg_pktdata(adapter) &&
				    buffer_info->dma && buffer_info->page) {
					print_hex_dump(KERN_INFO, "",
					  DUMP_PREFIX_ADDRESS,
					  16, 1,
					  page_address(buffer_info->page) +
						      buffer_info->page_offset,
					  igb_rx_bufsz(rx_ring), true);
				}
			}
		}
	}

exit:
	return;
}

/**
 *  igb_get_i2c_data - Reads the I2C SDA data bit
 *  @data: opaque pointer to adapter struct
 *
 *  Returns the I2C data bit value
 **/
static int igb_get_i2c_data(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return !!(i2cctl & E1000_I2C_DATA_IN);
}

/**
 *  igb_set_i2c_data - Sets the I2C data bit
 *  @data: pointer to hardware structure
 *  @state: I2C data value (0 or 1) to set
 *
 *  Sets the I2C data bit
 **/
static void igb_set_i2c_data(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state)
		i2cctl |= E1000_I2C_DATA_OUT;
	else
		i2cctl &= ~E1000_I2C_DATA_OUT;

	i2cctl &= ~E1000_I2C_DATA_OE_N;
	i2cctl |= E1000_I2C_CLK_OE_N;
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();

}

/**
 *  igb_set_i2c_clk - Sets the I2C SCL clock
 *  @data: pointer to hardware structure
 *  @state: state to set clock
 *
 *  Sets the I2C clock line to state
 **/
static void igb_set_i2c_clk(void *data, int state)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	if (state) {
		i2cctl |= E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	} else {
		i2cctl &= ~E1000_I2C_CLK_OUT;
		i2cctl &= ~E1000_I2C_CLK_OE_N;
	}
	wr32(E1000_I2CPARAMS, i2cctl);
	wrfl();
}

/**
 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 *  @data: pointer to hardware structure
 *
 *  Gets the I2C clock state
 **/
static int igb_get_i2c_clk(void *data)
{
	struct igb_adapter *adapter = (struct igb_adapter *)data;
	struct e1000_hw *hw = &adapter->hw;
	s32 i2cctl = rd32(E1000_I2CPARAMS);

	return !!(i2cctl & E1000_I2C_CLK_IN);
}

static const struct i2c_algo_bit_data igb_i2c_algo = {
	.setsda		= igb_set_i2c_data,
	.setscl		= igb_set_i2c_clk,
	.getsda		= igb_get_i2c_data,
	.getscl		= igb_get_i2c_clk,
	.udelay		= 5,
	.timeout	= 20,
};

/**
 *  igb_get_hw_dev - return device
 *  @hw: pointer to hardware structure
 *
 *  used by hardware layer to print debugging information
 **/
struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
{
	struct igb_adapter *adapter = hw->back;
	return adapter->netdev;
}

/**
 *  igb_init_module - Driver Registration Routine
 *
 *  igb_init_module is the first routine called when the driver is
 *  loaded. All it does is register with the PCI subsystem.
 **/
static int __init igb_init_module(void)
{
	int ret;

	pr_info("%s\n", igb_driver_string);
	pr_info("%s\n", igb_copyright);

#ifdef CONFIG_IGB_DCA
	dca_register_notify(&dca_notifier);
#endif
	ret = pci_register_driver(&igb_driver);
	return ret;
}

module_init(igb_init_module);

/**
 *  igb_exit_module - Driver Exit Cleanup Routine
 *
 *  igb_exit_module is called just before the driver is removed
 *  from memory.
 **/
static void __exit igb_exit_module(void)
{
#ifdef CONFIG_IGB_DCA
	dca_unregister_notify(&dca_notifier);
#endif
	pci_unregister_driver(&igb_driver);
}

module_exit(igb_exit_module);

#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
/**
 *  igb_cache_ring_register - Descriptor ring to register mapping
 *  @adapter: board private structure to initialize
 *
 *  Once we know the feature-set enabled for the device, we'll cache
 *  the register offset the descriptor ring is assigned to.
 **/
static void igb_cache_ring_register(struct igb_adapter *adapter)
{
	int i = 0, j = 0;
	u32 rbase_offset = adapter->vfs_allocated_count;

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* The queues are allocated for virtualization such that VF 0
		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
		 * In order to avoid collision we start at the first free queue
		 * and continue consuming queues in the same sequence
		 */
		if (adapter->vfs_allocated_count) {
			for (; i < adapter->rss_queues; i++)
				adapter->rx_ring[i]->reg_idx = rbase_offset +
							       Q_IDX_82576(i);
		}
		fallthrough;
	case e1000_82575:
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
	default:
		for (; i < adapter->num_rx_queues; i++)
			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
		for (; j < adapter->num_tx_queues; j++)
			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
		break;
	}
}

u32 igb_rd32(struct e1000_hw *hw, u32 reg)
{
	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
	u32 value = 0;

	if (E1000_REMOVED(hw_addr))
		return ~value;

	value = readl(&hw_addr[reg]);

	/* reads should not return all F's */
	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
		struct net_device *netdev = igb->netdev;
		hw->hw_addr = NULL;
		netdev_err(netdev, "PCIe link lost\n");
		WARN(pci_device_is_present(igb->pdev),
		     "igb: Failed to read reg 0x%x!\n", reg);
	}

	return value;
}

/**
 *  igb_write_ivar - configure ivar for given MSI-X vector
 *  @hw: pointer to the HW structure
 *  @msix_vector: vector number we are allocating to a given ring
 *  @index: row index of IVAR register to write within IVAR table
 *  @offset: column offset of in IVAR, should be multiple of 8
 *
 *  This function is intended to handle the writing of the IVAR register
 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 *  each containing an cause allocation for an Rx and Tx ring, and a
 *  variable number of rows depending on the number of queues supported.
 **/
static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
			   int index, int offset)
{
	u32 ivar = array_rd32(E1000_IVAR0, index);

	/* clear any bits that are currently set */
	ivar &= ~((u32)0xFF << offset);

	/* write vector and valid bit */
	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;

	array_wr32(E1000_IVAR0, index, ivar);
}

#define IGB_N0_QUEUE -1
static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;
	int rx_queue = IGB_N0_QUEUE;
	int tx_queue = IGB_N0_QUEUE;
	u32 msixbm = 0;

	if (q_vector->rx.ring)
		rx_queue = q_vector->rx.ring->reg_idx;
	if (q_vector->tx.ring)
		tx_queue = q_vector->tx.ring->reg_idx;

	switch (hw->mac.type) {
	case e1000_82575:
		/* The 82575 assigns vectors using a bitmask, which matches the
		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
		 * or more queues to a vector, we write the appropriate bits
		 * into the MSIXBM register for that vector.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
		if (tx_queue > IGB_N0_QUEUE)
			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
			msixbm |= E1000_EIMS_OTHER;
		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
		q_vector->eims_value = msixbm;
		break;
	case e1000_82576:
		/* 82576 uses a table that essentially consists of 2 columns
		 * with 8 rows.  The ordering is column-major so we use the
		 * lower 3 bits as the row index, and the 4th bit as the
		 * column offset.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue & 0x7,
				       (rx_queue & 0x8) << 1);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue & 0x7,
				       ((tx_queue & 0x8) << 1) + 8);
		q_vector->eims_value = BIT(msix_vector);
		break;
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
		/* On 82580 and newer adapters the scheme is similar to 82576
		 * however instead of ordering column-major we have things
		 * ordered row-major.  So we traverse the table by using
		 * bit 0 as the column offset, and the remaining bits as the
		 * row index.
		 */
		if (rx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       rx_queue >> 1,
				       (rx_queue & 0x1) << 4);
		if (tx_queue > IGB_N0_QUEUE)
			igb_write_ivar(hw, msix_vector,
				       tx_queue >> 1,
				       ((tx_queue & 0x1) << 4) + 8);
		q_vector->eims_value = BIT(msix_vector);
		break;
	default:
		BUG();
		break;
	}

	/* add q_vector eims value to global eims_enable_mask */
	adapter->eims_enable_mask |= q_vector->eims_value;

	/* configure q_vector to set itr on first interrupt */
	q_vector->set_itr = 1;
}

/**
 *  igb_configure_msix - Configure MSI-X hardware
 *  @adapter: board private structure to initialize
 *
 *  igb_configure_msix sets up the hardware to properly
 *  generate MSI-X interrupts.
 **/
static void igb_configure_msix(struct igb_adapter *adapter)
{
	u32 tmp;
	int i, vector = 0;
	struct e1000_hw *hw = &adapter->hw;

	adapter->eims_enable_mask = 0;

	/* set vector for other causes, i.e. link changes */
	switch (hw->mac.type) {
	case e1000_82575:
		tmp = rd32(E1000_CTRL_EXT);
		/* enable MSI-X PBA support*/
		tmp |= E1000_CTRL_EXT_PBA_CLR;

		/* Auto-Mask interrupts upon ICR read. */
		tmp |= E1000_CTRL_EXT_EIAME;
		tmp |= E1000_CTRL_EXT_IRCA;

		wr32(E1000_CTRL_EXT, tmp);

		/* enable msix_other interrupt */
		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
		adapter->eims_other = E1000_EIMS_OTHER;

		break;

	case e1000_82576:
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
		/* Turn on MSI-X capability first, or our settings
		 * won't stick.  And it will take days to debug.
		 */
		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
		     E1000_GPIE_NSICR);

		/* enable msix_other interrupt */
		adapter->eims_other = BIT(vector);
		tmp = (vector++ | E1000_IVAR_VALID) << 8;

		wr32(E1000_IVAR_MISC, tmp);
		break;
	default:
		/* do nothing, since nothing else supports MSI-X */
		break;
	} /* switch (hw->mac.type) */

	adapter->eims_enable_mask |= adapter->eims_other;

	for (i = 0; i < adapter->num_q_vectors; i++)
		igb_assign_vector(adapter->q_vector[i], vector++);

	wrfl();
}

/**
 *  igb_request_msix - Initialize MSI-X interrupts
 *  @adapter: board private structure to initialize
 *
 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 *  kernel.
 **/
static int igb_request_msix(struct igb_adapter *adapter)
{
	unsigned int num_q_vectors = adapter->num_q_vectors;
	struct net_device *netdev = adapter->netdev;
	int i, err = 0, vector = 0, free_vector = 0;

	err = request_irq(adapter->msix_entries[vector].vector,
			  igb_msix_other, 0, netdev->name, adapter);
	if (err)
		goto err_out;

	if (num_q_vectors > MAX_Q_VECTORS) {
		num_q_vectors = MAX_Q_VECTORS;
		dev_warn(&adapter->pdev->dev,
			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
			 adapter->num_q_vectors, MAX_Q_VECTORS);
	}
	for (i = 0; i < num_q_vectors; i++) {
		struct igb_q_vector *q_vector = adapter->q_vector[i];

		vector++;

		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);

		if (q_vector->rx.ring && q_vector->tx.ring)
			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
				q_vector->rx.ring->queue_index);
		else if (q_vector->tx.ring)
			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
				q_vector->tx.ring->queue_index);
		else if (q_vector->rx.ring)
			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
				q_vector->rx.ring->queue_index);
		else
			sprintf(q_vector->name, "%s-unused", netdev->name);

		err = request_irq(adapter->msix_entries[vector].vector,
				  igb_msix_ring, 0, q_vector->name,
				  q_vector);
		if (err)
			goto err_free;
	}

	igb_configure_msix(adapter);
	return 0;

err_free:
	/* free already assigned IRQs */
	free_irq(adapter->msix_entries[free_vector++].vector, adapter);

	vector--;
	for (i = 0; i < vector; i++) {
		free_irq(adapter->msix_entries[free_vector++].vector,
			 adapter->q_vector[i]);
	}
err_out:
	return err;
}

/**
 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be freed
 *
 *  This function frees the memory allocated to the q_vector.
 **/
static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	adapter->q_vector[v_idx] = NULL;

	/* igb_get_stats64() might access the rings on this vector,
	 * we must wait a grace period before freeing it.
	 */
	if (q_vector)
		kfree_rcu(q_vector, rcu);
}

/**
 *  igb_reset_q_vector - Reset config for interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_idx: Index of vector to be reset
 *
 *  If NAPI is enabled it will delete any references to the
 *  NAPI struct. This is preparation for igb_free_q_vector.
 **/
static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
{
	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];

	/* Coming from igb_set_interrupt_capability, the vectors are not yet
	 * allocated. So, q_vector is NULL so we should stop here.
	 */
	if (!q_vector)
		return;

	if (q_vector->tx.ring)
		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;

	if (q_vector->rx.ring)
		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;

	netif_napi_del(&q_vector->napi);

}

static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
{
	int v_idx = adapter->num_q_vectors;

	if (adapter->flags & IGB_FLAG_HAS_MSIX)
		pci_disable_msix(adapter->pdev);
	else if (adapter->flags & IGB_FLAG_HAS_MSI)
		pci_disable_msi(adapter->pdev);

	while (v_idx--)
		igb_reset_q_vector(adapter, v_idx);
}

/**
 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 *  @adapter: board private structure to initialize
 *
 *  This function frees the memory allocated to the q_vectors.  In addition if
 *  NAPI is enabled it will delete any references to the NAPI struct prior
 *  to freeing the q_vector.
 **/
static void igb_free_q_vectors(struct igb_adapter *adapter)
{
	int v_idx = adapter->num_q_vectors;

	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--) {
		igb_reset_q_vector(adapter, v_idx);
		igb_free_q_vector(adapter, v_idx);
	}
}

/**
 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 *  @adapter: board private structure to initialize
 *
 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 *  MSI-X interrupts allocated.
 */
static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
{
	igb_free_q_vectors(adapter);
	igb_reset_interrupt_capability(adapter);
}

/**
 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
 *
 *  Attempt to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
 **/
static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
{
	int err;
	int numvecs, i;

	if (!msix)
		goto msi_only;
	adapter->flags |= IGB_FLAG_HAS_MSIX;

	/* Number of supported queues. */
	adapter->num_rx_queues = adapter->rss_queues;
	if (adapter->vfs_allocated_count)
		adapter->num_tx_queues = 1;
	else
		adapter->num_tx_queues = adapter->rss_queues;

	/* start with one vector for every Rx queue */
	numvecs = adapter->num_rx_queues;

	/* if Tx handler is separate add 1 for every Tx queue */
	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
		numvecs += adapter->num_tx_queues;

	/* store the number of vectors reserved for queues */
	adapter->num_q_vectors = numvecs;

	/* add 1 vector for link status interrupts */
	numvecs++;
	for (i = 0; i < numvecs; i++)
		adapter->msix_entries[i].entry = i;

	err = pci_enable_msix_range(adapter->pdev,
				    adapter->msix_entries,
				    numvecs,
				    numvecs);
	if (err > 0)
		return;

	igb_reset_interrupt_capability(adapter);

	/* If we can't do MSI-X, try MSI */
msi_only:
	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
#ifdef CONFIG_PCI_IOV
	/* disable SR-IOV for non MSI-X configurations */
	if (adapter->vf_data) {
		struct e1000_hw *hw = &adapter->hw;
		/* disable iov and allow time for transactions to clear */
		pci_disable_sriov(adapter->pdev);
		msleep(500);

		kfree(adapter->vf_mac_list);
		adapter->vf_mac_list = NULL;
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
	}
#endif
	adapter->vfs_allocated_count = 0;
	adapter->rss_queues = 1;
	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
	adapter->num_rx_queues = 1;
	adapter->num_tx_queues = 1;
	adapter->num_q_vectors = 1;
	if (!pci_enable_msi(adapter->pdev))
		adapter->flags |= IGB_FLAG_HAS_MSI;
}

static void igb_add_ring(struct igb_ring *ring,
			 struct igb_ring_container *head)
{
	head->ring = ring;
	head->count++;
}

/**
 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 *  @adapter: board private structure to initialize
 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 *  @v_idx: index of vector in adapter struct
 *  @txr_count: total number of Tx rings to allocate
 *  @txr_idx: index of first Tx ring to allocate
 *  @rxr_count: total number of Rx rings to allocate
 *  @rxr_idx: index of first Rx ring to allocate
 *
 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
 **/
static int igb_alloc_q_vector(struct igb_adapter *adapter,
			      int v_count, int v_idx,
			      int txr_count, int txr_idx,
			      int rxr_count, int rxr_idx)
{
	struct igb_q_vector *q_vector;
	struct igb_ring *ring;
	int ring_count;
	size_t size;

	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
	if (txr_count > 1 || rxr_count > 1)
		return -ENOMEM;

	ring_count = txr_count + rxr_count;
	size = struct_size(q_vector, ring, ring_count);

	/* allocate q_vector and rings */
	q_vector = adapter->q_vector[v_idx];
	if (!q_vector) {
		q_vector = kzalloc(size, GFP_KERNEL);
	} else if (size > ksize(q_vector)) {
		kfree_rcu(q_vector, rcu);
		q_vector = kzalloc(size, GFP_KERNEL);
	} else {
		memset(q_vector, 0, size);
	}
	if (!q_vector)
		return -ENOMEM;

	/* initialize NAPI */
	netif_napi_add(adapter->netdev, &q_vector->napi,
		       igb_poll, 64);

	/* tie q_vector and adapter together */
	adapter->q_vector[v_idx] = q_vector;
	q_vector->adapter = adapter;

	/* initialize work limits */
	q_vector->tx.work_limit = adapter->tx_work_limit;

	/* initialize ITR configuration */
	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
	q_vector->itr_val = IGB_START_ITR;

	/* initialize pointer to rings */
	ring = q_vector->ring;

	/* intialize ITR */
	if (rxr_count) {
		/* rx or rx/tx vector */
		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
			q_vector->itr_val = adapter->rx_itr_setting;
	} else {
		/* tx only vector */
		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
			q_vector->itr_val = adapter->tx_itr_setting;
	}

	if (txr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Tx values */
		igb_add_ring(ring, &q_vector->tx);

		/* For 82575, context index must be unique per ring. */
		if (adapter->hw.mac.type == e1000_82575)
			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);

		/* apply Tx specific ring traits */
		ring->count = adapter->tx_ring_count;
		ring->queue_index = txr_idx;

		ring->cbs_enable = false;
		ring->idleslope = 0;
		ring->sendslope = 0;
		ring->hicredit = 0;
		ring->locredit = 0;

		u64_stats_init(&ring->tx_syncp);
		u64_stats_init(&ring->tx_syncp2);

		/* assign ring to adapter */
		adapter->tx_ring[txr_idx] = ring;

		/* push pointer to next ring */
		ring++;
	}

	if (rxr_count) {
		/* assign generic ring traits */
		ring->dev = &adapter->pdev->dev;
		ring->netdev = adapter->netdev;

		/* configure backlink on ring */
		ring->q_vector = q_vector;

		/* update q_vector Rx values */
		igb_add_ring(ring, &q_vector->rx);

		/* set flag indicating ring supports SCTP checksum offload */
		if (adapter->hw.mac.type >= e1000_82576)
			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);

		/* On i350, i354, i210, and i211, loopback VLAN packets
		 * have the tag byte-swapped.
		 */
		if (adapter->hw.mac.type >= e1000_i350)
			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);

		/* apply Rx specific ring traits */
		ring->count = adapter->rx_ring_count;
		ring->queue_index = rxr_idx;

		u64_stats_init(&ring->rx_syncp);

		/* assign ring to adapter */
		adapter->rx_ring[rxr_idx] = ring;
	}

	return 0;
}


/**
 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 *  @adapter: board private structure to initialize
 *
 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 *  return -ENOMEM.
 **/
static int igb_alloc_q_vectors(struct igb_adapter *adapter)
{
	int q_vectors = adapter->num_q_vectors;
	int rxr_remaining = adapter->num_rx_queues;
	int txr_remaining = adapter->num_tx_queues;
	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
	int err;

	if (q_vectors >= (rxr_remaining + txr_remaining)) {
		for (; rxr_remaining; v_idx++) {
			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
						 0, 0, 1, rxr_idx);

			if (err)
				goto err_out;

			/* update counts and index */
			rxr_remaining--;
			rxr_idx++;
		}
	}

	for (; v_idx < q_vectors; v_idx++) {
		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);

		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
					 tqpv, txr_idx, rqpv, rxr_idx);

		if (err)
			goto err_out;

		/* update counts and index */
		rxr_remaining -= rqpv;
		txr_remaining -= tqpv;
		rxr_idx++;
		txr_idx++;
	}

	return 0;

err_out:
	adapter->num_tx_queues = 0;
	adapter->num_rx_queues = 0;
	adapter->num_q_vectors = 0;

	while (v_idx--)
		igb_free_q_vector(adapter, v_idx);

	return -ENOMEM;
}

/**
 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 *  @adapter: board private structure to initialize
 *  @msix: boolean value of MSIX capability
 *
 *  This function initializes the interrupts and allocates all of the queues.
 **/
static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
{
	struct pci_dev *pdev = adapter->pdev;
	int err;

	igb_set_interrupt_capability(adapter, msix);

	err = igb_alloc_q_vectors(adapter);
	if (err) {
		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
		goto err_alloc_q_vectors;
	}

	igb_cache_ring_register(adapter);

	return 0;

err_alloc_q_vectors:
	igb_reset_interrupt_capability(adapter);
	return err;
}

/**
 *  igb_request_irq - initialize interrupts
 *  @adapter: board private structure to initialize
 *
 *  Attempts to configure interrupts using the best available
 *  capabilities of the hardware and kernel.
 **/
static int igb_request_irq(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	int err = 0;

	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		err = igb_request_msix(adapter);
		if (!err)
			goto request_done;
		/* fall back to MSI */
		igb_free_all_tx_resources(adapter);
		igb_free_all_rx_resources(adapter);

		igb_clear_interrupt_scheme(adapter);
		err = igb_init_interrupt_scheme(adapter, false);
		if (err)
			goto request_done;

		igb_setup_all_tx_resources(adapter);
		igb_setup_all_rx_resources(adapter);
		igb_configure(adapter);
	}

	igb_assign_vector(adapter->q_vector[0], 0);

	if (adapter->flags & IGB_FLAG_HAS_MSI) {
		err = request_irq(pdev->irq, igb_intr_msi, 0,
				  netdev->name, adapter);
		if (!err)
			goto request_done;

		/* fall back to legacy interrupts */
		igb_reset_interrupt_capability(adapter);
		adapter->flags &= ~IGB_FLAG_HAS_MSI;
	}

	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
			  netdev->name, adapter);

	if (err)
		dev_err(&pdev->dev, "Error %d getting interrupt\n",
			err);

request_done:
	return err;
}

static void igb_free_irq(struct igb_adapter *adapter)
{
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		int vector = 0, i;

		free_irq(adapter->msix_entries[vector++].vector, adapter);

		for (i = 0; i < adapter->num_q_vectors; i++)
			free_irq(adapter->msix_entries[vector++].vector,
				 adapter->q_vector[i]);
	} else {
		free_irq(adapter->pdev->irq, adapter);
	}
}

/**
 *  igb_irq_disable - Mask off interrupt generation on the NIC
 *  @adapter: board private structure
 **/
static void igb_irq_disable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	/* we need to be careful when disabling interrupts.  The VFs are also
	 * mapped into these registers and so clearing the bits can cause
	 * issues on the VF drivers so we only need to clear what we set
	 */
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		u32 regval = rd32(E1000_EIAM);

		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
		wr32(E1000_EIMC, adapter->eims_enable_mask);
		regval = rd32(E1000_EIAC);
		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
	}

	wr32(E1000_IAM, 0);
	wr32(E1000_IMC, ~0);
	wrfl();
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		int i;

		for (i = 0; i < adapter->num_q_vectors; i++)
			synchronize_irq(adapter->msix_entries[i].vector);
	} else {
		synchronize_irq(adapter->pdev->irq);
	}
}

/**
 *  igb_irq_enable - Enable default interrupt generation settings
 *  @adapter: board private structure
 **/
static void igb_irq_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;

	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
		u32 regval = rd32(E1000_EIAC);

		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
		regval = rd32(E1000_EIAM);
		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
		wr32(E1000_EIMS, adapter->eims_enable_mask);
		if (adapter->vfs_allocated_count) {
			wr32(E1000_MBVFIMR, 0xFF);
			ims |= E1000_IMS_VMMB;
		}
		wr32(E1000_IMS, ims);
	} else {
		wr32(E1000_IMS, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
		wr32(E1000_IAM, IMS_ENABLE_MASK |
				E1000_IMS_DRSTA);
	}
}

static void igb_update_mng_vlan(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 pf_id = adapter->vfs_allocated_count;
	u16 vid = adapter->hw.mng_cookie.vlan_id;
	u16 old_vid = adapter->mng_vlan_id;

	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
		/* add VID to filter table */
		igb_vfta_set(hw, vid, pf_id, true, true);
		adapter->mng_vlan_id = vid;
	} else {
		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
	}

	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
	    (vid != old_vid) &&
	    !test_bit(old_vid, adapter->active_vlans)) {
		/* remove VID from filter table */
		igb_vfta_set(hw, vid, pf_id, false, true);
	}
}

/**
 *  igb_release_hw_control - release control of the h/w to f/w
 *  @adapter: address of board private structure
 *
 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that the
 *  driver is no longer loaded.
 **/
static void igb_release_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware take over control of h/w */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}

/**
 *  igb_get_hw_control - get control of the h/w from f/w
 *  @adapter: address of board private structure
 *
 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 *  For ASF and Pass Through versions of f/w this means that
 *  the driver is loaded.
 **/
static void igb_get_hw_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext;

	/* Let firmware know the driver has taken over */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT,
			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}

static void enable_fqtss(struct igb_adapter *adapter, bool enable)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;

	WARN_ON(hw->mac.type != e1000_i210);

	if (enable)
		adapter->flags |= IGB_FLAG_FQTSS;
	else
		adapter->flags &= ~IGB_FLAG_FQTSS;

	if (netif_running(netdev))
		schedule_work(&adapter->reset_task);
}

static bool is_fqtss_enabled(struct igb_adapter *adapter)
{
	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
}

static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
				   enum tx_queue_prio prio)
{
	u32 val;

	WARN_ON(hw->mac.type != e1000_i210);
	WARN_ON(queue < 0 || queue > 4);

	val = rd32(E1000_I210_TXDCTL(queue));

	if (prio == TX_QUEUE_PRIO_HIGH)
		val |= E1000_TXDCTL_PRIORITY;
	else
		val &= ~E1000_TXDCTL_PRIORITY;

	wr32(E1000_I210_TXDCTL(queue), val);
}

static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
{
	u32 val;

	WARN_ON(hw->mac.type != e1000_i210);
	WARN_ON(queue < 0 || queue > 1);

	val = rd32(E1000_I210_TQAVCC(queue));

	if (mode == QUEUE_MODE_STREAM_RESERVATION)
		val |= E1000_TQAVCC_QUEUEMODE;
	else
		val &= ~E1000_TQAVCC_QUEUEMODE;

	wr32(E1000_I210_TQAVCC(queue), val);
}

static bool is_any_cbs_enabled(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++) {
		if (adapter->tx_ring[i]->cbs_enable)
			return true;
	}

	return false;
}

static bool is_any_txtime_enabled(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++) {
		if (adapter->tx_ring[i]->launchtime_enable)
			return true;
	}

	return false;
}

/**
 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
 *  @adapter: pointer to adapter struct
 *  @queue: queue number
 *
 *  Configure CBS and Launchtime for a given hardware queue.
 *  Parameters are retrieved from the correct Tx ring, so
 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
 *  for setting those correctly prior to this function being called.
 **/
static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	struct igb_ring *ring;
	u32 tqavcc, tqavctrl;
	u16 value;

	WARN_ON(hw->mac.type != e1000_i210);
	WARN_ON(queue < 0 || queue > 1);
	ring = adapter->tx_ring[queue];

	/* If any of the Qav features is enabled, configure queues as SR and
	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
	 * as SP.
	 */
	if (ring->cbs_enable || ring->launchtime_enable) {
		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
	} else {
		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
	}

	/* If CBS is enabled, set DataTranARB and config its parameters. */
	if (ring->cbs_enable || queue == 0) {
		/* i210 does not allow the queue 0 to be in the Strict
		 * Priority mode while the Qav mode is enabled, so,
		 * instead of disabling strict priority mode, we give
		 * queue 0 the maximum of credits possible.
		 *
		 * See section 8.12.19 of the i210 datasheet, "Note:
		 * Queue0 QueueMode must be set to 1b when
		 * TransmitMode is set to Qav."
		 */
		if (queue == 0 && !ring->cbs_enable) {
			/* max "linkspeed" idleslope in kbps */
			ring->idleslope = 1000000;
			ring->hicredit = ETH_FRAME_LEN;
		}

		/* Always set data transfer arbitration to credit-based
		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
		 * the queues.
		 */
		tqavctrl = rd32(E1000_I210_TQAVCTRL);
		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
		wr32(E1000_I210_TQAVCTRL, tqavctrl);

		/* According to i210 datasheet section 7.2.7.7, we should set
		 * the 'idleSlope' field from TQAVCC register following the
		 * equation:
		 *
		 * For 100 Mbps link speed:
		 *
		 *     value = BW * 0x7735 * 0.2                          (E1)
		 *
		 * For 1000Mbps link speed:
		 *
		 *     value = BW * 0x7735 * 2                            (E2)
		 *
		 * E1 and E2 can be merged into one equation as shown below.
		 * Note that 'link-speed' is in Mbps.
		 *
		 *     value = BW * 0x7735 * 2 * link-speed
		 *                           --------------               (E3)
		 *                                1000
		 *
		 * 'BW' is the percentage bandwidth out of full link speed
		 * which can be found with the following equation. Note that
		 * idleSlope here is the parameter from this function which
		 * is in kbps.
		 *
		 *     BW =     idleSlope
		 *          -----------------                             (E4)
		 *          link-speed * 1000
		 *
		 * That said, we can come up with a generic equation to
		 * calculate the value we should set it TQAVCC register by
		 * replacing 'BW' in E3 by E4. The resulting equation is:
		 *
		 * value =     idleSlope     * 0x7735 * 2 * link-speed
		 *         -----------------            --------------    (E5)
		 *         link-speed * 1000                 1000
		 *
		 * 'link-speed' is present in both sides of the fraction so
		 * it is canceled out. The final equation is the following:
		 *
		 *     value = idleSlope * 61034
		 *             -----------------                          (E6)
		 *                  1000000
		 *
		 * NOTE: For i210, given the above, we can see that idleslope
		 *       is represented in 16.38431 kbps units by the value at
		 *       the TQAVCC register (1Gbps / 61034), which reduces
		 *       the granularity for idleslope increments.
		 *       For instance, if you want to configure a 2576kbps
		 *       idleslope, the value to be written on the register
		 *       would have to be 157.23. If rounded down, you end
		 *       up with less bandwidth available than originally
		 *       required (~2572 kbps). If rounded up, you end up
		 *       with a higher bandwidth (~2589 kbps). Below the
		 *       approach we take is to always round up the
		 *       calculated value, so the resulting bandwidth might
		 *       be slightly higher for some configurations.
		 */
		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);

		tqavcc = rd32(E1000_I210_TQAVCC(queue));
		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
		tqavcc |= value;
		wr32(E1000_I210_TQAVCC(queue), tqavcc);

		wr32(E1000_I210_TQAVHC(queue),
		     0x80000000 + ring->hicredit * 0x7735);
	} else {

		/* Set idleSlope to zero. */
		tqavcc = rd32(E1000_I210_TQAVCC(queue));
		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
		wr32(E1000_I210_TQAVCC(queue), tqavcc);

		/* Set hiCredit to zero. */
		wr32(E1000_I210_TQAVHC(queue), 0);

		/* If CBS is not enabled for any queues anymore, then return to
		 * the default state of Data Transmission Arbitration on
		 * TQAVCTRL.
		 */
		if (!is_any_cbs_enabled(adapter)) {
			tqavctrl = rd32(E1000_I210_TQAVCTRL);
			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
			wr32(E1000_I210_TQAVCTRL, tqavctrl);
		}
	}

	/* If LaunchTime is enabled, set DataTranTIM. */
	if (ring->launchtime_enable) {
		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
		 * for any of the SR queues, and configure fetchtime delta.
		 * XXX NOTE:
		 *     - LaunchTime will be enabled for all SR queues.
		 *     - A fixed offset can be added relative to the launch
		 *       time of all packets if configured at reg LAUNCH_OS0.
		 *       We are keeping it as 0 for now (default value).
		 */
		tqavctrl = rd32(E1000_I210_TQAVCTRL);
		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
		       E1000_TQAVCTRL_FETCHTIME_DELTA;
		wr32(E1000_I210_TQAVCTRL, tqavctrl);
	} else {
		/* If Launchtime is not enabled for any SR queues anymore,
		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
		 * effectively disabling Launchtime.
		 */
		if (!is_any_txtime_enabled(adapter)) {
			tqavctrl = rd32(E1000_I210_TQAVCTRL);
			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
			wr32(E1000_I210_TQAVCTRL, tqavctrl);
		}
	}

	/* XXX: In i210 controller the sendSlope and loCredit parameters from
	 * CBS are not configurable by software so we don't do any 'controller
	 * configuration' in respect to these parameters.
	 */

	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
		   ring->cbs_enable ? "enabled" : "disabled",
		   ring->launchtime_enable ? "enabled" : "disabled",
		   queue,
		   ring->idleslope, ring->sendslope,
		   ring->hicredit, ring->locredit);
}

static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
				  bool enable)
{
	struct igb_ring *ring;

	if (queue < 0 || queue > adapter->num_tx_queues)
		return -EINVAL;

	ring = adapter->tx_ring[queue];
	ring->launchtime_enable = enable;

	return 0;
}

static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
			       bool enable, int idleslope, int sendslope,
			       int hicredit, int locredit)
{
	struct igb_ring *ring;

	if (queue < 0 || queue > adapter->num_tx_queues)
		return -EINVAL;

	ring = adapter->tx_ring[queue];

	ring->cbs_enable = enable;
	ring->idleslope = idleslope;
	ring->sendslope = sendslope;
	ring->hicredit = hicredit;
	ring->locredit = locredit;

	return 0;
}

/**
 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
 *  @adapter: pointer to adapter struct
 *
 *  Configure TQAVCTRL register switching the controller's Tx mode
 *  if FQTSS mode is enabled or disabled. Additionally, will issue
 *  a call to igb_config_tx_modes() per queue so any previously saved
 *  Tx parameters are applied.
 **/
static void igb_setup_tx_mode(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 val;

	/* Only i210 controller supports changing the transmission mode. */
	if (hw->mac.type != e1000_i210)
		return;

	if (is_fqtss_enabled(adapter)) {
		int i, max_queue;

		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
		 * so SP queues wait for SR ones.
		 */
		val = rd32(E1000_I210_TQAVCTRL);
		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
		wr32(E1000_I210_TQAVCTRL, val);

		/* Configure Tx and Rx packet buffers sizes as described in
		 * i210 datasheet section 7.2.7.7.
		 */
		val = rd32(E1000_TXPBS);
		val &= ~I210_TXPBSIZE_MASK;
		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
		wr32(E1000_TXPBS, val);

		val = rd32(E1000_RXPBS);
		val &= ~I210_RXPBSIZE_MASK;
		val |= I210_RXPBSIZE_PB_30KB;
		wr32(E1000_RXPBS, val);

		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
		 * register should not exceed the buffer size programmed in
		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
		 * so according to the datasheet we should set MAX_TPKT_SIZE to
		 * 4kB / 64.
		 *
		 * However, when we do so, no frame from queue 2 and 3 are
		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
		 * or _equal_ to the buffer size programmed in TXPBS. For this
		 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
		 */
		val = (4096 - 1) / 64;
		wr32(E1000_I210_DTXMXPKTSZ, val);

		/* Since FQTSS mode is enabled, apply any CBS configuration
		 * previously set. If no previous CBS configuration has been
		 * done, then the initial configuration is applied, which means
		 * CBS is disabled.
		 */
		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;

		for (i = 0; i < max_queue; i++) {
			igb_config_tx_modes(adapter, i);
		}
	} else {
		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);

		val = rd32(E1000_I210_TQAVCTRL);
		/* According to Section 8.12.21, the other flags we've set when
		 * enabling FQTSS are not relevant when disabling FQTSS so we
		 * don't set they here.
		 */
		val &= ~E1000_TQAVCTRL_XMIT_MODE;
		wr32(E1000_I210_TQAVCTRL, val);
	}

	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
		   "enabled" : "disabled");
}

/**
 *  igb_configure - configure the hardware for RX and TX
 *  @adapter: private board structure
 **/
static void igb_configure(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	int i;

	igb_get_hw_control(adapter);
	igb_set_rx_mode(netdev);
	igb_setup_tx_mode(adapter);

	igb_restore_vlan(adapter);

	igb_setup_tctl(adapter);
	igb_setup_mrqc(adapter);
	igb_setup_rctl(adapter);

	igb_nfc_filter_restore(adapter);
	igb_configure_tx(adapter);
	igb_configure_rx(adapter);

	igb_rx_fifo_flush_82575(&adapter->hw);

	/* call igb_desc_unused which always leaves
	 * at least 1 descriptor unused to make sure
	 * next_to_use != next_to_clean
	 */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = adapter->rx_ring[i];
		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
	}
}

/**
 *  igb_power_up_link - Power up the phy/serdes link
 *  @adapter: address of board private structure
 **/
void igb_power_up_link(struct igb_adapter *adapter)
{
	igb_reset_phy(&adapter->hw);

	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_up_phy_copper(&adapter->hw);
	else
		igb_power_up_serdes_link_82575(&adapter->hw);

	igb_setup_link(&adapter->hw);
}

/**
 *  igb_power_down_link - Power down the phy/serdes link
 *  @adapter: address of board private structure
 */
static void igb_power_down_link(struct igb_adapter *adapter)
{
	if (adapter->hw.phy.media_type == e1000_media_type_copper)
		igb_power_down_phy_copper_82575(&adapter->hw);
	else
		igb_shutdown_serdes_link_82575(&adapter->hw);
}

/**
 * igb_check_swap_media -  Detect and switch function for Media Auto Sense
 * @adapter: address of the board private structure
 **/
static void igb_check_swap_media(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl_ext, connsw;
	bool swap_now = false;

	ctrl_ext = rd32(E1000_CTRL_EXT);
	connsw = rd32(E1000_CONNSW);

	/* need to live swap if current media is copper and we have fiber/serdes
	 * to go to.
	 */

	if ((hw->phy.media_type == e1000_media_type_copper) &&
	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
		swap_now = true;
	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
		   !(connsw & E1000_CONNSW_SERDESD)) {
		/* copper signal takes time to appear */
		if (adapter->copper_tries < 4) {
			adapter->copper_tries++;
			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
			wr32(E1000_CONNSW, connsw);
			return;
		} else {
			adapter->copper_tries = 0;
			if ((connsw & E1000_CONNSW_PHYSD) &&
			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
				swap_now = true;
				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
				wr32(E1000_CONNSW, connsw);
			}
		}
	}

	if (!swap_now)
		return;

	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		netdev_info(adapter->netdev,
			"MAS: changing media to fiber/serdes\n");
		ctrl_ext |=
			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
		adapter->flags |= IGB_FLAG_MEDIA_RESET;
		adapter->copper_tries = 0;
		break;
	case e1000_media_type_internal_serdes:
	case e1000_media_type_fiber:
		netdev_info(adapter->netdev,
			"MAS: changing media to copper\n");
		ctrl_ext &=
			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
		adapter->flags |= IGB_FLAG_MEDIA_RESET;
		break;
	default:
		/* shouldn't get here during regular operation */
		netdev_err(adapter->netdev,
			"AMS: Invalid media type found, returning\n");
		break;
	}
	wr32(E1000_CTRL_EXT, ctrl_ext);
}

/**
 *  igb_up - Open the interface and prepare it to handle traffic
 *  @adapter: board private structure
 **/
int igb_up(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* hardware has been reset, we need to reload some things */
	igb_configure(adapter);

	clear_bit(__IGB_DOWN, &adapter->state);

	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

	if (adapter->flags & IGB_FLAG_HAS_MSIX)
		igb_configure_msix(adapter);
	else
		igb_assign_vector(adapter->q_vector[0], 0);

	/* Clear any pending interrupts. */
	rd32(E1000_TSICR);
	rd32(E1000_ICR);
	igb_irq_enable(adapter);

	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);

		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

	netif_tx_start_all_queues(adapter->netdev);

	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

	if ((adapter->flags & IGB_FLAG_EEE) &&
	    (!hw->dev_spec._82575.eee_disable))
		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;

	return 0;
}

void igb_down(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl, rctl;
	int i;

	/* signal that we're down so the interrupt handler does not
	 * reschedule our watchdog timer
	 */
	set_bit(__IGB_DOWN, &adapter->state);

	/* disable receives in the hardware */
	rctl = rd32(E1000_RCTL);
	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
	/* flush and sleep below */

	igb_nfc_filter_exit(adapter);

	netif_carrier_off(netdev);
	netif_tx_stop_all_queues(netdev);

	/* disable transmits in the hardware */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_EN;
	wr32(E1000_TCTL, tctl);
	/* flush both disables and wait for them to finish */
	wrfl();
	usleep_range(10000, 11000);

	igb_irq_disable(adapter);

	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;

	for (i = 0; i < adapter->num_q_vectors; i++) {
		if (adapter->q_vector[i]) {
			napi_synchronize(&adapter->q_vector[i]->napi);
			napi_disable(&adapter->q_vector[i]->napi);
		}
	}

	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	/* record the stats before reset*/
	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

	adapter->link_speed = 0;
	adapter->link_duplex = 0;

	if (!pci_channel_offline(adapter->pdev))
		igb_reset(adapter);

	/* clear VLAN promisc flag so VFTA will be updated if necessary */
	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;

	igb_clean_all_tx_rings(adapter);
	igb_clean_all_rx_rings(adapter);
#ifdef CONFIG_IGB_DCA

	/* since we reset the hardware DCA settings were cleared */
	igb_setup_dca(adapter);
#endif
}

void igb_reinit_locked(struct igb_adapter *adapter)
{
	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		usleep_range(1000, 2000);
	igb_down(adapter);
	igb_up(adapter);
	clear_bit(__IGB_RESETTING, &adapter->state);
}

/** igb_enable_mas - Media Autosense re-enable after swap
 *
 * @adapter: adapter struct
 **/
static void igb_enable_mas(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 connsw = rd32(E1000_CONNSW);

	/* configure for SerDes media detect */
	if ((hw->phy.media_type == e1000_media_type_copper) &&
	    (!(connsw & E1000_CONNSW_SERDESD))) {
		connsw |= E1000_CONNSW_ENRGSRC;
		connsw |= E1000_CONNSW_AUTOSENSE_EN;
		wr32(E1000_CONNSW, connsw);
		wrfl();
	}
}

void igb_reset(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_mac_info *mac = &hw->mac;
	struct e1000_fc_info *fc = &hw->fc;
	u32 pba, hwm;

	/* Repartition Pba for greater than 9k mtu
	 * To take effect CTRL.RST is required.
	 */
	switch (mac->type) {
	case e1000_i350:
	case e1000_i354:
	case e1000_82580:
		pba = rd32(E1000_RXPBS);
		pba = igb_rxpbs_adjust_82580(pba);
		break;
	case e1000_82576:
		pba = rd32(E1000_RXPBS);
		pba &= E1000_RXPBS_SIZE_MASK_82576;
		break;
	case e1000_82575:
	case e1000_i210:
	case e1000_i211:
	default:
		pba = E1000_PBA_34K;
		break;
	}

	if (mac->type == e1000_82575) {
		u32 min_rx_space, min_tx_space, needed_tx_space;

		/* write Rx PBA so that hardware can report correct Tx PBA */
		wr32(E1000_PBA, pba);

		/* To maintain wire speed transmits, the Tx FIFO should be
		 * large enough to accommodate two full transmit packets,
		 * rounded up to the next 1KB and expressed in KB.  Likewise,
		 * the Rx FIFO should be large enough to accommodate at least
		 * one full receive packet and is similarly rounded up and
		 * expressed in KB.
		 */
		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);

		/* The Tx FIFO also stores 16 bytes of information about the Tx
		 * but don't include Ethernet FCS because hardware appends it.
		 * We only need to round down to the nearest 512 byte block
		 * count since the value we care about is 2 frames, not 1.
		 */
		min_tx_space = adapter->max_frame_size;
		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);

		/* upper 16 bits has Tx packet buffer allocation size in KB */
		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);

		/* If current Tx allocation is less than the min Tx FIFO size,
		 * and the min Tx FIFO size is less than the current Rx FIFO
		 * allocation, take space away from current Rx allocation.
		 */
		if (needed_tx_space < pba) {
			pba -= needed_tx_space;

			/* if short on Rx space, Rx wins and must trump Tx
			 * adjustment
			 */
			if (pba < min_rx_space)
				pba = min_rx_space;
		}

		/* adjust PBA for jumbo frames */
		wr32(E1000_PBA, pba);
	}

	/* flow control settings
	 * The high water mark must be low enough to fit one full frame
	 * after transmitting the pause frame.  As such we must have enough
	 * space to allow for us to complete our current transmit and then
	 * receive the frame that is in progress from the link partner.
	 * Set it to:
	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
	 */
	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);

	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
	fc->low_water = fc->high_water - 16;
	fc->pause_time = 0xFFFF;
	fc->send_xon = 1;
	fc->current_mode = fc->requested_mode;

	/* disable receive for all VFs and wait one second */
	if (adapter->vfs_allocated_count) {
		int i;

		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;

		/* ping all the active vfs to let them know we are going down */
		igb_ping_all_vfs(adapter);

		/* disable transmits and receives */
		wr32(E1000_VFRE, 0);
		wr32(E1000_VFTE, 0);
	}

	/* Allow time for pending master requests to run */
	hw->mac.ops.reset_hw(hw);
	wr32(E1000_WUC, 0);

	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
		/* need to resetup here after media swap */
		adapter->ei.get_invariants(hw);
		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
	}
	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
		igb_enable_mas(adapter);
	}
	if (hw->mac.ops.init_hw(hw))
		dev_err(&pdev->dev, "Hardware Error\n");

	/* RAR registers were cleared during init_hw, clear mac table */
	igb_flush_mac_table(adapter);
	__dev_uc_unsync(adapter->netdev, NULL);

	/* Recover default RAR entry */
	igb_set_default_mac_filter(adapter);

	/* Flow control settings reset on hardware reset, so guarantee flow
	 * control is off when forcing speed.
	 */
	if (!hw->mac.autoneg)
		igb_force_mac_fc(hw);

	igb_init_dmac(adapter, pba);
#ifdef CONFIG_IGB_HWMON
	/* Re-initialize the thermal sensor on i350 devices. */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (mac->type == e1000_i350 && hw->bus.func == 0) {
			/* If present, re-initialize the external thermal sensor
			 * interface.
			 */
			if (adapter->ets)
				mac->ops.init_thermal_sensor_thresh(hw);
		}
	}
#endif
	/* Re-establish EEE setting */
	if (hw->phy.media_type == e1000_media_type_copper) {
		switch (mac->type) {
		case e1000_i350:
		case e1000_i210:
		case e1000_i211:
			igb_set_eee_i350(hw, true, true);
			break;
		case e1000_i354:
			igb_set_eee_i354(hw, true, true);
			break;
		default:
			break;
		}
	}
	if (!netif_running(adapter->netdev))
		igb_power_down_link(adapter);

	igb_update_mng_vlan(adapter);

	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);

	/* Re-enable PTP, where applicable. */
	if (adapter->ptp_flags & IGB_PTP_ENABLED)
		igb_ptp_reset(adapter);

	igb_get_phy_info(hw);
}

static netdev_features_t igb_fix_features(struct net_device *netdev,
	netdev_features_t features)
{
	/* Since there is no support for separate Rx/Tx vlan accel
	 * enable/disable make sure Tx flag is always in same state as Rx.
	 */
	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		features |= NETIF_F_HW_VLAN_CTAG_TX;
	else
		features &= ~NETIF_F_HW_VLAN_CTAG_TX;

	return features;
}

static int igb_set_features(struct net_device *netdev,
	netdev_features_t features)
{
	netdev_features_t changed = netdev->features ^ features;
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
		igb_vlan_mode(netdev, features);

	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
		return 0;

	if (!(features & NETIF_F_NTUPLE)) {
		struct hlist_node *node2;
		struct igb_nfc_filter *rule;

		spin_lock(&adapter->nfc_lock);
		hlist_for_each_entry_safe(rule, node2,
					  &adapter->nfc_filter_list, nfc_node) {
			igb_erase_filter(adapter, rule);
			hlist_del(&rule->nfc_node);
			kfree(rule);
		}
		spin_unlock(&adapter->nfc_lock);
		adapter->nfc_filter_count = 0;
	}

	netdev->features = features;

	if (netif_running(netdev))
		igb_reinit_locked(adapter);
	else
		igb_reset(adapter);

	return 1;
}

static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
			   struct net_device *dev,
			   const unsigned char *addr, u16 vid,
			   u16 flags,
			   struct netlink_ext_ack *extack)
{
	/* guarantee we can provide a unique filter for the unicast address */
	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
		struct igb_adapter *adapter = netdev_priv(dev);
		int vfn = adapter->vfs_allocated_count;

		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
			return -ENOMEM;
	}

	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
}

#define IGB_MAX_MAC_HDR_LEN	127
#define IGB_MAX_NETWORK_HDR_LEN	511

static netdev_features_t
igb_features_check(struct sk_buff *skb, struct net_device *dev,
		   netdev_features_t features)
{
	unsigned int network_hdr_len, mac_hdr_len;

	/* Make certain the headers can be described by a context descriptor */
	mac_hdr_len = skb_network_header(skb) - skb->data;
	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
		return features & ~(NETIF_F_HW_CSUM |
				    NETIF_F_SCTP_CRC |
				    NETIF_F_GSO_UDP_L4 |
				    NETIF_F_HW_VLAN_CTAG_TX |
				    NETIF_F_TSO |
				    NETIF_F_TSO6);

	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
		return features & ~(NETIF_F_HW_CSUM |
				    NETIF_F_SCTP_CRC |
				    NETIF_F_GSO_UDP_L4 |
				    NETIF_F_TSO |
				    NETIF_F_TSO6);

	/* We can only support IPV4 TSO in tunnels if we can mangle the
	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
	 */
	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
		features &= ~NETIF_F_TSO;

	return features;
}

static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
{
	if (!is_fqtss_enabled(adapter)) {
		enable_fqtss(adapter, true);
		return;
	}

	igb_config_tx_modes(adapter, queue);

	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
		enable_fqtss(adapter, false);
}

static int igb_offload_cbs(struct igb_adapter *adapter,
			   struct tc_cbs_qopt_offload *qopt)
{
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* CBS offloading is only supported by i210 controller. */
	if (hw->mac.type != e1000_i210)
		return -EOPNOTSUPP;

	/* CBS offloading is only supported by queue 0 and queue 1. */
	if (qopt->queue < 0 || qopt->queue > 1)
		return -EINVAL;

	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
				  qopt->idleslope, qopt->sendslope,
				  qopt->hicredit, qopt->locredit);
	if (err)
		return err;

	igb_offload_apply(adapter, qopt->queue);

	return 0;
}

#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
#define VLAN_PRIO_FULL_MASK (0x07)

static int igb_parse_cls_flower(struct igb_adapter *adapter,
				struct flow_cls_offload *f,
				int traffic_class,
				struct igb_nfc_filter *input)
{
	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
	struct flow_dissector *dissector = rule->match.dissector;
	struct netlink_ext_ack *extack = f->common.extack;

	if (dissector->used_keys &
	    ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
	      BIT(FLOW_DISSECTOR_KEY_CONTROL) |
	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
	      BIT(FLOW_DISSECTOR_KEY_VLAN))) {
		NL_SET_ERR_MSG_MOD(extack,
				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
		return -EOPNOTSUPP;
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
		struct flow_match_eth_addrs match;

		flow_rule_match_eth_addrs(rule, &match);
		if (!is_zero_ether_addr(match.mask->dst)) {
			if (!is_broadcast_ether_addr(match.mask->dst)) {
				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
				return -EINVAL;
			}

			input->filter.match_flags |=
				IGB_FILTER_FLAG_DST_MAC_ADDR;
			ether_addr_copy(input->filter.dst_addr, match.key->dst);
		}

		if (!is_zero_ether_addr(match.mask->src)) {
			if (!is_broadcast_ether_addr(match.mask->src)) {
				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
				return -EINVAL;
			}

			input->filter.match_flags |=
				IGB_FILTER_FLAG_SRC_MAC_ADDR;
			ether_addr_copy(input->filter.src_addr, match.key->src);
		}
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
		struct flow_match_basic match;

		flow_rule_match_basic(rule, &match);
		if (match.mask->n_proto) {
			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
				return -EINVAL;
			}

			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
			input->filter.etype = match.key->n_proto;
		}
	}

	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
		struct flow_match_vlan match;

		flow_rule_match_vlan(rule, &match);
		if (match.mask->vlan_priority) {
			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
				return -EINVAL;
			}

			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
			input->filter.vlan_tci =
				(__force __be16)match.key->vlan_priority;
		}
	}

	input->action = traffic_class;
	input->cookie = f->cookie;

	return 0;
}

static int igb_configure_clsflower(struct igb_adapter *adapter,
				   struct flow_cls_offload *cls_flower)
{
	struct netlink_ext_ack *extack = cls_flower->common.extack;
	struct igb_nfc_filter *filter, *f;
	int err, tc;

	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
	if (tc < 0) {
		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
		return -EINVAL;
	}

	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
	if (!filter)
		return -ENOMEM;

	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
	if (err < 0)
		goto err_parse;

	spin_lock(&adapter->nfc_lock);

	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
			err = -EEXIST;
			NL_SET_ERR_MSG_MOD(extack,
					   "This filter is already set in ethtool");
			goto err_locked;
		}
	}

	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
			err = -EEXIST;
			NL_SET_ERR_MSG_MOD(extack,
					   "This filter is already set in cls_flower");
			goto err_locked;
		}
	}

	err = igb_add_filter(adapter, filter);
	if (err < 0) {
		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
		goto err_locked;
	}

	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);

	spin_unlock(&adapter->nfc_lock);

	return 0;

err_locked:
	spin_unlock(&adapter->nfc_lock);

err_parse:
	kfree(filter);

	return err;
}

static int igb_delete_clsflower(struct igb_adapter *adapter,
				struct flow_cls_offload *cls_flower)
{
	struct igb_nfc_filter *filter;
	int err;

	spin_lock(&adapter->nfc_lock);

	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
		if (filter->cookie == cls_flower->cookie)
			break;

	if (!filter) {
		err = -ENOENT;
		goto out;
	}

	err = igb_erase_filter(adapter, filter);
	if (err < 0)
		goto out;

	hlist_del(&filter->nfc_node);
	kfree(filter);

out:
	spin_unlock(&adapter->nfc_lock);

	return err;
}

static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
				   struct flow_cls_offload *cls_flower)
{
	switch (cls_flower->command) {
	case FLOW_CLS_REPLACE:
		return igb_configure_clsflower(adapter, cls_flower);
	case FLOW_CLS_DESTROY:
		return igb_delete_clsflower(adapter, cls_flower);
	case FLOW_CLS_STATS:
		return -EOPNOTSUPP;
	default:
		return -EOPNOTSUPP;
	}
}

static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
				 void *cb_priv)
{
	struct igb_adapter *adapter = cb_priv;

	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
		return -EOPNOTSUPP;

	switch (type) {
	case TC_SETUP_CLSFLOWER:
		return igb_setup_tc_cls_flower(adapter, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

static int igb_offload_txtime(struct igb_adapter *adapter,
			      struct tc_etf_qopt_offload *qopt)
{
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* Launchtime offloading is only supported by i210 controller. */
	if (hw->mac.type != e1000_i210)
		return -EOPNOTSUPP;

	/* Launchtime offloading is only supported by queues 0 and 1. */
	if (qopt->queue < 0 || qopt->queue > 1)
		return -EINVAL;

	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
	if (err)
		return err;

	igb_offload_apply(adapter, qopt->queue);

	return 0;
}

static LIST_HEAD(igb_block_cb_list);

static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
			void *type_data)
{
	struct igb_adapter *adapter = netdev_priv(dev);

	switch (type) {
	case TC_SETUP_QDISC_CBS:
		return igb_offload_cbs(adapter, type_data);
	case TC_SETUP_BLOCK:
		return flow_block_cb_setup_simple(type_data,
						  &igb_block_cb_list,
						  igb_setup_tc_block_cb,
						  adapter, adapter, true);

	case TC_SETUP_QDISC_ETF:
		return igb_offload_txtime(adapter, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
{
	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
	struct igb_adapter *adapter = netdev_priv(dev);
	struct bpf_prog *prog = bpf->prog, *old_prog;
	bool running = netif_running(dev);
	bool need_reset;

	/* verify igb ring attributes are sufficient for XDP */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = adapter->rx_ring[i];

		if (frame_size > igb_rx_bufsz(ring)) {
			NL_SET_ERR_MSG_MOD(bpf->extack,
					   "The RX buffer size is too small for the frame size");
			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
				    igb_rx_bufsz(ring), frame_size);
			return -EINVAL;
		}
	}

	old_prog = xchg(&adapter->xdp_prog, prog);
	need_reset = (!!prog != !!old_prog);

	/* device is up and bpf is added/removed, must setup the RX queues */
	if (need_reset && running) {
		igb_close(dev);
	} else {
		for (i = 0; i < adapter->num_rx_queues; i++)
			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
			    adapter->xdp_prog);
	}

	if (old_prog)
		bpf_prog_put(old_prog);

	/* bpf is just replaced, RXQ and MTU are already setup */
	if (!need_reset)
		return 0;

	if (running)
		igb_open(dev);

	return 0;
}

static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
	switch (xdp->command) {
	case XDP_SETUP_PROG:
		return igb_xdp_setup(dev, xdp);
	default:
		return -EINVAL;
	}
}

static void igb_xdp_ring_update_tail(struct igb_ring *ring)
{
	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.
	 */
	wmb();
	writel(ring->next_to_use, ring->tail);
}

static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
{
	unsigned int r_idx = smp_processor_id();

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
{
	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
	int cpu = smp_processor_id();
	struct igb_ring *tx_ring;
	struct netdev_queue *nq;
	u32 ret;

	if (unlikely(!xdpf))
		return IGB_XDP_CONSUMED;

	/* During program transitions its possible adapter->xdp_prog is assigned
	 * but ring has not been configured yet. In this case simply abort xmit.
	 */
	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
	if (unlikely(!tx_ring))
		return IGB_XDP_CONSUMED;

	nq = txring_txq(tx_ring);
	__netif_tx_lock(nq, cpu);
	/* Avoid transmit queue timeout since we share it with the slow path */
	nq->trans_start = jiffies;
	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
	__netif_tx_unlock(nq);

	return ret;
}

static int igb_xdp_xmit(struct net_device *dev, int n,
			struct xdp_frame **frames, u32 flags)
{
	struct igb_adapter *adapter = netdev_priv(dev);
	int cpu = smp_processor_id();
	struct igb_ring *tx_ring;
	struct netdev_queue *nq;
	int nxmit = 0;
	int i;

	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
		return -ENETDOWN;

	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
		return -EINVAL;

	/* During program transitions its possible adapter->xdp_prog is assigned
	 * but ring has not been configured yet. In this case simply abort xmit.
	 */
	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
	if (unlikely(!tx_ring))
		return -ENXIO;

	nq = txring_txq(tx_ring);
	__netif_tx_lock(nq, cpu);

	/* Avoid transmit queue timeout since we share it with the slow path */
	nq->trans_start = jiffies;

	for (i = 0; i < n; i++) {
		struct xdp_frame *xdpf = frames[i];
		int err;

		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
		if (err != IGB_XDP_TX)
			break;
		nxmit++;
	}

	__netif_tx_unlock(nq);

	if (unlikely(flags & XDP_XMIT_FLUSH))
		igb_xdp_ring_update_tail(tx_ring);

	return nxmit;
}

static const struct net_device_ops igb_netdev_ops = {
	.ndo_open		= igb_open,
	.ndo_stop		= igb_close,
	.ndo_start_xmit		= igb_xmit_frame,
	.ndo_get_stats64	= igb_get_stats64,
	.ndo_set_rx_mode	= igb_set_rx_mode,
	.ndo_set_mac_address	= igb_set_mac,
	.ndo_change_mtu		= igb_change_mtu,
	.ndo_eth_ioctl		= igb_ioctl,
	.ndo_tx_timeout		= igb_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
	.ndo_get_vf_config	= igb_ndo_get_vf_config,
	.ndo_fix_features	= igb_fix_features,
	.ndo_set_features	= igb_set_features,
	.ndo_fdb_add		= igb_ndo_fdb_add,
	.ndo_features_check	= igb_features_check,
	.ndo_setup_tc		= igb_setup_tc,
	.ndo_bpf		= igb_xdp,
	.ndo_xdp_xmit		= igb_xdp_xmit,
};

/**
 * igb_set_fw_version - Configure version string for ethtool
 * @adapter: adapter struct
 **/
void igb_set_fw_version(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_fw_version fw;

	igb_get_fw_version(hw, &fw);

	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		if (!(igb_get_flash_presence_i210(hw))) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%2d.%2d-%d",
				 fw.invm_major, fw.invm_minor,
				 fw.invm_img_type);
			break;
		}
		fallthrough;
	default:
		/* if option is rom valid, display its version too */
		if (fw.or_valid) {
			snprintf(adapter->fw_version,
				 sizeof(adapter->fw_version),
				 "%d.%d, 0x%08x, %d.%d.%d",
				 fw.eep_major, fw.eep_minor, fw.etrack_id,
				 fw.or_major, fw.or_build, fw.or_patch);
		/* no option rom */
		} else if (fw.etrack_id != 0X0000) {
			snprintf(adapter->fw_version,
			    sizeof(adapter->fw_version),
			    "%d.%d, 0x%08x",
			    fw.eep_major, fw.eep_minor, fw.etrack_id);
		} else {
		snprintf(adapter->fw_version,
		    sizeof(adapter->fw_version),
		    "%d.%d.%d",
		    fw.eep_major, fw.eep_minor, fw.eep_build);
		}
		break;
	}
}

/**
 * igb_init_mas - init Media Autosense feature if enabled in the NVM
 *
 * @adapter: adapter struct
 **/
static void igb_init_mas(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u16 eeprom_data;

	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
	switch (hw->bus.func) {
	case E1000_FUNC_0:
		if (eeprom_data & IGB_MAS_ENABLE_0) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_1:
		if (eeprom_data & IGB_MAS_ENABLE_1) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_2:
		if (eeprom_data & IGB_MAS_ENABLE_2) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	case E1000_FUNC_3:
		if (eeprom_data & IGB_MAS_ENABLE_3) {
			adapter->flags |= IGB_FLAG_MAS_ENABLE;
			netdev_info(adapter->netdev,
				"MAS: Enabling Media Autosense for port %d\n",
				hw->bus.func);
		}
		break;
	default:
		/* Shouldn't get here */
		netdev_err(adapter->netdev,
			"MAS: Invalid port configuration, returning\n");
		break;
	}
}

/**
 *  igb_init_i2c - Init I2C interface
 *  @adapter: pointer to adapter structure
 **/
static s32 igb_init_i2c(struct igb_adapter *adapter)
{
	s32 status = 0;

	/* I2C interface supported on i350 devices */
	if (adapter->hw.mac.type != e1000_i350)
		return 0;

	/* Initialize the i2c bus which is controlled by the registers.
	 * This bus will use the i2c_algo_bit structure that implements
	 * the protocol through toggling of the 4 bits in the register.
	 */
	adapter->i2c_adap.owner = THIS_MODULE;
	adapter->i2c_algo = igb_i2c_algo;
	adapter->i2c_algo.data = adapter;
	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
	strlcpy(adapter->i2c_adap.name, "igb BB",
		sizeof(adapter->i2c_adap.name));
	status = i2c_bit_add_bus(&adapter->i2c_adap);
	return status;
}

/**
 *  igb_probe - Device Initialization Routine
 *  @pdev: PCI device information struct
 *  @ent: entry in igb_pci_tbl
 *
 *  Returns 0 on success, negative on failure
 *
 *  igb_probe initializes an adapter identified by a pci_dev structure.
 *  The OS initialization, configuring of the adapter private structure,
 *  and a hardware reset occur.
 **/
static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct net_device *netdev;
	struct igb_adapter *adapter;
	struct e1000_hw *hw;
	u16 eeprom_data = 0;
	s32 ret_val;
	static int global_quad_port_a; /* global quad port a indication */
	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
	int err, pci_using_dac;
	u8 part_str[E1000_PBANUM_LENGTH];

	/* Catch broken hardware that put the wrong VF device ID in
	 * the PCIe SR-IOV capability.
	 */
	if (pdev->is_virtfn) {
		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
			pci_name(pdev), pdev->vendor, pdev->device);
		return -EINVAL;
	}

	err = pci_enable_device_mem(pdev);
	if (err)
		return err;

	pci_using_dac = 0;
	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
	if (!err) {
		pci_using_dac = 1;
	} else {
		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
		if (err) {
			dev_err(&pdev->dev,
				"No usable DMA configuration, aborting\n");
			goto err_dma;
		}
	}

	err = pci_request_mem_regions(pdev, igb_driver_name);
	if (err)
		goto err_pci_reg;

	pci_enable_pcie_error_reporting(pdev);

	pci_set_master(pdev);
	pci_save_state(pdev);

	err = -ENOMEM;
	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
				   IGB_MAX_TX_QUEUES);
	if (!netdev)
		goto err_alloc_etherdev;

	SET_NETDEV_DEV(netdev, &pdev->dev);

	pci_set_drvdata(pdev, netdev);
	adapter = netdev_priv(netdev);
	adapter->netdev = netdev;
	adapter->pdev = pdev;
	hw = &adapter->hw;
	hw->back = adapter;
	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);

	err = -EIO;
	adapter->io_addr = pci_iomap(pdev, 0, 0);
	if (!adapter->io_addr)
		goto err_ioremap;
	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
	hw->hw_addr = adapter->io_addr;

	netdev->netdev_ops = &igb_netdev_ops;
	igb_set_ethtool_ops(netdev);
	netdev->watchdog_timeo = 5 * HZ;

	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);

	netdev->mem_start = pci_resource_start(pdev, 0);
	netdev->mem_end = pci_resource_end(pdev, 0);

	/* PCI config space info */
	hw->vendor_id = pdev->vendor;
	hw->device_id = pdev->device;
	hw->revision_id = pdev->revision;
	hw->subsystem_vendor_id = pdev->subsystem_vendor;
	hw->subsystem_device_id = pdev->subsystem_device;

	/* Copy the default MAC, PHY and NVM function pointers */
	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
	/* Initialize skew-specific constants */
	err = ei->get_invariants(hw);
	if (err)
		goto err_sw_init;

	/* setup the private structure */
	err = igb_sw_init(adapter);
	if (err)
		goto err_sw_init;

	igb_get_bus_info_pcie(hw);

	hw->phy.autoneg_wait_to_complete = false;

	/* Copper options */
	if (hw->phy.media_type == e1000_media_type_copper) {
		hw->phy.mdix = AUTO_ALL_MODES;
		hw->phy.disable_polarity_correction = false;
		hw->phy.ms_type = e1000_ms_hw_default;
	}

	if (igb_check_reset_block(hw))
		dev_info(&pdev->dev,
			"PHY reset is blocked due to SOL/IDER session.\n");

	/* features is initialized to 0 in allocation, it might have bits
	 * set by igb_sw_init so we should use an or instead of an
	 * assignment.
	 */
	netdev->features |= NETIF_F_SG |
			    NETIF_F_TSO |
			    NETIF_F_TSO6 |
			    NETIF_F_RXHASH |
			    NETIF_F_RXCSUM |
			    NETIF_F_HW_CSUM;

	if (hw->mac.type >= e1000_82576)
		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;

	if (hw->mac.type >= e1000_i350)
		netdev->features |= NETIF_F_HW_TC;

#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
				  NETIF_F_GSO_GRE_CSUM | \
				  NETIF_F_GSO_IPXIP4 | \
				  NETIF_F_GSO_IPXIP6 | \
				  NETIF_F_GSO_UDP_TUNNEL | \
				  NETIF_F_GSO_UDP_TUNNEL_CSUM)

	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;

	/* copy netdev features into list of user selectable features */
	netdev->hw_features |= netdev->features |
			       NETIF_F_HW_VLAN_CTAG_RX |
			       NETIF_F_HW_VLAN_CTAG_TX |
			       NETIF_F_RXALL;

	if (hw->mac.type >= e1000_i350)
		netdev->hw_features |= NETIF_F_NTUPLE;

	if (pci_using_dac)
		netdev->features |= NETIF_F_HIGHDMA;

	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
	netdev->mpls_features |= NETIF_F_HW_CSUM;
	netdev->hw_enc_features |= netdev->vlan_features;

	/* set this bit last since it cannot be part of vlan_features */
	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
			    NETIF_F_HW_VLAN_CTAG_RX |
			    NETIF_F_HW_VLAN_CTAG_TX;

	netdev->priv_flags |= IFF_SUPP_NOFCS;

	netdev->priv_flags |= IFF_UNICAST_FLT;

	/* MTU range: 68 - 9216 */
	netdev->min_mtu = ETH_MIN_MTU;
	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;

	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);

	/* before reading the NVM, reset the controller to put the device in a
	 * known good starting state
	 */
	hw->mac.ops.reset_hw(hw);

	/* make sure the NVM is good , i211/i210 parts can have special NVM
	 * that doesn't contain a checksum
	 */
	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
		if (igb_get_flash_presence_i210(hw)) {
			if (hw->nvm.ops.validate(hw) < 0) {
				dev_err(&pdev->dev,
					"The NVM Checksum Is Not Valid\n");
				err = -EIO;
				goto err_eeprom;
			}
		}
		break;
	default:
		if (hw->nvm.ops.validate(hw) < 0) {
			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
			err = -EIO;
			goto err_eeprom;
		}
		break;
	}

	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
		/* copy the MAC address out of the NVM */
		if (hw->mac.ops.read_mac_addr(hw))
			dev_err(&pdev->dev, "NVM Read Error\n");
	}

	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);

	if (!is_valid_ether_addr(netdev->dev_addr)) {
		dev_err(&pdev->dev, "Invalid MAC Address\n");
		err = -EIO;
		goto err_eeprom;
	}

	igb_set_default_mac_filter(adapter);

	/* get firmware version for ethtool -i */
	igb_set_fw_version(adapter);

	/* configure RXPBSIZE and TXPBSIZE */
	if (hw->mac.type == e1000_i210) {
		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
	}

	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);

	INIT_WORK(&adapter->reset_task, igb_reset_task);
	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);

	/* Initialize link properties that are user-changeable */
	adapter->fc_autoneg = true;
	hw->mac.autoneg = true;
	hw->phy.autoneg_advertised = 0x2f;

	hw->fc.requested_mode = e1000_fc_default;
	hw->fc.current_mode = e1000_fc_default;

	igb_validate_mdi_setting(hw);

	/* By default, support wake on port A */
	if (hw->bus.func == 0)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* Check the NVM for wake support on non-port A ports */
	if (hw->mac.type >= e1000_82580)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				 &eeprom_data);
	else if (hw->bus.func == 1)
		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);

	if (eeprom_data & IGB_EEPROM_APME)
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;

	/* now that we have the eeprom settings, apply the special cases where
	 * the eeprom may be wrong or the board simply won't support wake on
	 * lan on a particular port
	 */
	switch (pdev->device) {
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
		break;
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
		/* Wake events only supported on port A for dual fiber
		 * regardless of eeprom setting
		 */
		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
		break;
	case E1000_DEV_ID_82576_QUAD_COPPER:
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
		/* if quad port adapter, disable WoL on all but port A */
		if (global_quad_port_a != 0)
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
		else
			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
		/* Reset for multiple quad port adapters */
		if (++global_quad_port_a == 4)
			global_quad_port_a = 0;
		break;
	default:
		/* If the device can't wake, don't set software support */
		if (!device_can_wakeup(&adapter->pdev->dev))
			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
	}

	/* initialize the wol settings based on the eeprom settings */
	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
		adapter->wol |= E1000_WUFC_MAG;

	/* Some vendors want WoL disabled by default, but still supported */
	if ((hw->mac.type == e1000_i350) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}

	/* Some vendors want the ability to Use the EEPROM setting as
	 * enable/disable only, and not for capability
	 */
	if (((hw->mac.type == e1000_i350) ||
	     (hw->mac.type == e1000_i354)) &&
	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
		adapter->wol = 0;
	}
	if (hw->mac.type == e1000_i350) {
		if (((pdev->subsystem_device == 0x5001) ||
		     (pdev->subsystem_device == 0x5002)) &&
				(hw->bus.func == 0)) {
			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
			adapter->wol = 0;
		}
		if (pdev->subsystem_device == 0x1F52)
			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
	}

	device_set_wakeup_enable(&adapter->pdev->dev,
				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);

	/* reset the hardware with the new settings */
	igb_reset(adapter);

	/* Init the I2C interface */
	err = igb_init_i2c(adapter);
	if (err) {
		dev_err(&pdev->dev, "failed to init i2c interface\n");
		goto err_eeprom;
	}

	/* let the f/w know that the h/w is now under the control of the
	 * driver.
	 */
	igb_get_hw_control(adapter);

	strcpy(netdev->name, "eth%d");
	err = register_netdev(netdev);
	if (err)
		goto err_register;

	/* carrier off reporting is important to ethtool even BEFORE open */
	netif_carrier_off(netdev);

#ifdef CONFIG_IGB_DCA
	if (dca_add_requester(&pdev->dev) == 0) {
		adapter->flags |= IGB_FLAG_DCA_ENABLED;
		dev_info(&pdev->dev, "DCA enabled\n");
		igb_setup_dca(adapter);
	}

#endif
#ifdef CONFIG_IGB_HWMON
	/* Initialize the thermal sensor on i350 devices. */
	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
		u16 ets_word;

		/* Read the NVM to determine if this i350 device supports an
		 * external thermal sensor.
		 */
		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
		if (ets_word != 0x0000 && ets_word != 0xFFFF)
			adapter->ets = true;
		else
			adapter->ets = false;
		if (igb_sysfs_init(adapter))
			dev_err(&pdev->dev,
				"failed to allocate sysfs resources\n");
	} else {
		adapter->ets = false;
	}
#endif
	/* Check if Media Autosense is enabled */
	adapter->ei = *ei;
	if (hw->dev_spec._82575.mas_capable)
		igb_init_mas(adapter);

	/* do hw tstamp init after resetting */
	igb_ptp_init(adapter);

	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
	/* print bus type/speed/width info, not applicable to i354 */
	if (hw->mac.type != e1000_i354) {
		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
			 netdev->name,
			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
			   "unknown"),
			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
			  "Width x4" :
			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
			  "Width x2" :
			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
			  "Width x1" : "unknown"), netdev->dev_addr);
	}

	if ((hw->mac.type == e1000_82576 &&
	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
	    (hw->mac.type >= e1000_i210 ||
	     igb_get_flash_presence_i210(hw))) {
		ret_val = igb_read_part_string(hw, part_str,
					       E1000_PBANUM_LENGTH);
	} else {
		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
	}

	if (ret_val)
		strcpy(part_str, "Unknown");
	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
	dev_info(&pdev->dev,
		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
		adapter->num_rx_queues, adapter->num_tx_queues);
	if (hw->phy.media_type == e1000_media_type_copper) {
		switch (hw->mac.type) {
		case e1000_i350:
		case e1000_i210:
		case e1000_i211:
			/* Enable EEE for internal copper PHY devices */
			err = igb_set_eee_i350(hw, true, true);
			if ((!err) &&
			    (!hw->dev_spec._82575.eee_disable)) {
				adapter->eee_advert =
					MDIO_EEE_100TX | MDIO_EEE_1000T;
				adapter->flags |= IGB_FLAG_EEE;
			}
			break;
		case e1000_i354:
			if ((rd32(E1000_CTRL_EXT) &
			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
				err = igb_set_eee_i354(hw, true, true);
				if ((!err) &&
					(!hw->dev_spec._82575.eee_disable)) {
					adapter->eee_advert =
					   MDIO_EEE_100TX | MDIO_EEE_1000T;
					adapter->flags |= IGB_FLAG_EEE;
				}
			}
			break;
		default:
			break;
		}
	}

	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);

	pm_runtime_put_noidle(&pdev->dev);
	return 0;

err_register:
	igb_release_hw_control(adapter);
	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
err_eeprom:
	if (!igb_check_reset_block(hw))
		igb_reset_phy(hw);

	if (hw->flash_address)
		iounmap(hw->flash_address);
err_sw_init:
	kfree(adapter->mac_table);
	kfree(adapter->shadow_vfta);
	igb_clear_interrupt_scheme(adapter);
#ifdef CONFIG_PCI_IOV
	igb_disable_sriov(pdev);
#endif
	pci_iounmap(pdev, adapter->io_addr);
err_ioremap:
	free_netdev(netdev);
err_alloc_etherdev:
	pci_disable_pcie_error_reporting(pdev);
	pci_release_mem_regions(pdev);
err_pci_reg:
err_dma:
	pci_disable_device(pdev);
	return err;
}

#ifdef CONFIG_PCI_IOV
static int igb_disable_sriov(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* reclaim resources allocated to VFs */
	if (adapter->vf_data) {
		/* disable iov and allow time for transactions to clear */
		if (pci_vfs_assigned(pdev)) {
			dev_warn(&pdev->dev,
				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
			return -EPERM;
		} else {
			pci_disable_sriov(pdev);
			msleep(500);
		}

		kfree(adapter->vf_mac_list);
		adapter->vf_mac_list = NULL;
		kfree(adapter->vf_data);
		adapter->vf_data = NULL;
		adapter->vfs_allocated_count = 0;
		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
		wrfl();
		msleep(100);
		dev_info(&pdev->dev, "IOV Disabled\n");

		/* Re-enable DMA Coalescing flag since IOV is turned off */
		adapter->flags |= IGB_FLAG_DMAC;
	}

	return 0;
}

static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	int old_vfs = pci_num_vf(pdev);
	struct vf_mac_filter *mac_list;
	int err = 0;
	int num_vf_mac_filters, i;

	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
		err = -EPERM;
		goto out;
	}
	if (!num_vfs)
		goto out;

	if (old_vfs) {
		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
			 old_vfs, max_vfs);
		adapter->vfs_allocated_count = old_vfs;
	} else
		adapter->vfs_allocated_count = num_vfs;

	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
				sizeof(struct vf_data_storage), GFP_KERNEL);

	/* if allocation failed then we do not support SR-IOV */
	if (!adapter->vf_data) {
		adapter->vfs_allocated_count = 0;
		err = -ENOMEM;
		goto out;
	}

	/* Due to the limited number of RAR entries calculate potential
	 * number of MAC filters available for the VFs. Reserve entries
	 * for PF default MAC, PF MAC filters and at least one RAR entry
	 * for each VF for VF MAC.
	 */
	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
			      adapter->vfs_allocated_count);

	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
				       sizeof(struct vf_mac_filter),
				       GFP_KERNEL);

	mac_list = adapter->vf_mac_list;
	INIT_LIST_HEAD(&adapter->vf_macs.l);

	if (adapter->vf_mac_list) {
		/* Initialize list of VF MAC filters */
		for (i = 0; i < num_vf_mac_filters; i++) {
			mac_list->vf = -1;
			mac_list->free = true;
			list_add(&mac_list->l, &adapter->vf_macs.l);
			mac_list++;
		}
	} else {
		/* If we could not allocate memory for the VF MAC filters
		 * we can continue without this feature but warn user.
		 */
		dev_err(&pdev->dev,
			"Unable to allocate memory for VF MAC filter list\n");
	}

	/* only call pci_enable_sriov() if no VFs are allocated already */
	if (!old_vfs) {
		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
		if (err)
			goto err_out;
	}
	dev_info(&pdev->dev, "%d VFs allocated\n",
		 adapter->vfs_allocated_count);
	for (i = 0; i < adapter->vfs_allocated_count; i++)
		igb_vf_configure(adapter, i);

	/* DMA Coalescing is not supported in IOV mode. */
	adapter->flags &= ~IGB_FLAG_DMAC;
	goto out;

err_out:
	kfree(adapter->vf_mac_list);
	adapter->vf_mac_list = NULL;
	kfree(adapter->vf_data);
	adapter->vf_data = NULL;
	adapter->vfs_allocated_count = 0;
out:
	return err;
}

#endif
/**
 *  igb_remove_i2c - Cleanup  I2C interface
 *  @adapter: pointer to adapter structure
 **/
static void igb_remove_i2c(struct igb_adapter *adapter)
{
	/* free the adapter bus structure */
	i2c_del_adapter(&adapter->i2c_adap);
}

/**
 *  igb_remove - Device Removal Routine
 *  @pdev: PCI device information struct
 *
 *  igb_remove is called by the PCI subsystem to alert the driver
 *  that it should release a PCI device.  The could be caused by a
 *  Hot-Plug event, or because the driver is going to be removed from
 *  memory.
 **/
static void igb_remove(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	pm_runtime_get_noresume(&pdev->dev);
#ifdef CONFIG_IGB_HWMON
	igb_sysfs_exit(adapter);
#endif
	igb_remove_i2c(adapter);
	igb_ptp_stop(adapter);
	/* The watchdog timer may be rescheduled, so explicitly
	 * disable watchdog from being rescheduled.
	 */
	set_bit(__IGB_DOWN, &adapter->state);
	del_timer_sync(&adapter->watchdog_timer);
	del_timer_sync(&adapter->phy_info_timer);

	cancel_work_sync(&adapter->reset_task);
	cancel_work_sync(&adapter->watchdog_task);

#ifdef CONFIG_IGB_DCA
	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
		dev_info(&pdev->dev, "DCA disabled\n");
		dca_remove_requester(&pdev->dev);
		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
	}
#endif

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
	igb_release_hw_control(adapter);

#ifdef CONFIG_PCI_IOV
	igb_disable_sriov(pdev);
#endif

	unregister_netdev(netdev);

	igb_clear_interrupt_scheme(adapter);

	pci_iounmap(pdev, adapter->io_addr);
	if (hw->flash_address)
		iounmap(hw->flash_address);
	pci_release_mem_regions(pdev);

	kfree(adapter->mac_table);
	kfree(adapter->shadow_vfta);
	free_netdev(netdev);

	pci_disable_pcie_error_reporting(pdev);

	pci_disable_device(pdev);
}

/**
 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 *  @adapter: board private structure to initialize
 *
 *  This function initializes the vf specific data storage and then attempts to
 *  allocate the VFs.  The reason for ordering it this way is because it is much
 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
 *  the memory for the VFs.
 **/
static void igb_probe_vfs(struct igb_adapter *adapter)
{
#ifdef CONFIG_PCI_IOV
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;

	/* Virtualization features not supported on i210 family. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
		return;

	/* Of the below we really only want the effect of getting
	 * IGB_FLAG_HAS_MSIX set (if available), without which
	 * igb_enable_sriov() has no effect.
	 */
	igb_set_interrupt_capability(adapter, true);
	igb_reset_interrupt_capability(adapter);

	pci_sriov_set_totalvfs(pdev, 7);
	igb_enable_sriov(pdev, max_vfs);

#endif /* CONFIG_PCI_IOV */
}

unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned int max_rss_queues;

	/* Determine the maximum number of RSS queues supported. */
	switch (hw->mac.type) {
	case e1000_i211:
		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
		break;
	case e1000_82575:
	case e1000_i210:
		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
		break;
	case e1000_i350:
		/* I350 cannot do RSS and SR-IOV at the same time */
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 1;
			break;
		}
		fallthrough;
	case e1000_82576:
		if (!!adapter->vfs_allocated_count) {
			max_rss_queues = 2;
			break;
		}
		fallthrough;
	case e1000_82580:
	case e1000_i354:
	default:
		max_rss_queues = IGB_MAX_RX_QUEUES;
		break;
	}

	return max_rss_queues;
}

static void igb_init_queue_configuration(struct igb_adapter *adapter)
{
	u32 max_rss_queues;

	max_rss_queues = igb_get_max_rss_queues(adapter);
	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());

	igb_set_flag_queue_pairs(adapter, max_rss_queues);
}

void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
			      const u32 max_rss_queues)
{
	struct e1000_hw *hw = &adapter->hw;

	/* Determine if we need to pair queues. */
	switch (hw->mac.type) {
	case e1000_82575:
	case e1000_i211:
		/* Device supports enough interrupts without queue pairing. */
		break;
	case e1000_82576:
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	default:
		/* If rss_queues > half of max_rss_queues, pair the queues in
		 * order to conserve interrupts due to limited supply.
		 */
		if (adapter->rss_queues > (max_rss_queues / 2))
			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
		else
			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
		break;
	}
}

/**
 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 *  @adapter: board private structure to initialize
 *
 *  igb_sw_init initializes the Adapter private data structure.
 *  Fields are initialized based on PCI device information and
 *  OS network device settings (MTU size).
 **/
static int igb_sw_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;

	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);

	/* set default ring sizes */
	adapter->tx_ring_count = IGB_DEFAULT_TXD;
	adapter->rx_ring_count = IGB_DEFAULT_RXD;

	/* set default ITR values */
	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
	adapter->tx_itr_setting = IGB_DEFAULT_ITR;

	/* set default work limits */
	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;

	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;

	spin_lock_init(&adapter->nfc_lock);
	spin_lock_init(&adapter->stats64_lock);
#ifdef CONFIG_PCI_IOV
	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		if (max_vfs > 7) {
			dev_warn(&pdev->dev,
				 "Maximum of 7 VFs per PF, using max\n");
			max_vfs = adapter->vfs_allocated_count = 7;
		} else
			adapter->vfs_allocated_count = max_vfs;
		if (adapter->vfs_allocated_count)
			dev_warn(&pdev->dev,
				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
		break;
	default:
		break;
	}
#endif /* CONFIG_PCI_IOV */

	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
	adapter->flags |= IGB_FLAG_HAS_MSIX;

	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
				     sizeof(struct igb_mac_addr),
				     GFP_KERNEL);
	if (!adapter->mac_table)
		return -ENOMEM;

	igb_probe_vfs(adapter);

	igb_init_queue_configuration(adapter);

	/* Setup and initialize a copy of the hw vlan table array */
	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
				       GFP_KERNEL);
	if (!adapter->shadow_vfta)
		return -ENOMEM;

	/* This call may decrease the number of queues */
	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	/* Explicitly disable IRQ since the NIC can be in any state. */
	igb_irq_disable(adapter);

	if (hw->mac.type >= e1000_i350)
		adapter->flags &= ~IGB_FLAG_DMAC;

	set_bit(__IGB_DOWN, &adapter->state);
	return 0;
}

/**
 *  __igb_open - Called when a network interface is made active
 *  @netdev: network interface device structure
 *  @resuming: indicates whether we are in a resume call
 *
 *  Returns 0 on success, negative value on failure
 *
 *  The open entry point is called when a network interface is made
 *  active by the system (IFF_UP).  At this point all resources needed
 *  for transmit and receive operations are allocated, the interrupt
 *  handler is registered with the OS, the watchdog timer is started,
 *  and the stack is notified that the interface is ready.
 **/
static int __igb_open(struct net_device *netdev, bool resuming)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	int err;
	int i;

	/* disallow open during test */
	if (test_bit(__IGB_TESTING, &adapter->state)) {
		WARN_ON(resuming);
		return -EBUSY;
	}

	if (!resuming)
		pm_runtime_get_sync(&pdev->dev);

	netif_carrier_off(netdev);

	/* allocate transmit descriptors */
	err = igb_setup_all_tx_resources(adapter);
	if (err)
		goto err_setup_tx;

	/* allocate receive descriptors */
	err = igb_setup_all_rx_resources(adapter);
	if (err)
		goto err_setup_rx;

	igb_power_up_link(adapter);

	/* before we allocate an interrupt, we must be ready to handle it.
	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
	 * as soon as we call pci_request_irq, so we have to setup our
	 * clean_rx handler before we do so.
	 */
	igb_configure(adapter);

	err = igb_request_irq(adapter);
	if (err)
		goto err_req_irq;

	/* Notify the stack of the actual queue counts. */
	err = netif_set_real_num_tx_queues(adapter->netdev,
					   adapter->num_tx_queues);
	if (err)
		goto err_set_queues;

	err = netif_set_real_num_rx_queues(adapter->netdev,
					   adapter->num_rx_queues);
	if (err)
		goto err_set_queues;

	/* From here on the code is the same as igb_up() */
	clear_bit(__IGB_DOWN, &adapter->state);

	for (i = 0; i < adapter->num_q_vectors; i++)
		napi_enable(&(adapter->q_vector[i]->napi));

	/* Clear any pending interrupts. */
	rd32(E1000_TSICR);
	rd32(E1000_ICR);

	igb_irq_enable(adapter);

	/* notify VFs that reset has been completed */
	if (adapter->vfs_allocated_count) {
		u32 reg_data = rd32(E1000_CTRL_EXT);

		reg_data |= E1000_CTRL_EXT_PFRSTD;
		wr32(E1000_CTRL_EXT, reg_data);
	}

	netif_tx_start_all_queues(netdev);

	if (!resuming)
		pm_runtime_put(&pdev->dev);

	/* start the watchdog. */
	hw->mac.get_link_status = 1;
	schedule_work(&adapter->watchdog_task);

	return 0;

err_set_queues:
	igb_free_irq(adapter);
err_req_irq:
	igb_release_hw_control(adapter);
	igb_power_down_link(adapter);
	igb_free_all_rx_resources(adapter);
err_setup_rx:
	igb_free_all_tx_resources(adapter);
err_setup_tx:
	igb_reset(adapter);
	if (!resuming)
		pm_runtime_put(&pdev->dev);

	return err;
}

int igb_open(struct net_device *netdev)
{
	return __igb_open(netdev, false);
}

/**
 *  __igb_close - Disables a network interface
 *  @netdev: network interface device structure
 *  @suspending: indicates we are in a suspend call
 *
 *  Returns 0, this is not allowed to fail
 *
 *  The close entry point is called when an interface is de-activated
 *  by the OS.  The hardware is still under the driver's control, but
 *  needs to be disabled.  A global MAC reset is issued to stop the
 *  hardware, and all transmit and receive resources are freed.
 **/
static int __igb_close(struct net_device *netdev, bool suspending)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));

	if (!suspending)
		pm_runtime_get_sync(&pdev->dev);

	igb_down(adapter);
	igb_free_irq(adapter);

	igb_free_all_tx_resources(adapter);
	igb_free_all_rx_resources(adapter);

	if (!suspending)
		pm_runtime_put_sync(&pdev->dev);
	return 0;
}

int igb_close(struct net_device *netdev)
{
	if (netif_device_present(netdev) || netdev->dismantle)
		return __igb_close(netdev, false);
	return 0;
}

/**
 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
 *
 *  Return 0 on success, negative on failure
 **/
int igb_setup_tx_resources(struct igb_ring *tx_ring)
{
	struct device *dev = tx_ring->dev;
	int size;

	size = sizeof(struct igb_tx_buffer) * tx_ring->count;

	tx_ring->tx_buffer_info = vmalloc(size);
	if (!tx_ring->tx_buffer_info)
		goto err;

	/* round up to nearest 4K */
	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
	tx_ring->size = ALIGN(tx_ring->size, 4096);

	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
					   &tx_ring->dma, GFP_KERNEL);
	if (!tx_ring->desc)
		goto err;

	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;

	return 0;

err:
	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
	return -ENOMEM;
}

/**
 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
 *
 *  Return 0 on success, negative on failure
 **/
static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int i, err = 0;

	for (i = 0; i < adapter->num_tx_queues; i++) {
		err = igb_setup_tx_resources(adapter->tx_ring[i]);
		if (err) {
			dev_err(&pdev->dev,
				"Allocation for Tx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
				igb_free_tx_resources(adapter->tx_ring[i]);
			break;
		}
	}

	return err;
}

/**
 *  igb_setup_tctl - configure the transmit control registers
 *  @adapter: Board private structure
 **/
void igb_setup_tctl(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 tctl;

	/* disable queue 0 which is enabled by default on 82575 and 82576 */
	wr32(E1000_TXDCTL(0), 0);

	/* Program the Transmit Control Register */
	tctl = rd32(E1000_TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	igb_config_collision_dist(hw);

	/* Enable transmits */
	tctl |= E1000_TCTL_EN;

	wr32(E1000_TCTL, tctl);
}

/**
 *  igb_configure_tx_ring - Configure transmit ring after Reset
 *  @adapter: board private structure
 *  @ring: tx ring to configure
 *
 *  Configure a transmit ring after a reset.
 **/
void igb_configure_tx_ring(struct igb_adapter *adapter,
			   struct igb_ring *ring)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txdctl = 0;
	u64 tdba = ring->dma;
	int reg_idx = ring->reg_idx;

	wr32(E1000_TDLEN(reg_idx),
	     ring->count * sizeof(union e1000_adv_tx_desc));
	wr32(E1000_TDBAL(reg_idx),
	     tdba & 0x00000000ffffffffULL);
	wr32(E1000_TDBAH(reg_idx), tdba >> 32);

	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
	wr32(E1000_TDH(reg_idx), 0);
	writel(0, ring->tail);

	txdctl |= IGB_TX_PTHRESH;
	txdctl |= IGB_TX_HTHRESH << 8;
	txdctl |= IGB_TX_WTHRESH << 16;

	/* reinitialize tx_buffer_info */
	memset(ring->tx_buffer_info, 0,
	       sizeof(struct igb_tx_buffer) * ring->count);

	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
	wr32(E1000_TXDCTL(reg_idx), txdctl);
}

/**
 *  igb_configure_tx - Configure transmit Unit after Reset
 *  @adapter: board private structure
 *
 *  Configure the Tx unit of the MAC after a reset.
 **/
static void igb_configure_tx(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	/* disable the queues */
	for (i = 0; i < adapter->num_tx_queues; i++)
		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);

	wrfl();
	usleep_range(10000, 20000);

	for (i = 0; i < adapter->num_tx_queues; i++)
		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
}

/**
 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
 *
 *  Returns 0 on success, negative on failure
 **/
int igb_setup_rx_resources(struct igb_ring *rx_ring)
{
	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
	struct device *dev = rx_ring->dev;
	int size, res;

	/* XDP RX-queue info */
	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
			       rx_ring->queue_index, 0);
	if (res < 0) {
		dev_err(dev, "Failed to register xdp_rxq index %u\n",
			rx_ring->queue_index);
		return res;
	}

	size = sizeof(struct igb_rx_buffer) * rx_ring->count;

	rx_ring->rx_buffer_info = vmalloc(size);
	if (!rx_ring->rx_buffer_info)
		goto err;

	/* Round up to nearest 4K */
	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
	rx_ring->size = ALIGN(rx_ring->size, 4096);

	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
					   &rx_ring->dma, GFP_KERNEL);
	if (!rx_ring->desc)
		goto err;

	rx_ring->next_to_alloc = 0;
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;

	rx_ring->xdp_prog = adapter->xdp_prog;

	return 0;

err:
	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;
	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
	return -ENOMEM;
}

/**
 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 *				 (Descriptors) for all queues
 *  @adapter: board private structure
 *
 *  Return 0 on success, negative on failure
 **/
static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
{
	struct pci_dev *pdev = adapter->pdev;
	int i, err = 0;

	for (i = 0; i < adapter->num_rx_queues; i++) {
		err = igb_setup_rx_resources(adapter->rx_ring[i]);
		if (err) {
			dev_err(&pdev->dev,
				"Allocation for Rx Queue %u failed\n", i);
			for (i--; i >= 0; i--)
				igb_free_rx_resources(adapter->rx_ring[i]);
			break;
		}
	}

	return err;
}

/**
 *  igb_setup_mrqc - configure the multiple receive queue control registers
 *  @adapter: Board private structure
 **/
static void igb_setup_mrqc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 mrqc, rxcsum;
	u32 j, num_rx_queues;
	u32 rss_key[10];

	netdev_rss_key_fill(rss_key, sizeof(rss_key));
	for (j = 0; j < 10; j++)
		wr32(E1000_RSSRK(j), rss_key[j]);

	num_rx_queues = adapter->rss_queues;

	switch (hw->mac.type) {
	case e1000_82576:
		/* 82576 supports 2 RSS queues for SR-IOV */
		if (adapter->vfs_allocated_count)
			num_rx_queues = 2;
		break;
	default:
		break;
	}

	if (adapter->rss_indir_tbl_init != num_rx_queues) {
		for (j = 0; j < IGB_RETA_SIZE; j++)
			adapter->rss_indir_tbl[j] =
			(j * num_rx_queues) / IGB_RETA_SIZE;
		adapter->rss_indir_tbl_init = num_rx_queues;
	}
	igb_write_rss_indir_tbl(adapter);

	/* Disable raw packet checksumming so that RSS hash is placed in
	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
	 * offloads as they are enabled by default
	 */
	rxcsum = rd32(E1000_RXCSUM);
	rxcsum |= E1000_RXCSUM_PCSD;

	if (adapter->hw.mac.type >= e1000_82576)
		/* Enable Receive Checksum Offload for SCTP */
		rxcsum |= E1000_RXCSUM_CRCOFL;

	/* Don't need to set TUOFL or IPOFL, they default to 1 */
	wr32(E1000_RXCSUM, rxcsum);

	/* Generate RSS hash based on packet types, TCP/UDP
	 * port numbers and/or IPv4/v6 src and dst addresses
	 */
	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6 |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;

	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;

	/* If VMDq is enabled then we set the appropriate mode for that, else
	 * we default to RSS so that an RSS hash is calculated per packet even
	 * if we are only using one queue
	 */
	if (adapter->vfs_allocated_count) {
		if (hw->mac.type > e1000_82575) {
			/* Set the default pool for the PF's first queue */
			u32 vtctl = rd32(E1000_VT_CTL);

			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
				   E1000_VT_CTL_DISABLE_DEF_POOL);
			vtctl |= adapter->vfs_allocated_count <<
				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
			wr32(E1000_VT_CTL, vtctl);
		}
		if (adapter->rss_queues > 1)
			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
		else
			mrqc |= E1000_MRQC_ENABLE_VMDQ;
	} else {
		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
	}
	igb_vmm_control(adapter);

	wr32(E1000_MRQC, mrqc);
}

/**
 *  igb_setup_rctl - configure the receive control registers
 *  @adapter: Board private structure
 **/
void igb_setup_rctl(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rctl;

	rctl = rd32(E1000_RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);

	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);

	/* enable stripping of CRC. It's unlikely this will break BMC
	 * redirection as it did with e1000. Newer features require
	 * that the HW strips the CRC.
	 */
	rctl |= E1000_RCTL_SECRC;

	/* disable store bad packets and clear size bits. */
	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);

	/* enable LPE to allow for reception of jumbo frames */
	rctl |= E1000_RCTL_LPE;

	/* disable queue 0 to prevent tail write w/o re-config */
	wr32(E1000_RXDCTL(0), 0);

	/* Attention!!!  For SR-IOV PF driver operations you must enable
	 * queue drop for all VF and PF queues to prevent head of line blocking
	 * if an un-trusted VF does not provide descriptors to hardware.
	 */
	if (adapter->vfs_allocated_count) {
		/* set all queue drop enable bits */
		wr32(E1000_QDE, ALL_QUEUES);
	}

	/* This is useful for sniffing bad packets. */
	if (adapter->netdev->features & NETIF_F_RXALL) {
		/* UPE and MPE will be handled by normal PROMISC logic
		 * in e1000e_set_rx_mode
		 */
		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */

		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
		 * and that breaks VLANs.
		 */
	}

	wr32(E1000_RCTL, rctl);
}

static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
				   int vfn)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	if (size > MAX_JUMBO_FRAME_SIZE)
		size = MAX_JUMBO_FRAME_SIZE;

	vmolr = rd32(E1000_VMOLR(vfn));
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
	vmolr |= size | E1000_VMOLR_LPE;
	wr32(E1000_VMOLR(vfn), vmolr);

	return 0;
}

static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
					 int vfn, bool enable)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 val, reg;

	if (hw->mac.type < e1000_82576)
		return;

	if (hw->mac.type == e1000_i350)
		reg = E1000_DVMOLR(vfn);
	else
		reg = E1000_VMOLR(vfn);

	val = rd32(reg);
	if (enable)
		val |= E1000_VMOLR_STRVLAN;
	else
		val &= ~(E1000_VMOLR_STRVLAN);
	wr32(reg, val);
}

static inline void igb_set_vmolr(struct igb_adapter *adapter,
				 int vfn, bool aupe)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr;

	/* This register exists only on 82576 and newer so if we are older then
	 * we should exit and do nothing
	 */
	if (hw->mac.type < e1000_82576)
		return;

	vmolr = rd32(E1000_VMOLR(vfn));
	if (aupe)
		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
	else
		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */

	/* clear all bits that might not be set */
	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);

	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
	 * multicast packets
	 */
	if (vfn <= adapter->vfs_allocated_count)
		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */

	wr32(E1000_VMOLR(vfn), vmolr);
}

/**
 *  igb_setup_srrctl - configure the split and replication receive control
 *                     registers
 *  @adapter: Board private structure
 *  @ring: receive ring to be configured
 **/
void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
{
	struct e1000_hw *hw = &adapter->hw;
	int reg_idx = ring->reg_idx;
	u32 srrctl = 0;

	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
	if (ring_uses_large_buffer(ring))
		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
	else
		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
	if (hw->mac.type >= e1000_82580)
		srrctl |= E1000_SRRCTL_TIMESTAMP;
	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
	 * queues and rx flow control is disabled
	 */
	if (adapter->vfs_allocated_count ||
	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
	     adapter->num_rx_queues > 1))
		srrctl |= E1000_SRRCTL_DROP_EN;

	wr32(E1000_SRRCTL(reg_idx), srrctl);
}

/**
 *  igb_configure_rx_ring - Configure a receive ring after Reset
 *  @adapter: board private structure
 *  @ring: receive ring to be configured
 *
 *  Configure the Rx unit of the MAC after a reset.
 **/
void igb_configure_rx_ring(struct igb_adapter *adapter,
			   struct igb_ring *ring)
{
	struct e1000_hw *hw = &adapter->hw;
	union e1000_adv_rx_desc *rx_desc;
	u64 rdba = ring->dma;
	int reg_idx = ring->reg_idx;
	u32 rxdctl = 0;

	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
					   MEM_TYPE_PAGE_SHARED, NULL));

	/* disable the queue */
	wr32(E1000_RXDCTL(reg_idx), 0);

	/* Set DMA base address registers */
	wr32(E1000_RDBAL(reg_idx),
	     rdba & 0x00000000ffffffffULL);
	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
	wr32(E1000_RDLEN(reg_idx),
	     ring->count * sizeof(union e1000_adv_rx_desc));

	/* initialize head and tail */
	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
	wr32(E1000_RDH(reg_idx), 0);
	writel(0, ring->tail);

	/* set descriptor configuration */
	igb_setup_srrctl(adapter, ring);

	/* set filtering for VMDQ pools */
	igb_set_vmolr(adapter, reg_idx & 0x7, true);

	rxdctl |= IGB_RX_PTHRESH;
	rxdctl |= IGB_RX_HTHRESH << 8;
	rxdctl |= IGB_RX_WTHRESH << 16;

	/* initialize rx_buffer_info */
	memset(ring->rx_buffer_info, 0,
	       sizeof(struct igb_rx_buffer) * ring->count);

	/* initialize Rx descriptor 0 */
	rx_desc = IGB_RX_DESC(ring, 0);
	rx_desc->wb.upper.length = 0;

	/* enable receive descriptor fetching */
	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
	wr32(E1000_RXDCTL(reg_idx), rxdctl);
}

static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
				  struct igb_ring *rx_ring)
{
	/* set build_skb and buffer size flags */
	clear_ring_build_skb_enabled(rx_ring);
	clear_ring_uses_large_buffer(rx_ring);

	if (adapter->flags & IGB_FLAG_RX_LEGACY)
		return;

	set_ring_build_skb_enabled(rx_ring);

#if (PAGE_SIZE < 8192)
	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
		return;

	set_ring_uses_large_buffer(rx_ring);
#endif
}

/**
 *  igb_configure_rx - Configure receive Unit after Reset
 *  @adapter: board private structure
 *
 *  Configure the Rx unit of the MAC after a reset.
 **/
static void igb_configure_rx(struct igb_adapter *adapter)
{
	int i;

	/* set the correct pool for the PF default MAC address in entry 0 */
	igb_set_default_mac_filter(adapter);

	/* Setup the HW Rx Head and Tail Descriptor Pointers and
	 * the Base and Length of the Rx Descriptor Ring
	 */
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *rx_ring = adapter->rx_ring[i];

		igb_set_rx_buffer_len(adapter, rx_ring);
		igb_configure_rx_ring(adapter, rx_ring);
	}
}

/**
 *  igb_free_tx_resources - Free Tx Resources per Queue
 *  @tx_ring: Tx descriptor ring for a specific queue
 *
 *  Free all transmit software resources
 **/
void igb_free_tx_resources(struct igb_ring *tx_ring)
{
	igb_clean_tx_ring(tx_ring);

	vfree(tx_ring->tx_buffer_info);
	tx_ring->tx_buffer_info = NULL;

	/* if not set, then don't free */
	if (!tx_ring->desc)
		return;

	dma_free_coherent(tx_ring->dev, tx_ring->size,
			  tx_ring->desc, tx_ring->dma);

	tx_ring->desc = NULL;
}

/**
 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 *  @adapter: board private structure
 *
 *  Free all transmit software resources
 **/
static void igb_free_all_tx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
		if (adapter->tx_ring[i])
			igb_free_tx_resources(adapter->tx_ring[i]);
}

/**
 *  igb_clean_tx_ring - Free Tx Buffers
 *  @tx_ring: ring to be cleaned
 **/
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
{
	u16 i = tx_ring->next_to_clean;
	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];

	while (i != tx_ring->next_to_use) {
		union e1000_adv_tx_desc *eop_desc, *tx_desc;

		/* Free all the Tx ring sk_buffs */
		dev_kfree_skb_any(tx_buffer->skb);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
				 DMA_TO_DEVICE);

		/* check for eop_desc to determine the end of the packet */
		eop_desc = tx_buffer->next_to_watch;
		tx_desc = IGB_TX_DESC(tx_ring, i);

		/* unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buffer++;
			tx_desc++;
			i++;
			if (unlikely(i == tx_ring->count)) {
				i = 0;
				tx_buffer = tx_ring->tx_buffer_info;
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buffer, len))
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
					       DMA_TO_DEVICE);
		}

		tx_buffer->next_to_watch = NULL;

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		i++;
		if (unlikely(i == tx_ring->count)) {
			i = 0;
			tx_buffer = tx_ring->tx_buffer_info;
		}
	}

	/* reset BQL for queue */
	netdev_tx_reset_queue(txring_txq(tx_ring));

	/* reset next_to_use and next_to_clean */
	tx_ring->next_to_use = 0;
	tx_ring->next_to_clean = 0;
}

/**
 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 *  @adapter: board private structure
 **/
static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_tx_queues; i++)
		if (adapter->tx_ring[i])
			igb_clean_tx_ring(adapter->tx_ring[i]);
}

/**
 *  igb_free_rx_resources - Free Rx Resources
 *  @rx_ring: ring to clean the resources from
 *
 *  Free all receive software resources
 **/
void igb_free_rx_resources(struct igb_ring *rx_ring)
{
	igb_clean_rx_ring(rx_ring);

	rx_ring->xdp_prog = NULL;
	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
	vfree(rx_ring->rx_buffer_info);
	rx_ring->rx_buffer_info = NULL;

	/* if not set, then don't free */
	if (!rx_ring->desc)
		return;

	dma_free_coherent(rx_ring->dev, rx_ring->size,
			  rx_ring->desc, rx_ring->dma);

	rx_ring->desc = NULL;
}

/**
 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 *  @adapter: board private structure
 *
 *  Free all receive software resources
 **/
static void igb_free_all_rx_resources(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
		if (adapter->rx_ring[i])
			igb_free_rx_resources(adapter->rx_ring[i]);
}

/**
 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 *  @rx_ring: ring to free buffers from
 **/
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
{
	u16 i = rx_ring->next_to_clean;

	dev_kfree_skb(rx_ring->skb);
	rx_ring->skb = NULL;

	/* Free all the Rx ring sk_buffs */
	while (i != rx_ring->next_to_alloc) {
		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];

		/* Invalidate cache lines that may have been written to by
		 * device so that we avoid corrupting memory.
		 */
		dma_sync_single_range_for_cpu(rx_ring->dev,
					      buffer_info->dma,
					      buffer_info->page_offset,
					      igb_rx_bufsz(rx_ring),
					      DMA_FROM_DEVICE);

		/* free resources associated with mapping */
		dma_unmap_page_attrs(rx_ring->dev,
				     buffer_info->dma,
				     igb_rx_pg_size(rx_ring),
				     DMA_FROM_DEVICE,
				     IGB_RX_DMA_ATTR);
		__page_frag_cache_drain(buffer_info->page,
					buffer_info->pagecnt_bias);

		i++;
		if (i == rx_ring->count)
			i = 0;
	}

	rx_ring->next_to_alloc = 0;
	rx_ring->next_to_clean = 0;
	rx_ring->next_to_use = 0;
}

/**
 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 *  @adapter: board private structure
 **/
static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
{
	int i;

	for (i = 0; i < adapter->num_rx_queues; i++)
		if (adapter->rx_ring[i])
			igb_clean_rx_ring(adapter->rx_ring[i]);
}

/**
 *  igb_set_mac - Change the Ethernet Address of the NIC
 *  @netdev: network interface device structure
 *  @p: pointer to an address structure
 *
 *  Returns 0 on success, negative on failure
 **/
static int igb_set_mac(struct net_device *netdev, void *p)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct sockaddr *addr = p;

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);

	/* set the correct pool for the new PF MAC address in entry 0 */
	igb_set_default_mac_filter(adapter);

	return 0;
}

/**
 *  igb_write_mc_addr_list - write multicast addresses to MTA
 *  @netdev: network interface device structure
 *
 *  Writes multicast address list to the MTA hash table.
 *  Returns: -ENOMEM on failure
 *           0 on no addresses written
 *           X on writing X addresses to MTA
 **/
static int igb_write_mc_addr_list(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct netdev_hw_addr *ha;
	u8  *mta_list;
	int i;

	if (netdev_mc_empty(netdev)) {
		/* nothing to program, so clear mc list */
		igb_update_mc_addr_list(hw, NULL, 0);
		igb_restore_vf_multicasts(adapter);
		return 0;
	}

	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
	if (!mta_list)
		return -ENOMEM;

	/* The shared function expects a packed array of only addresses. */
	i = 0;
	netdev_for_each_mc_addr(ha, netdev)
		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);

	igb_update_mc_addr_list(hw, mta_list, i);
	kfree(mta_list);

	return netdev_mc_count(netdev);
}

static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 i, pf_id;

	switch (hw->mac.type) {
	case e1000_i210:
	case e1000_i211:
	case e1000_i350:
		/* VLAN filtering needed for VLAN prio filter */
		if (adapter->netdev->features & NETIF_F_NTUPLE)
			break;
		fallthrough;
	case e1000_82576:
	case e1000_82580:
	case e1000_i354:
		/* VLAN filtering needed for pool filtering */
		if (adapter->vfs_allocated_count)
			break;
		fallthrough;
	default:
		return 1;
	}

	/* We are already in VLAN promisc, nothing to do */
	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
		return 0;

	if (!adapter->vfs_allocated_count)
		goto set_vfta;

	/* Add PF to all active pools */
	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;

	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
		u32 vlvf = rd32(E1000_VLVF(i));

		vlvf |= BIT(pf_id);
		wr32(E1000_VLVF(i), vlvf);
	}

set_vfta:
	/* Set all bits in the VLAN filter table array */
	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
		hw->mac.ops.write_vfta(hw, i, ~0U);

	/* Set flag so we don't redo unnecessary work */
	adapter->flags |= IGB_FLAG_VLAN_PROMISC;

	return 0;
}

#define VFTA_BLOCK_SIZE 8
static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
	u32 vid_start = vfta_offset * 32;
	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
	u32 i, vid, word, bits, pf_id;

	/* guarantee that we don't scrub out management VLAN */
	vid = adapter->mng_vlan_id;
	if (vid >= vid_start && vid < vid_end)
		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);

	if (!adapter->vfs_allocated_count)
		goto set_vfta;

	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;

	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
		u32 vlvf = rd32(E1000_VLVF(i));

		/* pull VLAN ID from VLVF */
		vid = vlvf & VLAN_VID_MASK;

		/* only concern ourselves with a certain range */
		if (vid < vid_start || vid >= vid_end)
			continue;

		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
			/* record VLAN ID in VFTA */
			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);

			/* if PF is part of this then continue */
			if (test_bit(vid, adapter->active_vlans))
				continue;
		}

		/* remove PF from the pool */
		bits = ~BIT(pf_id);
		bits &= rd32(E1000_VLVF(i));
		wr32(E1000_VLVF(i), bits);
	}

set_vfta:
	/* extract values from active_vlans and write back to VFTA */
	for (i = VFTA_BLOCK_SIZE; i--;) {
		vid = (vfta_offset + i) * 32;
		word = vid / BITS_PER_LONG;
		bits = vid % BITS_PER_LONG;

		vfta[i] |= adapter->active_vlans[word] >> bits;

		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
	}
}

static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
{
	u32 i;

	/* We are not in VLAN promisc, nothing to do */
	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
		return;

	/* Set flag so we don't redo unnecessary work */
	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;

	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
		igb_scrub_vfta(adapter, i);
}

/**
 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 *  @netdev: network interface device structure
 *
 *  The set_rx_mode entry point is called whenever the unicast or multicast
 *  address lists or the network interface flags are updated.  This routine is
 *  responsible for configuring the hardware for proper unicast, multicast,
 *  promiscuous mode, and all-multi behavior.
 **/
static void igb_set_rx_mode(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	unsigned int vfn = adapter->vfs_allocated_count;
	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
	int count;

	/* Check for Promiscuous and All Multicast modes */
	if (netdev->flags & IFF_PROMISC) {
		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
		vmolr |= E1000_VMOLR_MPME;

		/* enable use of UTA filter to force packets to default pool */
		if (hw->mac.type == e1000_82576)
			vmolr |= E1000_VMOLR_ROPE;
	} else {
		if (netdev->flags & IFF_ALLMULTI) {
			rctl |= E1000_RCTL_MPE;
			vmolr |= E1000_VMOLR_MPME;
		} else {
			/* Write addresses to the MTA, if the attempt fails
			 * then we should just turn on promiscuous mode so
			 * that we can at least receive multicast traffic
			 */
			count = igb_write_mc_addr_list(netdev);
			if (count < 0) {
				rctl |= E1000_RCTL_MPE;
				vmolr |= E1000_VMOLR_MPME;
			} else if (count) {
				vmolr |= E1000_VMOLR_ROMPE;
			}
		}
	}

	/* Write addresses to available RAR registers, if there is not
	 * sufficient space to store all the addresses then enable
	 * unicast promiscuous mode
	 */
	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
		rctl |= E1000_RCTL_UPE;
		vmolr |= E1000_VMOLR_ROPE;
	}

	/* enable VLAN filtering by default */
	rctl |= E1000_RCTL_VFE;

	/* disable VLAN filtering for modes that require it */
	if ((netdev->flags & IFF_PROMISC) ||
	    (netdev->features & NETIF_F_RXALL)) {
		/* if we fail to set all rules then just clear VFE */
		if (igb_vlan_promisc_enable(adapter))
			rctl &= ~E1000_RCTL_VFE;
	} else {
		igb_vlan_promisc_disable(adapter);
	}

	/* update state of unicast, multicast, and VLAN filtering modes */
	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
				     E1000_RCTL_VFE);
	wr32(E1000_RCTL, rctl);

#if (PAGE_SIZE < 8192)
	if (!adapter->vfs_allocated_count) {
		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
			rlpml = IGB_MAX_FRAME_BUILD_SKB;
	}
#endif
	wr32(E1000_RLPML, rlpml);

	/* In order to support SR-IOV and eventually VMDq it is necessary to set
	 * the VMOLR to enable the appropriate modes.  Without this workaround
	 * we will have issues with VLAN tag stripping not being done for frames
	 * that are only arriving because we are the default pool
	 */
	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
		return;

	/* set UTA to appropriate mode */
	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));

	vmolr |= rd32(E1000_VMOLR(vfn)) &
		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);

	/* enable Rx jumbo frames, restrict as needed to support build_skb */
	vmolr &= ~E1000_VMOLR_RLPML_MASK;
#if (PAGE_SIZE < 8192)
	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
	else
#endif
		vmolr |= MAX_JUMBO_FRAME_SIZE;
	vmolr |= E1000_VMOLR_LPE;

	wr32(E1000_VMOLR(vfn), vmolr);

	igb_restore_vf_multicasts(adapter);
}

static void igb_check_wvbr(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 wvbr = 0;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		wvbr = rd32(E1000_WVBR);
		if (!wvbr)
			return;
		break;
	default:
		break;
	}

	adapter->wvbr |= wvbr;
}

#define IGB_STAGGERED_QUEUE_OFFSET 8

static void igb_spoof_check(struct igb_adapter *adapter)
{
	int j;

	if (!adapter->wvbr)
		return;

	for (j = 0; j < adapter->vfs_allocated_count; j++) {
		if (adapter->wvbr & BIT(j) ||
		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
			dev_warn(&adapter->pdev->dev,
				"Spoof event(s) detected on VF %d\n", j);
			adapter->wvbr &=
				~(BIT(j) |
				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
		}
	}
}

/* Need to wait a few seconds after link up to get diagnostic information from
 * the phy
 */
static void igb_update_phy_info(struct timer_list *t)
{
	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
	igb_get_phy_info(&adapter->hw);
}

/**
 *  igb_has_link - check shared code for link and determine up/down
 *  @adapter: pointer to driver private info
 **/
bool igb_has_link(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	bool link_active = false;

	/* get_link_status is set on LSC (link status) interrupt or
	 * rx sequence error interrupt.  get_link_status will stay
	 * false until the e1000_check_for_link establishes link
	 * for copper adapters ONLY
	 */
	switch (hw->phy.media_type) {
	case e1000_media_type_copper:
		if (!hw->mac.get_link_status)
			return true;
		fallthrough;
	case e1000_media_type_internal_serdes:
		hw->mac.ops.check_for_link(hw);
		link_active = !hw->mac.get_link_status;
		break;
	default:
	case e1000_media_type_unknown:
		break;
	}

	if (((hw->mac.type == e1000_i210) ||
	     (hw->mac.type == e1000_i211)) &&
	     (hw->phy.id == I210_I_PHY_ID)) {
		if (!netif_carrier_ok(adapter->netdev)) {
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
			adapter->link_check_timeout = jiffies;
		}
	}

	return link_active;
}

static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
{
	bool ret = false;
	u32 ctrl_ext, thstat;

	/* check for thermal sensor event on i350 copper only */
	if (hw->mac.type == e1000_i350) {
		thstat = rd32(E1000_THSTAT);
		ctrl_ext = rd32(E1000_CTRL_EXT);

		if ((hw->phy.media_type == e1000_media_type_copper) &&
		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
			ret = !!(thstat & event);
	}

	return ret;
}

/**
 *  igb_check_lvmmc - check for malformed packets received
 *  and indicated in LVMMC register
 *  @adapter: pointer to adapter
 **/
static void igb_check_lvmmc(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 lvmmc;

	lvmmc = rd32(E1000_LVMMC);
	if (lvmmc) {
		if (unlikely(net_ratelimit())) {
			netdev_warn(adapter->netdev,
				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
				    lvmmc);
		}
	}
}

/**
 *  igb_watchdog - Timer Call-back
 *  @t: pointer to timer_list containing our private info pointer
 **/
static void igb_watchdog(struct timer_list *t)
{
	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
	/* Do the rest outside of interrupt context */
	schedule_work(&adapter->watchdog_task);
}

static void igb_watchdog_task(struct work_struct *work)
{
	struct igb_adapter *adapter = container_of(work,
						   struct igb_adapter,
						   watchdog_task);
	struct e1000_hw *hw = &adapter->hw;
	struct e1000_phy_info *phy = &hw->phy;
	struct net_device *netdev = adapter->netdev;
	u32 link;
	int i;
	u32 connsw;
	u16 phy_data, retry_count = 20;

	link = igb_has_link(adapter);

	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
		else
			link = false;
	}

	/* Force link down if we have fiber to swap to */
	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
		if (hw->phy.media_type == e1000_media_type_copper) {
			connsw = rd32(E1000_CONNSW);
			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
				link = 0;
		}
	}
	if (link) {
		/* Perform a reset if the media type changed. */
		if (hw->dev_spec._82575.media_changed) {
			hw->dev_spec._82575.media_changed = false;
			adapter->flags |= IGB_FLAG_MEDIA_RESET;
			igb_reset(adapter);
		}
		/* Cancel scheduled suspend requests. */
		pm_runtime_resume(netdev->dev.parent);

		if (!netif_carrier_ok(netdev)) {
			u32 ctrl;

			hw->mac.ops.get_speed_and_duplex(hw,
							 &adapter->link_speed,
							 &adapter->link_duplex);

			ctrl = rd32(E1000_CTRL);
			/* Links status message must follow this format */
			netdev_info(netdev,
			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
			       netdev->name,
			       adapter->link_speed,
			       adapter->link_duplex == FULL_DUPLEX ?
			       "Full" : "Half",
			       (ctrl & E1000_CTRL_TFCE) &&
			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");

			/* disable EEE if enabled */
			if ((adapter->flags & IGB_FLAG_EEE) &&
				(adapter->link_duplex == HALF_DUPLEX)) {
				dev_info(&adapter->pdev->dev,
				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
				adapter->hw.dev_spec._82575.eee_disable = true;
				adapter->flags &= ~IGB_FLAG_EEE;
			}

			/* check if SmartSpeed worked */
			igb_check_downshift(hw);
			if (phy->speed_downgraded)
				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");

			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_LINK_THROTTLE))
				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");

			/* adjust timeout factor according to speed/duplex */
			adapter->tx_timeout_factor = 1;
			switch (adapter->link_speed) {
			case SPEED_10:
				adapter->tx_timeout_factor = 14;
				break;
			case SPEED_100:
				/* maybe add some timeout factor ? */
				break;
			}

			if (adapter->link_speed != SPEED_1000)
				goto no_wait;

			/* wait for Remote receiver status OK */
retry_read_status:
			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
					      &phy_data)) {
				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
				    retry_count) {
					msleep(100);
					retry_count--;
					goto retry_read_status;
				} else if (!retry_count) {
					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
				}
			} else {
				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
			}
no_wait:
			netif_carrier_on(netdev);

			igb_ping_all_vfs(adapter);
			igb_check_vf_rate_limit(adapter);

			/* link state has changed, schedule phy info update */
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));
		}
	} else {
		if (netif_carrier_ok(netdev)) {
			adapter->link_speed = 0;
			adapter->link_duplex = 0;

			/* check for thermal sensor event */
			if (igb_thermal_sensor_event(hw,
			    E1000_THSTAT_PWR_DOWN)) {
				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
			}

			/* Links status message must follow this format */
			netdev_info(netdev, "igb: %s NIC Link is Down\n",
			       netdev->name);
			netif_carrier_off(netdev);

			igb_ping_all_vfs(adapter);

			/* link state has changed, schedule phy info update */
			if (!test_bit(__IGB_DOWN, &adapter->state))
				mod_timer(&adapter->phy_info_timer,
					  round_jiffies(jiffies + 2 * HZ));

			/* link is down, time to check for alternate media */
			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
				igb_check_swap_media(adapter);
				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
					schedule_work(&adapter->reset_task);
					/* return immediately */
					return;
				}
			}
			pm_schedule_suspend(netdev->dev.parent,
					    MSEC_PER_SEC * 5);

		/* also check for alternate media here */
		} else if (!netif_carrier_ok(netdev) &&
			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
			igb_check_swap_media(adapter);
			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
				schedule_work(&adapter->reset_task);
				/* return immediately */
				return;
			}
		}
	}

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter);
	spin_unlock(&adapter->stats64_lock);

	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *tx_ring = adapter->tx_ring[i];
		if (!netif_carrier_ok(netdev)) {
			/* We've lost link, so the controller stops DMA,
			 * but we've got queued Tx work that's never going
			 * to get done, so reset controller to flush Tx.
			 * (Do the reset outside of interrupt context).
			 */
			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
				adapter->tx_timeout_count++;
				schedule_work(&adapter->reset_task);
				/* return immediately since reset is imminent */
				return;
			}
		}

		/* Force detection of hung controller every watchdog period */
		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
	}

	/* Cause software interrupt to ensure Rx ring is cleaned */
	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
		u32 eics = 0;

		for (i = 0; i < adapter->num_q_vectors; i++)
			eics |= adapter->q_vector[i]->eims_value;
		wr32(E1000_EICS, eics);
	} else {
		wr32(E1000_ICS, E1000_ICS_RXDMT0);
	}

	igb_spoof_check(adapter);
	igb_ptp_rx_hang(adapter);
	igb_ptp_tx_hang(adapter);

	/* Check LVMMC register on i350/i354 only */
	if ((adapter->hw.mac.type == e1000_i350) ||
	    (adapter->hw.mac.type == e1000_i354))
		igb_check_lvmmc(adapter);

	/* Reset the timer */
	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies +  HZ));
		else
			mod_timer(&adapter->watchdog_timer,
				  round_jiffies(jiffies + 2 * HZ));
	}
}

enum latency_range {
	lowest_latency = 0,
	low_latency = 1,
	bulk_latency = 2,
	latency_invalid = 255
};

/**
 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 *  @q_vector: pointer to q_vector
 *
 *  Stores a new ITR value based on strictly on packet size.  This
 *  algorithm is less sophisticated than that used in igb_update_itr,
 *  due to the difficulty of synchronizing statistics across multiple
 *  receive rings.  The divisors and thresholds used by this function
 *  were determined based on theoretical maximum wire speed and testing
 *  data, in order to minimize response time while increasing bulk
 *  throughput.
 *  This functionality is controlled by ethtool's coalescing settings.
 *  NOTE:  This function is called only when operating in a multiqueue
 *         receive environment.
 **/
static void igb_update_ring_itr(struct igb_q_vector *q_vector)
{
	int new_val = q_vector->itr_val;
	int avg_wire_size = 0;
	struct igb_adapter *adapter = q_vector->adapter;
	unsigned int packets;

	/* For non-gigabit speeds, just fix the interrupt rate at 4000
	 * ints/sec - ITR timer value of 120 ticks.
	 */
	if (adapter->link_speed != SPEED_1000) {
		new_val = IGB_4K_ITR;
		goto set_itr_val;
	}

	packets = q_vector->rx.total_packets;
	if (packets)
		avg_wire_size = q_vector->rx.total_bytes / packets;

	packets = q_vector->tx.total_packets;
	if (packets)
		avg_wire_size = max_t(u32, avg_wire_size,
				      q_vector->tx.total_bytes / packets);

	/* if avg_wire_size isn't set no work was done */
	if (!avg_wire_size)
		goto clear_counts;

	/* Add 24 bytes to size to account for CRC, preamble, and gap */
	avg_wire_size += 24;

	/* Don't starve jumbo frames */
	avg_wire_size = min(avg_wire_size, 3000);

	/* Give a little boost to mid-size frames */
	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
		new_val = avg_wire_size / 3;
	else
		new_val = avg_wire_size / 2;

	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (new_val < IGB_20K_ITR &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		new_val = IGB_20K_ITR;

set_itr_val:
	if (new_val != q_vector->itr_val) {
		q_vector->itr_val = new_val;
		q_vector->set_itr = 1;
	}
clear_counts:
	q_vector->rx.total_bytes = 0;
	q_vector->rx.total_packets = 0;
	q_vector->tx.total_bytes = 0;
	q_vector->tx.total_packets = 0;
}

/**
 *  igb_update_itr - update the dynamic ITR value based on statistics
 *  @q_vector: pointer to q_vector
 *  @ring_container: ring info to update the itr for
 *
 *  Stores a new ITR value based on packets and byte
 *  counts during the last interrupt.  The advantage of per interrupt
 *  computation is faster updates and more accurate ITR for the current
 *  traffic pattern.  Constants in this function were computed
 *  based on theoretical maximum wire speed and thresholds were set based
 *  on testing data as well as attempting to minimize response time
 *  while increasing bulk throughput.
 *  This functionality is controlled by ethtool's coalescing settings.
 *  NOTE:  These calculations are only valid when operating in a single-
 *         queue environment.
 **/
static void igb_update_itr(struct igb_q_vector *q_vector,
			   struct igb_ring_container *ring_container)
{
	unsigned int packets = ring_container->total_packets;
	unsigned int bytes = ring_container->total_bytes;
	u8 itrval = ring_container->itr;

	/* no packets, exit with status unchanged */
	if (packets == 0)
		return;

	switch (itrval) {
	case lowest_latency:
		/* handle TSO and jumbo frames */
		if (bytes/packets > 8000)
			itrval = bulk_latency;
		else if ((packets < 5) && (bytes > 512))
			itrval = low_latency;
		break;
	case low_latency:  /* 50 usec aka 20000 ints/s */
		if (bytes > 10000) {
			/* this if handles the TSO accounting */
			if (bytes/packets > 8000)
				itrval = bulk_latency;
			else if ((packets < 10) || ((bytes/packets) > 1200))
				itrval = bulk_latency;
			else if ((packets > 35))
				itrval = lowest_latency;
		} else if (bytes/packets > 2000) {
			itrval = bulk_latency;
		} else if (packets <= 2 && bytes < 512) {
			itrval = lowest_latency;
		}
		break;
	case bulk_latency: /* 250 usec aka 4000 ints/s */
		if (bytes > 25000) {
			if (packets > 35)
				itrval = low_latency;
		} else if (bytes < 1500) {
			itrval = low_latency;
		}
		break;
	}

	/* clear work counters since we have the values we need */
	ring_container->total_bytes = 0;
	ring_container->total_packets = 0;

	/* write updated itr to ring container */
	ring_container->itr = itrval;
}

static void igb_set_itr(struct igb_q_vector *q_vector)
{
	struct igb_adapter *adapter = q_vector->adapter;
	u32 new_itr = q_vector->itr_val;
	u8 current_itr = 0;

	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
	if (adapter->link_speed != SPEED_1000) {
		current_itr = 0;
		new_itr = IGB_4K_ITR;
		goto set_itr_now;
	}

	igb_update_itr(q_vector, &q_vector->tx);
	igb_update_itr(q_vector, &q_vector->rx);

	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);

	/* conservative mode (itr 3) eliminates the lowest_latency setting */
	if (current_itr == lowest_latency &&
	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
		current_itr = low_latency;

	switch (current_itr) {
	/* counts and packets in update_itr are dependent on these numbers */
	case lowest_latency:
		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
		break;
	case low_latency:
		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
		break;
	case bulk_latency:
		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
		break;
	default:
		break;
	}

set_itr_now:
	if (new_itr != q_vector->itr_val) {
		/* this attempts to bias the interrupt rate towards Bulk
		 * by adding intermediate steps when interrupt rate is
		 * increasing
		 */
		new_itr = new_itr > q_vector->itr_val ?
			  max((new_itr * q_vector->itr_val) /
			  (new_itr + (q_vector->itr_val >> 2)),
			  new_itr) : new_itr;
		/* Don't write the value here; it resets the adapter's
		 * internal timer, and causes us to delay far longer than
		 * we should between interrupts.  Instead, we write the ITR
		 * value at the beginning of the next interrupt so the timing
		 * ends up being correct.
		 */
		q_vector->itr_val = new_itr;
		q_vector->set_itr = 1;
	}
}

static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
			    struct igb_tx_buffer *first,
			    u32 vlan_macip_lens, u32 type_tucmd,
			    u32 mss_l4len_idx)
{
	struct e1000_adv_tx_context_desc *context_desc;
	u16 i = tx_ring->next_to_use;
	struct timespec64 ts;

	context_desc = IGB_TX_CTXTDESC(tx_ring, i);

	i++;
	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;

	/* set bits to identify this as an advanced context descriptor */
	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;

	/* For 82575, context index must be unique per ring. */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
		mss_l4len_idx |= tx_ring->reg_idx << 4;

	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);

	/* We assume there is always a valid tx time available. Invalid times
	 * should have been handled by the upper layers.
	 */
	if (tx_ring->launchtime_enable) {
		ts = ktime_to_timespec64(first->skb->tstamp);
		skb_txtime_consumed(first->skb);
		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
	} else {
		context_desc->seqnum_seed = 0;
	}
}

static int igb_tso(struct igb_ring *tx_ring,
		   struct igb_tx_buffer *first,
		   u8 *hdr_len)
{
	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
	struct sk_buff *skb = first->skb;
	union {
		struct iphdr *v4;
		struct ipv6hdr *v6;
		unsigned char *hdr;
	} ip;
	union {
		struct tcphdr *tcp;
		struct udphdr *udp;
		unsigned char *hdr;
	} l4;
	u32 paylen, l4_offset;
	int err;

	if (skb->ip_summed != CHECKSUM_PARTIAL)
		return 0;

	if (!skb_is_gso(skb))
		return 0;

	err = skb_cow_head(skb, 0);
	if (err < 0)
		return err;

	ip.hdr = skb_network_header(skb);
	l4.hdr = skb_checksum_start(skb);

	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;

	/* initialize outer IP header fields */
	if (ip.v4->version == 4) {
		unsigned char *csum_start = skb_checksum_start(skb);
		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);

		/* IP header will have to cancel out any data that
		 * is not a part of the outer IP header
		 */
		ip.v4->check = csum_fold(csum_partial(trans_start,
						      csum_start - trans_start,
						      0));
		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;

		ip.v4->tot_len = 0;
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM |
				   IGB_TX_FLAGS_IPV4;
	} else {
		ip.v6->payload_len = 0;
		first->tx_flags |= IGB_TX_FLAGS_TSO |
				   IGB_TX_FLAGS_CSUM;
	}

	/* determine offset of inner transport header */
	l4_offset = l4.hdr - skb->data;

	/* remove payload length from inner checksum */
	paylen = skb->len - l4_offset;
	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
		/* compute length of segmentation header */
		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
		csum_replace_by_diff(&l4.tcp->check,
			(__force __wsum)htonl(paylen));
	} else {
		/* compute length of segmentation header */
		*hdr_len = sizeof(*l4.udp) + l4_offset;
		csum_replace_by_diff(&l4.udp->check,
				     (__force __wsum)htonl(paylen));
	}

	/* update gso size and bytecount with header size */
	first->gso_segs = skb_shinfo(skb)->gso_segs;
	first->bytecount += (first->gso_segs - 1) * *hdr_len;

	/* MSS L4LEN IDX */
	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;

	/* VLAN MACLEN IPLEN */
	vlan_macip_lens = l4.hdr - ip.hdr;
	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;

	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
			type_tucmd, mss_l4len_idx);

	return 1;
}

static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
{
	struct sk_buff *skb = first->skb;
	u32 vlan_macip_lens = 0;
	u32 type_tucmd = 0;

	if (skb->ip_summed != CHECKSUM_PARTIAL) {
csum_failed:
		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
		    !tx_ring->launchtime_enable)
			return;
		goto no_csum;
	}

	switch (skb->csum_offset) {
	case offsetof(struct tcphdr, check):
		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
		fallthrough;
	case offsetof(struct udphdr, check):
		break;
	case offsetof(struct sctphdr, checksum):
		/* validate that this is actually an SCTP request */
		if (skb_csum_is_sctp(skb)) {
			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
			break;
		}
		fallthrough;
	default:
		skb_checksum_help(skb);
		goto csum_failed;
	}

	/* update TX checksum flag */
	first->tx_flags |= IGB_TX_FLAGS_CSUM;
	vlan_macip_lens = skb_checksum_start_offset(skb) -
			  skb_network_offset(skb);
no_csum:
	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;

	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
}

#define IGB_SET_FLAG(_input, _flag, _result) \
	((_flag <= _result) ? \
	 ((u32)(_input & _flag) * (_result / _flag)) : \
	 ((u32)(_input & _flag) / (_flag / _result)))

static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
{
	/* set type for advanced descriptor with frame checksum insertion */
	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
		       E1000_ADVTXD_DCMD_DEXT |
		       E1000_ADVTXD_DCMD_IFCS;

	/* set HW vlan bit if vlan is present */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
				 (E1000_ADVTXD_DCMD_VLE));

	/* set segmentation bits for TSO */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
				 (E1000_ADVTXD_DCMD_TSE));

	/* set timestamp bit if present */
	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
				 (E1000_ADVTXD_MAC_TSTAMP));

	/* insert frame checksum */
	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);

	return cmd_type;
}

static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
				 union e1000_adv_tx_desc *tx_desc,
				 u32 tx_flags, unsigned int paylen)
{
	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;

	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
		olinfo_status |= tx_ring->reg_idx << 4;

	/* insert L4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_CSUM,
				      (E1000_TXD_POPTS_TXSM << 8));

	/* insert IPv4 checksum */
	olinfo_status |= IGB_SET_FLAG(tx_flags,
				      IGB_TX_FLAGS_IPV4,
				      (E1000_TXD_POPTS_IXSM << 8));

	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
}

static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
	struct net_device *netdev = tx_ring->netdev;

	netif_stop_subqueue(netdev, tx_ring->queue_index);

	/* Herbert's original patch had:
	 *  smp_mb__after_netif_stop_queue();
	 * but since that doesn't exist yet, just open code it.
	 */
	smp_mb();

	/* We need to check again in a case another CPU has just
	 * made room available.
	 */
	if (igb_desc_unused(tx_ring) < size)
		return -EBUSY;

	/* A reprieve! */
	netif_wake_subqueue(netdev, tx_ring->queue_index);

	u64_stats_update_begin(&tx_ring->tx_syncp2);
	tx_ring->tx_stats.restart_queue2++;
	u64_stats_update_end(&tx_ring->tx_syncp2);

	return 0;
}

static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
{
	if (igb_desc_unused(tx_ring) >= size)
		return 0;
	return __igb_maybe_stop_tx(tx_ring, size);
}

static int igb_tx_map(struct igb_ring *tx_ring,
		      struct igb_tx_buffer *first,
		      const u8 hdr_len)
{
	struct sk_buff *skb = first->skb;
	struct igb_tx_buffer *tx_buffer;
	union e1000_adv_tx_desc *tx_desc;
	skb_frag_t *frag;
	dma_addr_t dma;
	unsigned int data_len, size;
	u32 tx_flags = first->tx_flags;
	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
	u16 i = tx_ring->next_to_use;

	tx_desc = IGB_TX_DESC(tx_ring, i);

	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);

	size = skb_headlen(skb);
	data_len = skb->data_len;

	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);

	tx_buffer = first;

	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
		if (dma_mapping_error(tx_ring->dev, dma))
			goto dma_error;

		/* record length, and DMA address */
		dma_unmap_len_set(tx_buffer, len, size);
		dma_unmap_addr_set(tx_buffer, dma, dma);

		tx_desc->read.buffer_addr = cpu_to_le64(dma);

		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
			tx_desc->read.cmd_type_len =
				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);

			i++;
			tx_desc++;
			if (i == tx_ring->count) {
				tx_desc = IGB_TX_DESC(tx_ring, 0);
				i = 0;
			}
			tx_desc->read.olinfo_status = 0;

			dma += IGB_MAX_DATA_PER_TXD;
			size -= IGB_MAX_DATA_PER_TXD;

			tx_desc->read.buffer_addr = cpu_to_le64(dma);
		}

		if (likely(!data_len))
			break;

		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);

		i++;
		tx_desc++;
		if (i == tx_ring->count) {
			tx_desc = IGB_TX_DESC(tx_ring, 0);
			i = 0;
		}
		tx_desc->read.olinfo_status = 0;

		size = skb_frag_size(frag);
		data_len -= size;

		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
				       size, DMA_TO_DEVICE);

		tx_buffer = &tx_ring->tx_buffer_info[i];
	}

	/* write last descriptor with RS and EOP bits */
	cmd_type |= size | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);

	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);

	/* set the timestamp */
	first->time_stamp = jiffies;

	skb_tx_timestamp(skb);

	/* Force memory writes to complete before letting h/w know there
	 * are new descriptors to fetch.  (Only applicable for weak-ordered
	 * memory model archs, such as IA-64).
	 *
	 * We also need this memory barrier to make certain all of the
	 * status bits have been updated before next_to_watch is written.
	 */
	dma_wmb();

	/* set next_to_watch value indicating a packet is present */
	first->next_to_watch = tx_desc;

	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_ring->next_to_use = i;

	/* Make sure there is space in the ring for the next send. */
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);

	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
		writel(i, tx_ring->tail);
	}
	return 0;

dma_error:
	dev_err(tx_ring->dev, "TX DMA map failed\n");
	tx_buffer = &tx_ring->tx_buffer_info[i];

	/* clear dma mappings for failed tx_buffer_info map */
	while (tx_buffer != first) {
		if (dma_unmap_len(tx_buffer, len))
			dma_unmap_page(tx_ring->dev,
				       dma_unmap_addr(tx_buffer, dma),
				       dma_unmap_len(tx_buffer, len),
				       DMA_TO_DEVICE);
		dma_unmap_len_set(tx_buffer, len, 0);

		if (i-- == 0)
			i += tx_ring->count;
		tx_buffer = &tx_ring->tx_buffer_info[i];
	}

	if (dma_unmap_len(tx_buffer, len))
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
				 DMA_TO_DEVICE);
	dma_unmap_len_set(tx_buffer, len, 0);

	dev_kfree_skb_any(tx_buffer->skb);
	tx_buffer->skb = NULL;

	tx_ring->next_to_use = i;

	return -1;
}

int igb_xmit_xdp_ring(struct igb_adapter *adapter,
		      struct igb_ring *tx_ring,
		      struct xdp_frame *xdpf)
{
	union e1000_adv_tx_desc *tx_desc;
	u32 len, cmd_type, olinfo_status;
	struct igb_tx_buffer *tx_buffer;
	dma_addr_t dma;
	u16 i;

	len = xdpf->len;

	if (unlikely(!igb_desc_unused(tx_ring)))
		return IGB_XDP_CONSUMED;

	dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
	if (dma_mapping_error(tx_ring->dev, dma))
		return IGB_XDP_CONSUMED;

	/* record the location of the first descriptor for this packet */
	tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	tx_buffer->bytecount = len;
	tx_buffer->gso_segs = 1;
	tx_buffer->protocol = 0;

	i = tx_ring->next_to_use;
	tx_desc = IGB_TX_DESC(tx_ring, i);

	dma_unmap_len_set(tx_buffer, len, len);
	dma_unmap_addr_set(tx_buffer, dma, dma);
	tx_buffer->type = IGB_TYPE_XDP;
	tx_buffer->xdpf = xdpf;

	tx_desc->read.buffer_addr = cpu_to_le64(dma);

	/* put descriptor type bits */
	cmd_type = E1000_ADVTXD_DTYP_DATA |
		   E1000_ADVTXD_DCMD_DEXT |
		   E1000_ADVTXD_DCMD_IFCS;
	cmd_type |= len | IGB_TXD_DCMD;
	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);

	olinfo_status = len << E1000_ADVTXD_PAYLEN_SHIFT;
	/* 82575 requires a unique index per ring */
	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
		olinfo_status |= tx_ring->reg_idx << 4;

	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);

	netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);

	/* set the timestamp */
	tx_buffer->time_stamp = jiffies;

	/* Avoid any potential race with xdp_xmit and cleanup */
	smp_wmb();

	/* set next_to_watch value indicating a packet is present */
	i++;
	if (i == tx_ring->count)
		i = 0;

	tx_buffer->next_to_watch = tx_desc;
	tx_ring->next_to_use = i;

	/* Make sure there is space in the ring for the next send. */
	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);

	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
		writel(i, tx_ring->tail);

	return IGB_XDP_TX;
}

netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
				struct igb_ring *tx_ring)
{
	struct igb_tx_buffer *first;
	int tso;
	u32 tx_flags = 0;
	unsigned short f;
	u16 count = TXD_USE_COUNT(skb_headlen(skb));
	__be16 protocol = vlan_get_protocol(skb);
	u8 hdr_len = 0;

	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
	 *       + 2 desc gap to keep tail from touching head,
	 *       + 1 desc for context descriptor,
	 * otherwise try next time
	 */
	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
		count += TXD_USE_COUNT(skb_frag_size(
						&skb_shinfo(skb)->frags[f]));

	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
		/* this is a hard error */
		return NETDEV_TX_BUSY;
	}

	/* record the location of the first descriptor for this packet */
	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
	first->type = IGB_TYPE_SKB;
	first->skb = skb;
	first->bytecount = skb->len;
	first->gso_segs = 1;

	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);

		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
					   &adapter->state)) {
			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
			tx_flags |= IGB_TX_FLAGS_TSTAMP;

			adapter->ptp_tx_skb = skb_get(skb);
			adapter->ptp_tx_start = jiffies;
			if (adapter->hw.mac.type == e1000_82576)
				schedule_work(&adapter->ptp_tx_work);
		} else {
			adapter->tx_hwtstamp_skipped++;
		}
	}

	if (skb_vlan_tag_present(skb)) {
		tx_flags |= IGB_TX_FLAGS_VLAN;
		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
	}

	/* record initial flags and protocol */
	first->tx_flags = tx_flags;
	first->protocol = protocol;

	tso = igb_tso(tx_ring, first, &hdr_len);
	if (tso < 0)
		goto out_drop;
	else if (!tso)
		igb_tx_csum(tx_ring, first);

	if (igb_tx_map(tx_ring, first, hdr_len))
		goto cleanup_tx_tstamp;

	return NETDEV_TX_OK;

out_drop:
	dev_kfree_skb_any(first->skb);
	first->skb = NULL;
cleanup_tx_tstamp:
	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);

		dev_kfree_skb_any(adapter->ptp_tx_skb);
		adapter->ptp_tx_skb = NULL;
		if (adapter->hw.mac.type == e1000_82576)
			cancel_work_sync(&adapter->ptp_tx_work);
		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
	}

	return NETDEV_TX_OK;
}

static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
						    struct sk_buff *skb)
{
	unsigned int r_idx = skb->queue_mapping;

	if (r_idx >= adapter->num_tx_queues)
		r_idx = r_idx % adapter->num_tx_queues;

	return adapter->tx_ring[r_idx];
}

static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
				  struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
	 * in order to meet this minimum size requirement.
	 */
	if (skb_put_padto(skb, 17))
		return NETDEV_TX_OK;

	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
}

/**
 *  igb_tx_timeout - Respond to a Tx Hang
 *  @netdev: network interface device structure
 *  @txqueue: number of the Tx queue that hung (unused)
 **/
static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;

	/* Do the reset outside of interrupt context */
	adapter->tx_timeout_count++;

	if (hw->mac.type >= e1000_82580)
		hw->dev_spec._82575.global_device_reset = true;

	schedule_work(&adapter->reset_task);
	wr32(E1000_EICS,
	     (adapter->eims_enable_mask & ~adapter->eims_other));
}

static void igb_reset_task(struct work_struct *work)
{
	struct igb_adapter *adapter;
	adapter = container_of(work, struct igb_adapter, reset_task);

	rtnl_lock();
	/* If we're already down or resetting, just bail */
	if (test_bit(__IGB_DOWN, &adapter->state) ||
	    test_bit(__IGB_RESETTING, &adapter->state)) {
		rtnl_unlock();
		return;
	}

	igb_dump(adapter);
	netdev_err(adapter->netdev, "Reset adapter\n");
	igb_reinit_locked(adapter);
	rtnl_unlock();
}

/**
 *  igb_get_stats64 - Get System Network Statistics
 *  @netdev: network interface device structure
 *  @stats: rtnl_link_stats64 pointer
 **/
static void igb_get_stats64(struct net_device *netdev,
			    struct rtnl_link_stats64 *stats)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	spin_lock(&adapter->stats64_lock);
	igb_update_stats(adapter);
	memcpy(stats, &adapter->stats64, sizeof(*stats));
	spin_unlock(&adapter->stats64_lock);
}

/**
 *  igb_change_mtu - Change the Maximum Transfer Unit
 *  @netdev: network interface device structure
 *  @new_mtu: new value for maximum frame size
 *
 *  Returns 0 on success, negative on failure
 **/
static int igb_change_mtu(struct net_device *netdev, int new_mtu)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;

	if (adapter->xdp_prog) {
		int i;

		for (i = 0; i < adapter->num_rx_queues; i++) {
			struct igb_ring *ring = adapter->rx_ring[i];

			if (max_frame > igb_rx_bufsz(ring)) {
				netdev_warn(adapter->netdev,
					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
					    max_frame);
				return -EINVAL;
			}
		}
	}

	/* adjust max frame to be at least the size of a standard frame */
	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;

	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
		usleep_range(1000, 2000);

	/* igb_down has a dependency on max_frame_size */
	adapter->max_frame_size = max_frame;

	if (netif_running(netdev))
		igb_down(adapter);

	netdev_dbg(netdev, "changing MTU from %d to %d\n",
		   netdev->mtu, new_mtu);
	netdev->mtu = new_mtu;

	if (netif_running(netdev))
		igb_up(adapter);
	else
		igb_reset(adapter);

	clear_bit(__IGB_RESETTING, &adapter->state);

	return 0;
}

/**
 *  igb_update_stats - Update the board statistics counters
 *  @adapter: board private structure
 **/
void igb_update_stats(struct igb_adapter *adapter)
{
	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
	struct e1000_hw *hw = &adapter->hw;
	struct pci_dev *pdev = adapter->pdev;
	u32 reg, mpc;
	int i;
	u64 bytes, packets;
	unsigned int start;
	u64 _bytes, _packets;

	/* Prevent stats update while adapter is being reset, or if the pci
	 * connection is down.
	 */
	if (adapter->link_speed == 0)
		return;
	if (pci_channel_offline(pdev))
		return;

	bytes = 0;
	packets = 0;

	rcu_read_lock();
	for (i = 0; i < adapter->num_rx_queues; i++) {
		struct igb_ring *ring = adapter->rx_ring[i];
		u32 rqdpc = rd32(E1000_RQDPC(i));
		if (hw->mac.type >= e1000_i210)
			wr32(E1000_RQDPC(i), 0);

		if (rqdpc) {
			ring->rx_stats.drops += rqdpc;
			net_stats->rx_fifo_errors += rqdpc;
		}

		do {
			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
			_bytes = ring->rx_stats.bytes;
			_packets = ring->rx_stats.packets;
		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
		bytes += _bytes;
		packets += _packets;
	}

	net_stats->rx_bytes = bytes;
	net_stats->rx_packets = packets;

	bytes = 0;
	packets = 0;
	for (i = 0; i < adapter->num_tx_queues; i++) {
		struct igb_ring *ring = adapter->tx_ring[i];
		do {
			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
			_bytes = ring->tx_stats.bytes;
			_packets = ring->tx_stats.packets;
		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
		bytes += _bytes;
		packets += _packets;
	}
	net_stats->tx_bytes = bytes;
	net_stats->tx_packets = packets;
	rcu_read_unlock();

	/* read stats registers */
	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
	adapter->stats.gprc += rd32(E1000_GPRC);
	adapter->stats.gorc += rd32(E1000_GORCL);
	rd32(E1000_GORCH); /* clear GORCL */
	adapter->stats.bprc += rd32(E1000_BPRC);
	adapter->stats.mprc += rd32(E1000_MPRC);
	adapter->stats.roc += rd32(E1000_ROC);

	adapter->stats.prc64 += rd32(E1000_PRC64);
	adapter->stats.prc127 += rd32(E1000_PRC127);
	adapter->stats.prc255 += rd32(E1000_PRC255);
	adapter->stats.prc511 += rd32(E1000_PRC511);
	adapter->stats.prc1023 += rd32(E1000_PRC1023);
	adapter->stats.prc1522 += rd32(E1000_PRC1522);
	adapter->stats.symerrs += rd32(E1000_SYMERRS);
	adapter->stats.sec += rd32(E1000_SEC);

	mpc = rd32(E1000_MPC);
	adapter->stats.mpc += mpc;
	net_stats->rx_fifo_errors += mpc;
	adapter->stats.scc += rd32(E1000_SCC);
	adapter->stats.ecol += rd32(E1000_ECOL);
	adapter->stats.mcc += rd32(E1000_MCC);
	adapter->stats.latecol += rd32(E1000_LATECOL);
	adapter->stats.dc += rd32(E1000_DC);
	adapter->stats.rlec += rd32(E1000_RLEC);
	adapter->stats.xonrxc += rd32(E1000_XONRXC);
	adapter->stats.xontxc += rd32(E1000_XONTXC);
	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
	adapter->stats.fcruc += rd32(E1000_FCRUC);
	adapter->stats.gptc += rd32(E1000_GPTC);
	adapter->stats.gotc += rd32(E1000_GOTCL);
	rd32(E1000_GOTCH); /* clear GOTCL */
	adapter->stats.rnbc += rd32(E1000_RNBC);
	adapter->stats.ruc += rd32(E1000_RUC);
	adapter->stats.rfc += rd32(E1000_RFC);
	adapter->stats.rjc += rd32(E1000_RJC);
	adapter->stats.tor += rd32(E1000_TORH);
	adapter->stats.tot += rd32(E1000_TOTH);
	adapter->stats.tpr += rd32(E1000_TPR);

	adapter->stats.ptc64 += rd32(E1000_PTC64);
	adapter->stats.ptc127 += rd32(E1000_PTC127);
	adapter->stats.ptc255 += rd32(E1000_PTC255);
	adapter->stats.ptc511 += rd32(E1000_PTC511);
	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
	adapter->stats.ptc1522 += rd32(E1000_PTC1522);

	adapter->stats.mptc += rd32(E1000_MPTC);
	adapter->stats.bptc += rd32(E1000_BPTC);

	adapter->stats.tpt += rd32(E1000_TPT);
	adapter->stats.colc += rd32(E1000_COLC);

	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
	/* read internal phy specific stats */
	reg = rd32(E1000_CTRL_EXT);
	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
		adapter->stats.rxerrc += rd32(E1000_RXERRC);

		/* this stat has invalid values on i210/i211 */
		if ((hw->mac.type != e1000_i210) &&
		    (hw->mac.type != e1000_i211))
			adapter->stats.tncrs += rd32(E1000_TNCRS);
	}

	adapter->stats.tsctc += rd32(E1000_TSCTC);
	adapter->stats.tsctfc += rd32(E1000_TSCTFC);

	adapter->stats.iac += rd32(E1000_IAC);
	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);

	/* Fill out the OS statistics structure */
	net_stats->multicast = adapter->stats.mprc;
	net_stats->collisions = adapter->stats.colc;

	/* Rx Errors */

	/* RLEC on some newer hardware can be incorrect so build
	 * our own version based on RUC and ROC
	 */
	net_stats->rx_errors = adapter->stats.rxerrc +
		adapter->stats.crcerrs + adapter->stats.algnerrc +
		adapter->stats.ruc + adapter->stats.roc +
		adapter->stats.cexterr;
	net_stats->rx_length_errors = adapter->stats.ruc +
				      adapter->stats.roc;
	net_stats->rx_crc_errors = adapter->stats.crcerrs;
	net_stats->rx_frame_errors = adapter->stats.algnerrc;
	net_stats->rx_missed_errors = adapter->stats.mpc;

	/* Tx Errors */
	net_stats->tx_errors = adapter->stats.ecol +
			       adapter->stats.latecol;
	net_stats->tx_aborted_errors = adapter->stats.ecol;
	net_stats->tx_window_errors = adapter->stats.latecol;
	net_stats->tx_carrier_errors = adapter->stats.tncrs;

	/* Tx Dropped needs to be maintained elsewhere */

	/* Management Stats */
	adapter->stats.mgptc += rd32(E1000_MGTPTC);
	adapter->stats.mgprc += rd32(E1000_MGTPRC);
	adapter->stats.mgpdc += rd32(E1000_MGTPDC);

	/* OS2BMC Stats */
	reg = rd32(E1000_MANC);
	if (reg & E1000_MANC_EN_BMC2OS) {
		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
	}
}

static void igb_tsync_interrupt(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct ptp_clock_event event;
	struct timespec64 ts;
	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);

	if (tsicr & TSINTR_SYS_WRAP) {
		event.type = PTP_CLOCK_PPS;
		if (adapter->ptp_caps.pps)
			ptp_clock_event(adapter->ptp_clock, &event);
		ack |= TSINTR_SYS_WRAP;
	}

	if (tsicr & E1000_TSICR_TXTS) {
		/* retrieve hardware timestamp */
		schedule_work(&adapter->ptp_tx_work);
		ack |= E1000_TSICR_TXTS;
	}

	if (tsicr & TSINTR_TT0) {
		spin_lock(&adapter->tmreg_lock);
		ts = timespec64_add(adapter->perout[0].start,
				    adapter->perout[0].period);
		/* u32 conversion of tv_sec is safe until y2106 */
		wr32(E1000_TRGTTIML0, ts.tv_nsec);
		wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
		tsauxc = rd32(E1000_TSAUXC);
		tsauxc |= TSAUXC_EN_TT0;
		wr32(E1000_TSAUXC, tsauxc);
		adapter->perout[0].start = ts;
		spin_unlock(&adapter->tmreg_lock);
		ack |= TSINTR_TT0;
	}

	if (tsicr & TSINTR_TT1) {
		spin_lock(&adapter->tmreg_lock);
		ts = timespec64_add(adapter->perout[1].start,
				    adapter->perout[1].period);
		wr32(E1000_TRGTTIML1, ts.tv_nsec);
		wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
		tsauxc = rd32(E1000_TSAUXC);
		tsauxc |= TSAUXC_EN_TT1;
		wr32(E1000_TSAUXC, tsauxc);
		adapter->perout[1].start = ts;
		spin_unlock(&adapter->tmreg_lock);
		ack |= TSINTR_TT1;
	}

	if (tsicr & TSINTR_AUTT0) {
		nsec = rd32(E1000_AUXSTMPL0);
		sec  = rd32(E1000_AUXSTMPH0);
		event.type = PTP_CLOCK_EXTTS;
		event.index = 0;
		event.timestamp = sec * 1000000000ULL + nsec;
		ptp_clock_event(adapter->ptp_clock, &event);
		ack |= TSINTR_AUTT0;
	}

	if (tsicr & TSINTR_AUTT1) {
		nsec = rd32(E1000_AUXSTMPL1);
		sec  = rd32(E1000_AUXSTMPH1);
		event.type = PTP_CLOCK_EXTTS;
		event.index = 1;
		event.timestamp = sec * 1000000000ULL + nsec;
		ptp_clock_event(adapter->ptp_clock, &event);
		ack |= TSINTR_AUTT1;
	}

	/* acknowledge the interrupts */
	wr32(E1000_TSICR, ack);
}

static irqreturn_t igb_msix_other(int irq, void *data)
{
	struct igb_adapter *adapter = data;
	struct e1000_hw *hw = &adapter->hw;
	u32 icr = rd32(E1000_ICR);
	/* reading ICR causes bit 31 of EICR to be cleared */

	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

	if (icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
		/* The DMA Out of Sync is also indication of a spoof event
		 * in IOV mode. Check the Wrong VM Behavior register to
		 * see if it is really a spoof event.
		 */
		igb_check_wvbr(adapter);
	}

	/* Check for a mailbox event */
	if (icr & E1000_ICR_VMMB)
		igb_msg_task(adapter);

	if (icr & E1000_ICR_LSC) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	if (icr & E1000_ICR_TS)
		igb_tsync_interrupt(adapter);

	wr32(E1000_EIMS, adapter->eims_other);

	return IRQ_HANDLED;
}

static void igb_write_itr(struct igb_q_vector *q_vector)
{
	struct igb_adapter *adapter = q_vector->adapter;
	u32 itr_val = q_vector->itr_val & 0x7FFC;

	if (!q_vector->set_itr)
		return;

	if (!itr_val)
		itr_val = 0x4;

	if (adapter->hw.mac.type == e1000_82575)
		itr_val |= itr_val << 16;
	else
		itr_val |= E1000_EITR_CNT_IGNR;

	writel(itr_val, q_vector->itr_register);
	q_vector->set_itr = 0;
}

static irqreturn_t igb_msix_ring(int irq, void *data)
{
	struct igb_q_vector *q_vector = data;

	/* Write the ITR value calculated from the previous interrupt. */
	igb_write_itr(q_vector);

	napi_schedule(&q_vector->napi);

	return IRQ_HANDLED;
}

#ifdef CONFIG_IGB_DCA
static void igb_update_tx_dca(struct igb_adapter *adapter,
			      struct igb_ring *tx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);

	if (hw->mac.type != e1000_82575)
		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;

	/* We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
		  E1000_DCA_TXCTRL_DATA_RRO_EN |
		  E1000_DCA_TXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
}

static void igb_update_rx_dca(struct igb_adapter *adapter,
			      struct igb_ring *rx_ring,
			      int cpu)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);

	if (hw->mac.type != e1000_82575)
		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;

	/* We can enable relaxed ordering for reads, but not writes when
	 * DCA is enabled.  This is due to a known issue in some chipsets
	 * which will cause the DCA tag to be cleared.
	 */
	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
		  E1000_DCA_RXCTRL_DESC_DCA_EN;

	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
}

static void igb_update_dca(struct igb_q_vector *q_vector)
{
	struct igb_adapter *adapter = q_vector->adapter;
	int cpu = get_cpu();

	if (q_vector->cpu == cpu)
		goto out_no_update;

	if (q_vector->tx.ring)
		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);

	if (q_vector->rx.ring)
		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);

	q_vector->cpu = cpu;
out_no_update:
	put_cpu();
}

static void igb_setup_dca(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
		return;

	/* Always use CB2 mode, difference is masked in the CB driver. */
	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);

	for (i = 0; i < adapter->num_q_vectors; i++) {
		adapter->q_vector[i]->cpu = -1;
		igb_update_dca(adapter->q_vector[i]);
	}
}

static int __igb_notify_dca(struct device *dev, void *data)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_hw *hw = &adapter->hw;
	unsigned long event = *(unsigned long *)data;

	switch (event) {
	case DCA_PROVIDER_ADD:
		/* if already enabled, don't do it again */
		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
			break;
		if (dca_add_requester(dev) == 0) {
			adapter->flags |= IGB_FLAG_DCA_ENABLED;
			dev_info(&pdev->dev, "DCA enabled\n");
			igb_setup_dca(adapter);
			break;
		}
		fallthrough; /* since DCA is disabled. */
	case DCA_PROVIDER_REMOVE:
		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
			/* without this a class_device is left
			 * hanging around in the sysfs model
			 */
			dca_remove_requester(dev);
			dev_info(&pdev->dev, "DCA disabled\n");
			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
		}
		break;
	}

	return 0;
}

static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
			  void *p)
{
	int ret_val;

	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
					 __igb_notify_dca);

	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
}
#endif /* CONFIG_IGB_DCA */

#ifdef CONFIG_PCI_IOV
static int igb_vf_configure(struct igb_adapter *adapter, int vf)
{
	unsigned char mac_addr[ETH_ALEN];

	eth_zero_addr(mac_addr);
	igb_set_vf_mac(adapter, vf, mac_addr);

	/* By default spoof check is enabled for all VFs */
	adapter->vf_data[vf].spoofchk_enabled = true;

	/* By default VFs are not trusted */
	adapter->vf_data[vf].trusted = false;

	return 0;
}

#endif
static void igb_ping_all_vfs(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 ping;
	int i;

	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
		ping = E1000_PF_CONTROL_MSG;
		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
			ping |= E1000_VT_MSGTYPE_CTS;
		igb_write_mbx(hw, &ping, 1, i);
	}
}

static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vmolr = rd32(E1000_VMOLR(vf));
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
			    IGB_VF_FLAG_MULTI_PROMISC);
	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
		vmolr |= E1000_VMOLR_MPME;
		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
	} else {
		/* if we have hashes and we are clearing a multicast promisc
		 * flag we need to write the hashes to the MTA as this step
		 * was previously skipped
		 */
		if (vf_data->num_vf_mc_hashes > 30) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			int j;

			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
	}

	wr32(E1000_VMOLR(vf), vmolr);

	/* there are flags left unprocessed, likely not supported */
	if (*msgbuf & E1000_VT_MSGINFO_MASK)
		return -EINVAL;

	return 0;
}

static int igb_set_vf_multicasts(struct igb_adapter *adapter,
				  u32 *msgbuf, u32 vf)
{
	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	u16 *hash_list = (u16 *)&msgbuf[1];
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	int i;

	/* salt away the number of multicast addresses assigned
	 * to this VF for later use to restore when the PF multi cast
	 * list changes
	 */
	vf_data->num_vf_mc_hashes = n;

	/* only up to 30 hash values supported */
	if (n > 30)
		n = 30;

	/* store the hashes for later use */
	for (i = 0; i < n; i++)
		vf_data->vf_mc_hashes[i] = hash_list[i];

	/* Flush and reset the mta with the new values */
	igb_set_rx_mode(adapter->netdev);

	return 0;
}

static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data;
	int i, j;

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		u32 vmolr = rd32(E1000_VMOLR(i));

		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);

		vf_data = &adapter->vf_data[i];

		if ((vf_data->num_vf_mc_hashes > 30) ||
		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
			vmolr |= E1000_VMOLR_MPME;
		} else if (vf_data->num_vf_mc_hashes) {
			vmolr |= E1000_VMOLR_ROMPE;
			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
		}
		wr32(E1000_VMOLR(i), vmolr);
	}
}

static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 pool_mask, vlvf_mask, i;

	/* create mask for VF and other pools */
	pool_mask = E1000_VLVF_POOLSEL_MASK;
	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);

	/* drop PF from pool bits */
	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
			     adapter->vfs_allocated_count);

	/* Find the vlan filter for this id */
	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
		u32 vlvf = rd32(E1000_VLVF(i));
		u32 vfta_mask, vid, vfta;

		/* remove the vf from the pool */
		if (!(vlvf & vlvf_mask))
			continue;

		/* clear out bit from VLVF */
		vlvf ^= vlvf_mask;

		/* if other pools are present, just remove ourselves */
		if (vlvf & pool_mask)
			goto update_vlvfb;

		/* if PF is present, leave VFTA */
		if (vlvf & E1000_VLVF_POOLSEL_MASK)
			goto update_vlvf;

		vid = vlvf & E1000_VLVF_VLANID_MASK;
		vfta_mask = BIT(vid % 32);

		/* clear bit from VFTA */
		vfta = adapter->shadow_vfta[vid / 32];
		if (vfta & vfta_mask)
			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
update_vlvf:
		/* clear pool selection enable */
		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
			vlvf &= E1000_VLVF_POOLSEL_MASK;
		else
			vlvf = 0;
update_vlvfb:
		/* clear pool bits */
		wr32(E1000_VLVF(i), vlvf);
	}
}

static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
{
	u32 vlvf;
	int idx;

	/* short cut the special case */
	if (vlan == 0)
		return 0;

	/* Search for the VLAN id in the VLVF entries */
	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
		vlvf = rd32(E1000_VLVF(idx));
		if ((vlvf & VLAN_VID_MASK) == vlan)
			break;
	}

	return idx;
}

static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 bits, pf_id;
	int idx;

	idx = igb_find_vlvf_entry(hw, vid);
	if (!idx)
		return;

	/* See if any other pools are set for this VLAN filter
	 * entry other than the PF.
	 */
	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
	bits &= rd32(E1000_VLVF(idx));

	/* Disable the filter so this falls into the default pool. */
	if (!bits) {
		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
			wr32(E1000_VLVF(idx), BIT(pf_id));
		else
			wr32(E1000_VLVF(idx), 0);
	}
}

static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
			   bool add, u32 vf)
{
	int pf_id = adapter->vfs_allocated_count;
	struct e1000_hw *hw = &adapter->hw;
	int err;

	/* If VLAN overlaps with one the PF is currently monitoring make
	 * sure that we are able to allocate a VLVF entry.  This may be
	 * redundant but it guarantees PF will maintain visibility to
	 * the VLAN.
	 */
	if (add && test_bit(vid, adapter->active_vlans)) {
		err = igb_vfta_set(hw, vid, pf_id, true, false);
		if (err)
			return err;
	}

	err = igb_vfta_set(hw, vid, vf, add, false);

	if (add && !err)
		return err;

	/* If we failed to add the VF VLAN or we are removing the VF VLAN
	 * we may need to drop the PF pool bit in order to allow us to free
	 * up the VLVF resources.
	 */
	if (test_bit(vid, adapter->active_vlans) ||
	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
		igb_update_pf_vlvf(adapter, vid);

	return err;
}

static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;

	if (vid)
		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
	else
		wr32(E1000_VMVIR(vf), 0);
}

static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
				u16 vlan, u8 qos)
{
	int err;

	err = igb_set_vf_vlan(adapter, vlan, true, vf);
	if (err)
		return err;

	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
	igb_set_vmolr(adapter, vf, !vlan);

	/* revoke access to previous VLAN */
	if (vlan != adapter->vf_data[vf].pf_vlan)
		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
				false, vf);

	adapter->vf_data[vf].pf_vlan = vlan;
	adapter->vf_data[vf].pf_qos = qos;
	igb_set_vf_vlan_strip(adapter, vf, true);
	dev_info(&adapter->pdev->dev,
		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
	if (test_bit(__IGB_DOWN, &adapter->state)) {
		dev_warn(&adapter->pdev->dev,
			 "The VF VLAN has been set, but the PF device is not up.\n");
		dev_warn(&adapter->pdev->dev,
			 "Bring the PF device up before attempting to use the VF device.\n");
	}

	return err;
}

static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
{
	/* Restore tagless access via VLAN 0 */
	igb_set_vf_vlan(adapter, 0, true, vf);

	igb_set_vmvir(adapter, 0, vf);
	igb_set_vmolr(adapter, vf, true);

	/* Remove any PF assigned VLAN */
	if (adapter->vf_data[vf].pf_vlan)
		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
				false, vf);

	adapter->vf_data[vf].pf_vlan = 0;
	adapter->vf_data[vf].pf_qos = 0;
	igb_set_vf_vlan_strip(adapter, vf, false);

	return 0;
}

static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
			       u16 vlan, u8 qos, __be16 vlan_proto)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
		return -EINVAL;

	if (vlan_proto != htons(ETH_P_8021Q))
		return -EPROTONOSUPPORT;

	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
			       igb_disable_port_vlan(adapter, vf);
}

static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
{
	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
	int ret;

	if (adapter->vf_data[vf].pf_vlan)
		return -1;

	/* VLAN 0 is a special case, don't allow it to be removed */
	if (!vid && !add)
		return 0;

	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
	if (!ret)
		igb_set_vf_vlan_strip(adapter, vf, !!vid);
	return ret;
}

static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
{
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];

	/* clear flags - except flag that indicates PF has set the MAC */
	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
	vf_data->last_nack = jiffies;

	/* reset vlans for device */
	igb_clear_vf_vfta(adapter, vf);
	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
	igb_set_vmvir(adapter, vf_data->pf_vlan |
			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));

	/* reset multicast table array for vf */
	adapter->vf_data[vf].num_vf_mc_hashes = 0;

	/* Flush and reset the mta with the new values */
	igb_set_rx_mode(adapter->netdev);
}

static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
{
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;

	/* clear mac address as we were hotplug removed/added */
	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
		eth_zero_addr(vf_mac);

	/* process remaining reset events */
	igb_vf_reset(adapter, vf);
}

static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
	u32 reg, msgbuf[3];
	u8 *addr = (u8 *)(&msgbuf[1]);

	/* process all the same items cleared in a function level reset */
	igb_vf_reset(adapter, vf);

	/* set vf mac address */
	igb_set_vf_mac(adapter, vf, vf_mac);

	/* enable transmit and receive for vf */
	reg = rd32(E1000_VFTE);
	wr32(E1000_VFTE, reg | BIT(vf));
	reg = rd32(E1000_VFRE);
	wr32(E1000_VFRE, reg | BIT(vf));

	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;

	/* reply to reset with ack and vf mac address */
	if (!is_zero_ether_addr(vf_mac)) {
		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
		memcpy(addr, vf_mac, ETH_ALEN);
	} else {
		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
	}
	igb_write_mbx(hw, msgbuf, 3, vf);
}

static void igb_flush_mac_table(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	int i;

	for (i = 0; i < hw->mac.rar_entry_count; i++) {
		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
		eth_zero_addr(adapter->mac_table[i].addr);
		adapter->mac_table[i].queue = 0;
		igb_rar_set_index(adapter, i);
	}
}

static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
{
	struct e1000_hw *hw = &adapter->hw;
	/* do not count rar entries reserved for VFs MAC addresses */
	int rar_entries = hw->mac.rar_entry_count -
			  adapter->vfs_allocated_count;
	int i, count = 0;

	for (i = 0; i < rar_entries; i++) {
		/* do not count default entries */
		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
			continue;

		/* do not count "in use" entries for different queues */
		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
		    (adapter->mac_table[i].queue != queue))
			continue;

		count++;
	}

	return count;
}

/* Set default MAC address for the PF in the first RAR entry */
static void igb_set_default_mac_filter(struct igb_adapter *adapter)
{
	struct igb_mac_addr *mac_table = &adapter->mac_table[0];

	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
	mac_table->queue = adapter->vfs_allocated_count;
	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;

	igb_rar_set_index(adapter, 0);
}

/* If the filter to be added and an already existing filter express
 * the same address and address type, it should be possible to only
 * override the other configurations, for example the queue to steer
 * traffic.
 */
static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
				      const u8 *addr, const u8 flags)
{
	if (!(entry->state & IGB_MAC_STATE_IN_USE))
		return true;

	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
	    (flags & IGB_MAC_STATE_SRC_ADDR))
		return false;

	if (!ether_addr_equal(addr, entry->addr))
		return false;

	return true;
}

/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
 * 'flags' is used to indicate what kind of match is made, match is by
 * default for the destination address, if matching by source address
 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
 */
static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
				    const u8 *addr, const u8 queue,
				    const u8 flags)
{
	struct e1000_hw *hw = &adapter->hw;
	int rar_entries = hw->mac.rar_entry_count -
			  adapter->vfs_allocated_count;
	int i;

	if (is_zero_ether_addr(addr))
		return -EINVAL;

	/* Search for the first empty entry in the MAC table.
	 * Do not touch entries at the end of the table reserved for the VF MAC
	 * addresses.
	 */
	for (i = 0; i < rar_entries; i++) {
		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
					       addr, flags))
			continue;

		ether_addr_copy(adapter->mac_table[i].addr, addr);
		adapter->mac_table[i].queue = queue;
		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;

		igb_rar_set_index(adapter, i);
		return i;
	}

	return -ENOSPC;
}

static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
			      const u8 queue)
{
	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
}

/* Remove a MAC filter for 'addr' directing matching traffic to
 * 'queue', 'flags' is used to indicate what kind of match need to be
 * removed, match is by default for the destination address, if
 * matching by source address is to be removed the flag
 * IGB_MAC_STATE_SRC_ADDR can be used.
 */
static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
				    const u8 *addr, const u8 queue,
				    const u8 flags)
{
	struct e1000_hw *hw = &adapter->hw;
	int rar_entries = hw->mac.rar_entry_count -
			  adapter->vfs_allocated_count;
	int i;

	if (is_zero_ether_addr(addr))
		return -EINVAL;

	/* Search for matching entry in the MAC table based on given address
	 * and queue. Do not touch entries at the end of the table reserved
	 * for the VF MAC addresses.
	 */
	for (i = 0; i < rar_entries; i++) {
		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
			continue;
		if ((adapter->mac_table[i].state & flags) != flags)
			continue;
		if (adapter->mac_table[i].queue != queue)
			continue;
		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
			continue;

		/* When a filter for the default address is "deleted",
		 * we return it to its initial configuration
		 */
		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
			adapter->mac_table[i].state =
				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
			adapter->mac_table[i].queue =
				adapter->vfs_allocated_count;
		} else {
			adapter->mac_table[i].state = 0;
			adapter->mac_table[i].queue = 0;
			eth_zero_addr(adapter->mac_table[i].addr);
		}

		igb_rar_set_index(adapter, i);
		return 0;
	}

	return -ENOENT;
}

static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
			      const u8 queue)
{
	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
}

int igb_add_mac_steering_filter(struct igb_adapter *adapter,
				const u8 *addr, u8 queue, u8 flags)
{
	struct e1000_hw *hw = &adapter->hw;

	/* In theory, this should be supported on 82575 as well, but
	 * that part wasn't easily accessible during development.
	 */
	if (hw->mac.type != e1000_i210)
		return -EOPNOTSUPP;

	return igb_add_mac_filter_flags(adapter, addr, queue,
					IGB_MAC_STATE_QUEUE_STEERING | flags);
}

int igb_del_mac_steering_filter(struct igb_adapter *adapter,
				const u8 *addr, u8 queue, u8 flags)
{
	return igb_del_mac_filter_flags(adapter, addr, queue,
					IGB_MAC_STATE_QUEUE_STEERING | flags);
}

static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int ret;

	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);

	return min_t(int, ret, 0);
}

static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);

	return 0;
}

static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
				 const u32 info, const u8 *addr)
{
	struct pci_dev *pdev = adapter->pdev;
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	struct list_head *pos;
	struct vf_mac_filter *entry = NULL;
	int ret = 0;

	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
	    !vf_data->trusted) {
		dev_warn(&pdev->dev,
			 "VF %d requested MAC filter but is administratively denied\n",
			  vf);
		return -EINVAL;
	}
	if (!is_valid_ether_addr(addr)) {
		dev_warn(&pdev->dev,
			 "VF %d attempted to set invalid MAC filter\n",
			  vf);
		return -EINVAL;
	}

	switch (info) {
	case E1000_VF_MAC_FILTER_CLR:
		/* remove all unicast MAC filters related to the current VF */
		list_for_each(pos, &adapter->vf_macs.l) {
			entry = list_entry(pos, struct vf_mac_filter, l);
			if (entry->vf == vf) {
				entry->vf = -1;
				entry->free = true;
				igb_del_mac_filter(adapter, entry->vf_mac, vf);
			}
		}
		break;
	case E1000_VF_MAC_FILTER_ADD:
		/* try to find empty slot in the list */
		list_for_each(pos, &adapter->vf_macs.l) {
			entry = list_entry(pos, struct vf_mac_filter, l);
			if (entry->free)
				break;
		}

		if (entry && entry->free) {
			entry->free = false;
			entry->vf = vf;
			ether_addr_copy(entry->vf_mac, addr);

			ret = igb_add_mac_filter(adapter, addr, vf);
			ret = min_t(int, ret, 0);
		} else {
			ret = -ENOSPC;
		}

		if (ret == -ENOSPC)
			dev_warn(&pdev->dev,
				 "VF %d has requested MAC filter but there is no space for it\n",
				 vf);
		break;
	default:
		ret = -EINVAL;
		break;
	}

	return ret;
}

static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
{
	struct pci_dev *pdev = adapter->pdev;
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;

	/* The VF MAC Address is stored in a packed array of bytes
	 * starting at the second 32 bit word of the msg array
	 */
	unsigned char *addr = (unsigned char *)&msg[1];
	int ret = 0;

	if (!info) {
		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
		    !vf_data->trusted) {
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
				 vf);
			return -EINVAL;
		}

		if (!is_valid_ether_addr(addr)) {
			dev_warn(&pdev->dev,
				 "VF %d attempted to set invalid MAC\n",
				 vf);
			return -EINVAL;
		}

		ret = igb_set_vf_mac(adapter, vf, addr);
	} else {
		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
	}

	return ret;
}

static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	u32 msg = E1000_VT_MSGTYPE_NACK;

	/* if device isn't clear to send it shouldn't be reading either */
	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
		igb_write_mbx(hw, &msg, 1, vf);
		vf_data->last_nack = jiffies;
	}
}

static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
{
	struct pci_dev *pdev = adapter->pdev;
	u32 msgbuf[E1000_VFMAILBOX_SIZE];
	struct e1000_hw *hw = &adapter->hw;
	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
	s32 retval;

	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);

	if (retval) {
		/* if receive failed revoke VF CTS stats and restart init */
		dev_err(&pdev->dev, "Error receiving message from VF\n");
		vf_data->flags &= ~IGB_VF_FLAG_CTS;
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			goto unlock;
		goto out;
	}

	/* this is a message we already processed, do nothing */
	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
		goto unlock;

	/* until the vf completes a reset it should not be
	 * allowed to start any configuration.
	 */
	if (msgbuf[0] == E1000_VF_RESET) {
		/* unlocks mailbox */
		igb_vf_reset_msg(adapter, vf);
		return;
	}

	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
			goto unlock;
		retval = -1;
		goto out;
	}

	switch ((msgbuf[0] & 0xFFFF)) {
	case E1000_VF_SET_MAC_ADDR:
		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_PROMISC:
		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_MULTICAST:
		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
		break;
	case E1000_VF_SET_LPE:
		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
		break;
	case E1000_VF_SET_VLAN:
		retval = -1;
		if (vf_data->pf_vlan)
			dev_warn(&pdev->dev,
				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
				 vf);
		else
			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
		break;
	default:
		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
		retval = -1;
		break;
	}

	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
out:
	/* notify the VF of the results of what it sent us */
	if (retval)
		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
	else
		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;

	/* unlocks mailbox */
	igb_write_mbx(hw, msgbuf, 1, vf);
	return;

unlock:
	igb_unlock_mbx(hw, vf);
}

static void igb_msg_task(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 vf;

	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
		/* process any reset requests */
		if (!igb_check_for_rst(hw, vf))
			igb_vf_reset_event(adapter, vf);

		/* process any messages pending */
		if (!igb_check_for_msg(hw, vf))
			igb_rcv_msg_from_vf(adapter, vf);

		/* process any acks */
		if (!igb_check_for_ack(hw, vf))
			igb_rcv_ack_from_vf(adapter, vf);
	}
}

/**
 *  igb_set_uta - Set unicast filter table address
 *  @adapter: board private structure
 *  @set: boolean indicating if we are setting or clearing bits
 *
 *  The unicast table address is a register array of 32-bit registers.
 *  The table is meant to be used in a way similar to how the MTA is used
 *  however due to certain limitations in the hardware it is necessary to
 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
 **/
static void igb_set_uta(struct igb_adapter *adapter, bool set)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 uta = set ? ~0 : 0;
	int i;

	/* we only need to do this if VMDq is enabled */
	if (!adapter->vfs_allocated_count)
		return;

	for (i = hw->mac.uta_reg_count; i--;)
		array_wr32(E1000_UTA, i, uta);
}

/**
 *  igb_intr_msi - Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr_msi(int irq, void *data)
{
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
	struct e1000_hw *hw = &adapter->hw;
	/* read ICR disables interrupts using IAM */
	u32 icr = rd32(E1000_ICR);

	igb_write_itr(q_vector);

	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

	if (icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	if (icr & E1000_ICR_TS)
		igb_tsync_interrupt(adapter);

	napi_schedule(&q_vector->napi);

	return IRQ_HANDLED;
}

/**
 *  igb_intr - Legacy Interrupt Handler
 *  @irq: interrupt number
 *  @data: pointer to a network interface device structure
 **/
static irqreturn_t igb_intr(int irq, void *data)
{
	struct igb_adapter *adapter = data;
	struct igb_q_vector *q_vector = adapter->q_vector[0];
	struct e1000_hw *hw = &adapter->hw;
	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
	 * need for the IMC write
	 */
	u32 icr = rd32(E1000_ICR);

	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
	 * not set, then the adapter didn't send an interrupt
	 */
	if (!(icr & E1000_ICR_INT_ASSERTED))
		return IRQ_NONE;

	igb_write_itr(q_vector);

	if (icr & E1000_ICR_DRSTA)
		schedule_work(&adapter->reset_task);

	if (icr & E1000_ICR_DOUTSYNC) {
		/* HW is reporting DMA is out of sync */
		adapter->stats.doosync++;
	}

	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
		hw->mac.get_link_status = 1;
		/* guard against interrupt when we're going down */
		if (!test_bit(__IGB_DOWN, &adapter->state))
			mod_timer(&adapter->watchdog_timer, jiffies + 1);
	}

	if (icr & E1000_ICR_TS)
		igb_tsync_interrupt(adapter);

	napi_schedule(&q_vector->napi);

	return IRQ_HANDLED;
}

static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct e1000_hw *hw = &adapter->hw;

	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
			igb_set_itr(q_vector);
		else
			igb_update_ring_itr(q_vector);
	}

	if (!test_bit(__IGB_DOWN, &adapter->state)) {
		if (adapter->flags & IGB_FLAG_HAS_MSIX)
			wr32(E1000_EIMS, q_vector->eims_value);
		else
			igb_irq_enable(adapter);
	}
}

/**
 *  igb_poll - NAPI Rx polling callback
 *  @napi: napi polling structure
 *  @budget: count of how many packets we should handle
 **/
static int igb_poll(struct napi_struct *napi, int budget)
{
	struct igb_q_vector *q_vector = container_of(napi,
						     struct igb_q_vector,
						     napi);
	bool clean_complete = true;
	int work_done = 0;

#ifdef CONFIG_IGB_DCA
	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
		igb_update_dca(q_vector);
#endif
	if (q_vector->tx.ring)
		clean_complete = igb_clean_tx_irq(q_vector, budget);

	if (q_vector->rx.ring) {
		int cleaned = igb_clean_rx_irq(q_vector, budget);

		work_done += cleaned;
		if (cleaned >= budget)
			clean_complete = false;
	}

	/* If all work not completed, return budget and keep polling */
	if (!clean_complete)
		return budget;

	/* Exit the polling mode, but don't re-enable interrupts if stack might
	 * poll us due to busy-polling
	 */
	if (likely(napi_complete_done(napi, work_done)))
		igb_ring_irq_enable(q_vector);

	return work_done;
}

/**
 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 *  @q_vector: pointer to q_vector containing needed info
 *  @napi_budget: Used to determine if we are in netpoll
 *
 *  returns true if ring is completely cleaned
 **/
static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *tx_ring = q_vector->tx.ring;
	struct igb_tx_buffer *tx_buffer;
	union e1000_adv_tx_desc *tx_desc;
	unsigned int total_bytes = 0, total_packets = 0;
	unsigned int budget = q_vector->tx.work_limit;
	unsigned int i = tx_ring->next_to_clean;

	if (test_bit(__IGB_DOWN, &adapter->state))
		return true;

	tx_buffer = &tx_ring->tx_buffer_info[i];
	tx_desc = IGB_TX_DESC(tx_ring, i);
	i -= tx_ring->count;

	do {
		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;

		/* if next_to_watch is not set then there is no work pending */
		if (!eop_desc)
			break;

		/* prevent any other reads prior to eop_desc */
		smp_rmb();

		/* if DD is not set pending work has not been completed */
		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
			break;

		/* clear next_to_watch to prevent false hangs */
		tx_buffer->next_to_watch = NULL;

		/* update the statistics for this packet */
		total_bytes += tx_buffer->bytecount;
		total_packets += tx_buffer->gso_segs;

		/* free the skb */
		if (tx_buffer->type == IGB_TYPE_SKB)
			napi_consume_skb(tx_buffer->skb, napi_budget);
		else
			xdp_return_frame(tx_buffer->xdpf);

		/* unmap skb header data */
		dma_unmap_single(tx_ring->dev,
				 dma_unmap_addr(tx_buffer, dma),
				 dma_unmap_len(tx_buffer, len),
				 DMA_TO_DEVICE);

		/* clear tx_buffer data */
		dma_unmap_len_set(tx_buffer, len, 0);

		/* clear last DMA location and unmap remaining buffers */
		while (tx_desc != eop_desc) {
			tx_buffer++;
			tx_desc++;
			i++;
			if (unlikely(!i)) {
				i -= tx_ring->count;
				tx_buffer = tx_ring->tx_buffer_info;
				tx_desc = IGB_TX_DESC(tx_ring, 0);
			}

			/* unmap any remaining paged data */
			if (dma_unmap_len(tx_buffer, len)) {
				dma_unmap_page(tx_ring->dev,
					       dma_unmap_addr(tx_buffer, dma),
					       dma_unmap_len(tx_buffer, len),
					       DMA_TO_DEVICE);
				dma_unmap_len_set(tx_buffer, len, 0);
			}
		}

		/* move us one more past the eop_desc for start of next pkt */
		tx_buffer++;
		tx_desc++;
		i++;
		if (unlikely(!i)) {
			i -= tx_ring->count;
			tx_buffer = tx_ring->tx_buffer_info;
			tx_desc = IGB_TX_DESC(tx_ring, 0);
		}

		/* issue prefetch for next Tx descriptor */
		prefetch(tx_desc);

		/* update budget accounting */
		budget--;
	} while (likely(budget));

	netdev_tx_completed_queue(txring_txq(tx_ring),
				  total_packets, total_bytes);
	i += tx_ring->count;
	tx_ring->next_to_clean = i;
	u64_stats_update_begin(&tx_ring->tx_syncp);
	tx_ring->tx_stats.bytes += total_bytes;
	tx_ring->tx_stats.packets += total_packets;
	u64_stats_update_end(&tx_ring->tx_syncp);
	q_vector->tx.total_bytes += total_bytes;
	q_vector->tx.total_packets += total_packets;

	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
		struct e1000_hw *hw = &adapter->hw;

		/* Detect a transmit hang in hardware, this serializes the
		 * check with the clearing of time_stamp and movement of i
		 */
		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
		if (tx_buffer->next_to_watch &&
		    time_after(jiffies, tx_buffer->time_stamp +
			       (adapter->tx_timeout_factor * HZ)) &&
		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {

			/* detected Tx unit hang */
			dev_err(tx_ring->dev,
				"Detected Tx Unit Hang\n"
				"  Tx Queue             <%d>\n"
				"  TDH                  <%x>\n"
				"  TDT                  <%x>\n"
				"  next_to_use          <%x>\n"
				"  next_to_clean        <%x>\n"
				"buffer_info[next_to_clean]\n"
				"  time_stamp           <%lx>\n"
				"  next_to_watch        <%p>\n"
				"  jiffies              <%lx>\n"
				"  desc.status          <%x>\n",
				tx_ring->queue_index,
				rd32(E1000_TDH(tx_ring->reg_idx)),
				readl(tx_ring->tail),
				tx_ring->next_to_use,
				tx_ring->next_to_clean,
				tx_buffer->time_stamp,
				tx_buffer->next_to_watch,
				jiffies,
				tx_buffer->next_to_watch->wb.status);
			netif_stop_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			/* we are about to reset, no point in enabling stuff */
			return true;
		}
	}

#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
	if (unlikely(total_packets &&
	    netif_carrier_ok(tx_ring->netdev) &&
	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
		/* Make sure that anybody stopping the queue after this
		 * sees the new next_to_clean.
		 */
		smp_mb();
		if (__netif_subqueue_stopped(tx_ring->netdev,
					     tx_ring->queue_index) &&
		    !(test_bit(__IGB_DOWN, &adapter->state))) {
			netif_wake_subqueue(tx_ring->netdev,
					    tx_ring->queue_index);

			u64_stats_update_begin(&tx_ring->tx_syncp);
			tx_ring->tx_stats.restart_queue++;
			u64_stats_update_end(&tx_ring->tx_syncp);
		}
	}

	return !!budget;
}

/**
 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 *  @rx_ring: rx descriptor ring to store buffers on
 *  @old_buff: donor buffer to have page reused
 *
 *  Synchronizes page for reuse by the adapter
 **/
static void igb_reuse_rx_page(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *old_buff)
{
	struct igb_rx_buffer *new_buff;
	u16 nta = rx_ring->next_to_alloc;

	new_buff = &rx_ring->rx_buffer_info[nta];

	/* update, and store next to alloc */
	nta++;
	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;

	/* Transfer page from old buffer to new buffer.
	 * Move each member individually to avoid possible store
	 * forwarding stalls.
	 */
	new_buff->dma		= old_buff->dma;
	new_buff->page		= old_buff->page;
	new_buff->page_offset	= old_buff->page_offset;
	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
}

static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
				  int rx_buf_pgcnt)
{
	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
	struct page *page = rx_buffer->page;

	/* avoid re-using remote and pfmemalloc pages */
	if (!dev_page_is_reusable(page))
		return false;

#if (PAGE_SIZE < 8192)
	/* if we are only owner of page we can reuse it */
	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
		return false;
#else
#define IGB_LAST_OFFSET \
	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)

	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
		return false;
#endif

	/* If we have drained the page fragment pool we need to update
	 * the pagecnt_bias and page count so that we fully restock the
	 * number of references the driver holds.
	 */
	if (unlikely(pagecnt_bias == 1)) {
		page_ref_add(page, USHRT_MAX - 1);
		rx_buffer->pagecnt_bias = USHRT_MAX;
	}

	return true;
}

/**
 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 *  @rx_ring: rx descriptor ring to transact packets on
 *  @rx_buffer: buffer containing page to add
 *  @skb: sk_buff to place the data into
 *  @size: size of buffer to be added
 *
 *  This function will add the data contained in rx_buffer->page to the skb.
 **/
static void igb_add_rx_frag(struct igb_ring *rx_ring,
			    struct igb_rx_buffer *rx_buffer,
			    struct sk_buff *skb,
			    unsigned int size)
{
#if (PAGE_SIZE < 8192)
	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
#else
	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
				SKB_DATA_ALIGN(size);
#endif
	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
			rx_buffer->page_offset, size, truesize);
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
}

static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
					 struct igb_rx_buffer *rx_buffer,
					 struct xdp_buff *xdp,
					 ktime_t timestamp)
{
#if (PAGE_SIZE < 8192)
	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
#else
	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
					       xdp->data_hard_start);
#endif
	unsigned int size = xdp->data_end - xdp->data;
	unsigned int headlen;
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
	net_prefetch(xdp->data);

	/* allocate a skb to store the frags */
	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
	if (unlikely(!skb))
		return NULL;

	if (timestamp)
		skb_hwtstamps(skb)->hwtstamp = timestamp;

	/* Determine available headroom for copy */
	headlen = size;
	if (headlen > IGB_RX_HDR_LEN)
		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);

	/* align pull length to size of long to optimize memcpy performance */
	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));

	/* update all of the pointers */
	size -= headlen;
	if (size) {
		skb_add_rx_frag(skb, 0, rx_buffer->page,
				(xdp->data + headlen) - page_address(rx_buffer->page),
				size, truesize);
#if (PAGE_SIZE < 8192)
		rx_buffer->page_offset ^= truesize;
#else
		rx_buffer->page_offset += truesize;
#endif
	} else {
		rx_buffer->pagecnt_bias++;
	}

	return skb;
}

static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
				     struct igb_rx_buffer *rx_buffer,
				     struct xdp_buff *xdp,
				     ktime_t timestamp)
{
#if (PAGE_SIZE < 8192)
	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
#else
	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
				SKB_DATA_ALIGN(xdp->data_end -
					       xdp->data_hard_start);
#endif
	unsigned int metasize = xdp->data - xdp->data_meta;
	struct sk_buff *skb;

	/* prefetch first cache line of first page */
	net_prefetch(xdp->data_meta);

	/* build an skb around the page buffer */
	skb = build_skb(xdp->data_hard_start, truesize);
	if (unlikely(!skb))
		return NULL;

	/* update pointers within the skb to store the data */
	skb_reserve(skb, xdp->data - xdp->data_hard_start);
	__skb_put(skb, xdp->data_end - xdp->data);

	if (metasize)
		skb_metadata_set(skb, metasize);

	if (timestamp)
		skb_hwtstamps(skb)->hwtstamp = timestamp;

	/* update buffer offset */
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif

	return skb;
}

static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
				   struct igb_ring *rx_ring,
				   struct xdp_buff *xdp)
{
	int err, result = IGB_XDP_PASS;
	struct bpf_prog *xdp_prog;
	u32 act;

	xdp_prog = READ_ONCE(rx_ring->xdp_prog);

	if (!xdp_prog)
		goto xdp_out;

	prefetchw(xdp->data_hard_start); /* xdp_frame write */

	act = bpf_prog_run_xdp(xdp_prog, xdp);
	switch (act) {
	case XDP_PASS:
		break;
	case XDP_TX:
		result = igb_xdp_xmit_back(adapter, xdp);
		if (result == IGB_XDP_CONSUMED)
			goto out_failure;
		break;
	case XDP_REDIRECT:
		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
		if (err)
			goto out_failure;
		result = IGB_XDP_REDIR;
		break;
	default:
		bpf_warn_invalid_xdp_action(act);
		fallthrough;
	case XDP_ABORTED:
out_failure:
		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
		fallthrough;
	case XDP_DROP:
		result = IGB_XDP_CONSUMED;
		break;
	}
xdp_out:
	return ERR_PTR(-result);
}

static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
					  unsigned int size)
{
	unsigned int truesize;

#if (PAGE_SIZE < 8192)
	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
#else
	truesize = ring_uses_build_skb(rx_ring) ?
		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
		SKB_DATA_ALIGN(size);
#endif
	return truesize;
}

static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
			       struct igb_rx_buffer *rx_buffer,
			       unsigned int size)
{
	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
#if (PAGE_SIZE < 8192)
	rx_buffer->page_offset ^= truesize;
#else
	rx_buffer->page_offset += truesize;
#endif
}

static inline void igb_rx_checksum(struct igb_ring *ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	skb_checksum_none_assert(skb);

	/* Ignore Checksum bit is set */
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
		return;

	/* Rx checksum disabled via ethtool */
	if (!(ring->netdev->features & NETIF_F_RXCSUM))
		return;

	/* TCP/UDP checksum error bit is set */
	if (igb_test_staterr(rx_desc,
			     E1000_RXDEXT_STATERR_TCPE |
			     E1000_RXDEXT_STATERR_IPE)) {
		/* work around errata with sctp packets where the TCPE aka
		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
		 * packets, (aka let the stack check the crc32c)
		 */
		if (!((skb->len == 60) &&
		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
			u64_stats_update_begin(&ring->rx_syncp);
			ring->rx_stats.csum_err++;
			u64_stats_update_end(&ring->rx_syncp);
		}
		/* let the stack verify checksum errors */
		return;
	}
	/* It must be a TCP or UDP packet with a valid checksum */
	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
				      E1000_RXD_STAT_UDPCS))
		skb->ip_summed = CHECKSUM_UNNECESSARY;

	dev_dbg(ring->dev, "cksum success: bits %08X\n",
		le32_to_cpu(rx_desc->wb.upper.status_error));
}

static inline void igb_rx_hash(struct igb_ring *ring,
			       union e1000_adv_rx_desc *rx_desc,
			       struct sk_buff *skb)
{
	if (ring->netdev->features & NETIF_F_RXHASH)
		skb_set_hash(skb,
			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
			     PKT_HASH_TYPE_L3);
}

/**
 *  igb_is_non_eop - process handling of non-EOP buffers
 *  @rx_ring: Rx ring being processed
 *  @rx_desc: Rx descriptor for current buffer
 *
 *  This function updates next to clean.  If the buffer is an EOP buffer
 *  this function exits returning false, otherwise it will place the
 *  sk_buff in the next buffer to be chained and return true indicating
 *  that this is in fact a non-EOP buffer.
 **/
static bool igb_is_non_eop(struct igb_ring *rx_ring,
			   union e1000_adv_rx_desc *rx_desc)
{
	u32 ntc = rx_ring->next_to_clean + 1;

	/* fetch, update, and store next to clean */
	ntc = (ntc < rx_ring->count) ? ntc : 0;
	rx_ring->next_to_clean = ntc;

	prefetch(IGB_RX_DESC(rx_ring, ntc));

	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
		return false;

	return true;
}

/**
 *  igb_cleanup_headers - Correct corrupted or empty headers
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being fixed
 *
 *  Address the case where we are pulling data in on pages only
 *  and as such no data is present in the skb header.
 *
 *  In addition if skb is not at least 60 bytes we need to pad it so that
 *  it is large enough to qualify as a valid Ethernet frame.
 *
 *  Returns true if an error was encountered and skb was freed.
 **/
static bool igb_cleanup_headers(struct igb_ring *rx_ring,
				union e1000_adv_rx_desc *rx_desc,
				struct sk_buff *skb)
{
	/* XDP packets use error pointer so abort at this point */
	if (IS_ERR(skb))
		return true;

	if (unlikely((igb_test_staterr(rx_desc,
				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
		struct net_device *netdev = rx_ring->netdev;
		if (!(netdev->features & NETIF_F_RXALL)) {
			dev_kfree_skb_any(skb);
			return true;
		}
	}

	/* if eth_skb_pad returns an error the skb was freed */
	if (eth_skb_pad(skb))
		return true;

	return false;
}

/**
 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 *  @rx_ring: rx descriptor ring packet is being transacted on
 *  @rx_desc: pointer to the EOP Rx descriptor
 *  @skb: pointer to current skb being populated
 *
 *  This function checks the ring, descriptor, and packet information in
 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 *  other fields within the skb.
 **/
static void igb_process_skb_fields(struct igb_ring *rx_ring,
				   union e1000_adv_rx_desc *rx_desc,
				   struct sk_buff *skb)
{
	struct net_device *dev = rx_ring->netdev;

	igb_rx_hash(rx_ring, rx_desc, skb);

	igb_rx_checksum(rx_ring, rx_desc, skb);

	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);

	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
		u16 vid;

		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
		else
			vid = le16_to_cpu(rx_desc->wb.upper.vlan);

		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
	}

	skb_record_rx_queue(skb, rx_ring->queue_index);

	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}

static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
{
	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
}

static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
					       const unsigned int size, int *rx_buf_pgcnt)
{
	struct igb_rx_buffer *rx_buffer;

	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
	*rx_buf_pgcnt =
#if (PAGE_SIZE < 8192)
		page_count(rx_buffer->page);
#else
		0;
#endif
	prefetchw(rx_buffer->page);

	/* we are reusing so sync this buffer for CPU use */
	dma_sync_single_range_for_cpu(rx_ring->dev,
				      rx_buffer->dma,
				      rx_buffer->page_offset,
				      size,
				      DMA_FROM_DEVICE);

	rx_buffer->pagecnt_bias--;

	return rx_buffer;
}

static void igb_put_rx_buffer(struct igb_ring *rx_ring,
			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
{
	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
		/* hand second half of page back to the ring */
		igb_reuse_rx_page(rx_ring, rx_buffer);
	} else {
		/* We are not reusing the buffer so unmap it and free
		 * any references we are holding to it
		 */
		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
				     IGB_RX_DMA_ATTR);
		__page_frag_cache_drain(rx_buffer->page,
					rx_buffer->pagecnt_bias);
	}

	/* clear contents of rx_buffer */
	rx_buffer->page = NULL;
}

static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
{
	struct igb_adapter *adapter = q_vector->adapter;
	struct igb_ring *rx_ring = q_vector->rx.ring;
	struct sk_buff *skb = rx_ring->skb;
	unsigned int total_bytes = 0, total_packets = 0;
	u16 cleaned_count = igb_desc_unused(rx_ring);
	unsigned int xdp_xmit = 0;
	struct xdp_buff xdp;
	u32 frame_sz = 0;
	int rx_buf_pgcnt;

	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
#if (PAGE_SIZE < 8192)
	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
#endif
	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);

	while (likely(total_packets < budget)) {
		union e1000_adv_rx_desc *rx_desc;
		struct igb_rx_buffer *rx_buffer;
		ktime_t timestamp = 0;
		int pkt_offset = 0;
		unsigned int size;
		void *pktbuf;

		/* return some buffers to hardware, one at a time is too slow */
		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
			igb_alloc_rx_buffers(rx_ring, cleaned_count);
			cleaned_count = 0;
		}

		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
		size = le16_to_cpu(rx_desc->wb.upper.length);
		if (!size)
			break;

		/* This memory barrier is needed to keep us from reading
		 * any other fields out of the rx_desc until we know the
		 * descriptor has been written back
		 */
		dma_rmb();

		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;

		/* pull rx packet timestamp if available and valid */
		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
			int ts_hdr_len;

			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
							 pktbuf, &timestamp);

			pkt_offset += ts_hdr_len;
			size -= ts_hdr_len;
		}

		/* retrieve a buffer from the ring */
		if (!skb) {
			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);

			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
#if (PAGE_SIZE > 4096)
			/* At larger PAGE_SIZE, frame_sz depend on len size */
			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
#endif
			skb = igb_run_xdp(adapter, rx_ring, &xdp);
		}

		if (IS_ERR(skb)) {
			unsigned int xdp_res = -PTR_ERR(skb);

			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
				xdp_xmit |= xdp_res;
				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
			} else {
				rx_buffer->pagecnt_bias++;
			}
			total_packets++;
			total_bytes += size;
		} else if (skb)
			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
		else if (ring_uses_build_skb(rx_ring))
			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
					    timestamp);
		else
			skb = igb_construct_skb(rx_ring, rx_buffer,
						&xdp, timestamp);

		/* exit if we failed to retrieve a buffer */
		if (!skb) {
			rx_ring->rx_stats.alloc_failed++;
			rx_buffer->pagecnt_bias++;
			break;
		}

		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
		cleaned_count++;

		/* fetch next buffer in frame if non-eop */
		if (igb_is_non_eop(rx_ring, rx_desc))
			continue;

		/* verify the packet layout is correct */
		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
			skb = NULL;
			continue;
		}

		/* probably a little skewed due to removing CRC */
		total_bytes += skb->len;

		/* populate checksum, timestamp, VLAN, and protocol */
		igb_process_skb_fields(rx_ring, rx_desc, skb);

		napi_gro_receive(&q_vector->napi, skb);

		/* reset skb pointer */
		skb = NULL;

		/* update budget accounting */
		total_packets++;
	}

	/* place incomplete frames back on ring for completion */
	rx_ring->skb = skb;

	if (xdp_xmit & IGB_XDP_REDIR)
		xdp_do_flush();

	if (xdp_xmit & IGB_XDP_TX) {
		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);

		igb_xdp_ring_update_tail(tx_ring);
	}

	u64_stats_update_begin(&rx_ring->rx_syncp);
	rx_ring->rx_stats.packets += total_packets;
	rx_ring->rx_stats.bytes += total_bytes;
	u64_stats_update_end(&rx_ring->rx_syncp);
	q_vector->rx.total_packets += total_packets;
	q_vector->rx.total_bytes += total_bytes;

	if (cleaned_count)
		igb_alloc_rx_buffers(rx_ring, cleaned_count);

	return total_packets;
}

static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
				  struct igb_rx_buffer *bi)
{
	struct page *page = bi->page;
	dma_addr_t dma;

	/* since we are recycling buffers we should seldom need to alloc */
	if (likely(page))
		return true;

	/* alloc new page for storage */
	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
	if (unlikely(!page)) {
		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	/* map page for use */
	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
				 igb_rx_pg_size(rx_ring),
				 DMA_FROM_DEVICE,
				 IGB_RX_DMA_ATTR);

	/* if mapping failed free memory back to system since
	 * there isn't much point in holding memory we can't use
	 */
	if (dma_mapping_error(rx_ring->dev, dma)) {
		__free_pages(page, igb_rx_pg_order(rx_ring));

		rx_ring->rx_stats.alloc_failed++;
		return false;
	}

	bi->dma = dma;
	bi->page = page;
	bi->page_offset = igb_rx_offset(rx_ring);
	page_ref_add(page, USHRT_MAX - 1);
	bi->pagecnt_bias = USHRT_MAX;

	return true;
}

/**
 *  igb_alloc_rx_buffers - Replace used receive buffers
 *  @rx_ring: rx descriptor ring to allocate new receive buffers
 *  @cleaned_count: count of buffers to allocate
 **/
void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
{
	union e1000_adv_rx_desc *rx_desc;
	struct igb_rx_buffer *bi;
	u16 i = rx_ring->next_to_use;
	u16 bufsz;

	/* nothing to do */
	if (!cleaned_count)
		return;

	rx_desc = IGB_RX_DESC(rx_ring, i);
	bi = &rx_ring->rx_buffer_info[i];
	i -= rx_ring->count;

	bufsz = igb_rx_bufsz(rx_ring);

	do {
		if (!igb_alloc_mapped_page(rx_ring, bi))
			break;

		/* sync the buffer for use by the device */
		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
						 bi->page_offset, bufsz,
						 DMA_FROM_DEVICE);

		/* Refresh the desc even if buffer_addrs didn't change
		 * because each write-back erases this info.
		 */
		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);

		rx_desc++;
		bi++;
		i++;
		if (unlikely(!i)) {
			rx_desc = IGB_RX_DESC(rx_ring, 0);
			bi = rx_ring->rx_buffer_info;
			i -= rx_ring->count;
		}

		/* clear the length for the next_to_use descriptor */
		rx_desc->wb.upper.length = 0;

		cleaned_count--;
	} while (cleaned_count);

	i += rx_ring->count;

	if (rx_ring->next_to_use != i) {
		/* record the next descriptor to use */
		rx_ring->next_to_use = i;

		/* update next to alloc since we have filled the ring */
		rx_ring->next_to_alloc = i;

		/* Force memory writes to complete before letting h/w
		 * know there are new descriptors to fetch.  (Only
		 * applicable for weak-ordered memory model archs,
		 * such as IA-64).
		 */
		dma_wmb();
		writel(i, rx_ring->tail);
	}
}

/**
 * igb_mii_ioctl -
 * @netdev: pointer to netdev struct
 * @ifr: interface structure
 * @cmd: ioctl command to execute
 **/
static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct mii_ioctl_data *data = if_mii(ifr);

	if (adapter->hw.phy.media_type != e1000_media_type_copper)
		return -EOPNOTSUPP;

	switch (cmd) {
	case SIOCGMIIPHY:
		data->phy_id = adapter->hw.phy.addr;
		break;
	case SIOCGMIIREG:
		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
				     &data->val_out))
			return -EIO;
		break;
	case SIOCSMIIREG:
	default:
		return -EOPNOTSUPP;
	}
	return 0;
}

/**
 * igb_ioctl -
 * @netdev: pointer to netdev struct
 * @ifr: interface structure
 * @cmd: ioctl command to execute
 **/
static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
	switch (cmd) {
	case SIOCGMIIPHY:
	case SIOCGMIIREG:
	case SIOCSMIIREG:
		return igb_mii_ioctl(netdev, ifr, cmd);
	case SIOCGHWTSTAMP:
		return igb_ptp_get_ts_config(netdev, ifr);
	case SIOCSHWTSTAMP:
		return igb_ptp_set_ts_config(netdev, ifr);
	default:
		return -EOPNOTSUPP;
	}
}

void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

	pci_read_config_word(adapter->pdev, reg, value);
}

void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

	pci_write_config_word(adapter->pdev, reg, *value);
}

s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

	if (pcie_capability_read_word(adapter->pdev, reg, value))
		return -E1000_ERR_CONFIG;

	return 0;
}

s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
{
	struct igb_adapter *adapter = hw->back;

	if (pcie_capability_write_word(adapter->pdev, reg, *value))
		return -E1000_ERR_CONFIG;

	return 0;
}

static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl;
	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);

	if (enable) {
		/* enable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);

		/* Disable CFI check */
		rctl = rd32(E1000_RCTL);
		rctl &= ~E1000_RCTL_CFIEN;
		wr32(E1000_RCTL, rctl);
	} else {
		/* disable VLAN tag insert/strip */
		ctrl = rd32(E1000_CTRL);
		ctrl &= ~E1000_CTRL_VME;
		wr32(E1000_CTRL, ctrl);
	}

	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
}

static int igb_vlan_rx_add_vid(struct net_device *netdev,
			       __be16 proto, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int pf_id = adapter->vfs_allocated_count;

	/* add the filter since PF can receive vlans w/o entry in vlvf */
	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
		igb_vfta_set(hw, vid, pf_id, true, !!vid);

	set_bit(vid, adapter->active_vlans);

	return 0;
}

static int igb_vlan_rx_kill_vid(struct net_device *netdev,
				__be16 proto, u16 vid)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	int pf_id = adapter->vfs_allocated_count;
	struct e1000_hw *hw = &adapter->hw;

	/* remove VID from filter table */
	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
		igb_vfta_set(hw, vid, pf_id, false, true);

	clear_bit(vid, adapter->active_vlans);

	return 0;
}

static void igb_restore_vlan(struct igb_adapter *adapter)
{
	u16 vid = 1;

	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);

	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
}

int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
{
	struct pci_dev *pdev = adapter->pdev;
	struct e1000_mac_info *mac = &adapter->hw.mac;

	mac->autoneg = 0;

	/* Make sure dplx is at most 1 bit and lsb of speed is not set
	 * for the switch() below to work
	 */
	if ((spd & 1) || (dplx & ~1))
		goto err_inval;

	/* Fiber NIC's only allow 1000 gbps Full duplex
	 * and 100Mbps Full duplex for 100baseFx sfp
	 */
	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
		switch (spd + dplx) {
		case SPEED_10 + DUPLEX_HALF:
		case SPEED_10 + DUPLEX_FULL:
		case SPEED_100 + DUPLEX_HALF:
			goto err_inval;
		default:
			break;
		}
	}

	switch (spd + dplx) {
	case SPEED_10 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_10_HALF;
		break;
	case SPEED_10 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_10_FULL;
		break;
	case SPEED_100 + DUPLEX_HALF:
		mac->forced_speed_duplex = ADVERTISE_100_HALF;
		break;
	case SPEED_100 + DUPLEX_FULL:
		mac->forced_speed_duplex = ADVERTISE_100_FULL;
		break;
	case SPEED_1000 + DUPLEX_FULL:
		mac->autoneg = 1;
		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
		break;
	case SPEED_1000 + DUPLEX_HALF: /* not supported */
	default:
		goto err_inval;
	}

	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
	adapter->hw.phy.mdix = AUTO_ALL_MODES;

	return 0;

err_inval:
	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
	return -EINVAL;
}

static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
			  bool runtime)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 ctrl, rctl, status;
	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
	bool wake;

	rtnl_lock();
	netif_device_detach(netdev);

	if (netif_running(netdev))
		__igb_close(netdev, true);

	igb_ptp_suspend(adapter);

	igb_clear_interrupt_scheme(adapter);
	rtnl_unlock();

	status = rd32(E1000_STATUS);
	if (status & E1000_STATUS_LU)
		wufc &= ~E1000_WUFC_LNKC;

	if (wufc) {
		igb_setup_rctl(adapter);
		igb_set_rx_mode(netdev);

		/* turn on all-multi mode if wake on multicast is enabled */
		if (wufc & E1000_WUFC_MC) {
			rctl = rd32(E1000_RCTL);
			rctl |= E1000_RCTL_MPE;
			wr32(E1000_RCTL, rctl);
		}

		ctrl = rd32(E1000_CTRL);
		ctrl |= E1000_CTRL_ADVD3WUC;
		wr32(E1000_CTRL, ctrl);

		/* Allow time for pending master requests to run */
		igb_disable_pcie_master(hw);

		wr32(E1000_WUC, E1000_WUC_PME_EN);
		wr32(E1000_WUFC, wufc);
	} else {
		wr32(E1000_WUC, 0);
		wr32(E1000_WUFC, 0);
	}

	wake = wufc || adapter->en_mng_pt;
	if (!wake)
		igb_power_down_link(adapter);
	else
		igb_power_up_link(adapter);

	if (enable_wake)
		*enable_wake = wake;

	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
	 * would have already happened in close and is redundant.
	 */
	igb_release_hw_control(adapter);

	pci_disable_device(pdev);

	return 0;
}

static void igb_deliver_wake_packet(struct net_device *netdev)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	struct sk_buff *skb;
	u32 wupl;

	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;

	/* WUPM stores only the first 128 bytes of the wake packet.
	 * Read the packet only if we have the whole thing.
	 */
	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
		return;

	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
	if (!skb)
		return;

	skb_put(skb, wupl);

	/* Ensure reads are 32-bit aligned */
	wupl = roundup(wupl, 4);

	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);

	skb->protocol = eth_type_trans(skb, netdev);
	netif_rx(skb);
}

static int __maybe_unused igb_suspend(struct device *dev)
{
	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
}

static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 err, val;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	pci_save_state(pdev);

	if (!pci_device_is_present(pdev))
		return -ENODEV;
	err = pci_enable_device_mem(pdev);
	if (err) {
		dev_err(&pdev->dev,
			"igb: Cannot enable PCI device from suspend\n");
		return err;
	}
	pci_set_master(pdev);

	pci_enable_wake(pdev, PCI_D3hot, 0);
	pci_enable_wake(pdev, PCI_D3cold, 0);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	igb_reset(adapter);

	/* let the f/w know that the h/w is now under the control of the
	 * driver.
	 */
	igb_get_hw_control(adapter);

	val = rd32(E1000_WUS);
	if (val & WAKE_PKT_WUS)
		igb_deliver_wake_packet(netdev);

	wr32(E1000_WUS, ~0);

	if (!rpm)
		rtnl_lock();
	if (!err && netif_running(netdev))
		err = __igb_open(netdev, true);

	if (!err)
		netif_device_attach(netdev);
	if (!rpm)
		rtnl_unlock();

	return err;
}

static int __maybe_unused igb_resume(struct device *dev)
{
	return __igb_resume(dev, false);
}

static int __maybe_unused igb_runtime_idle(struct device *dev)
{
	struct net_device *netdev = dev_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (!igb_has_link(adapter))
		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);

	return -EBUSY;
}

static int __maybe_unused igb_runtime_suspend(struct device *dev)
{
	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
}

static int __maybe_unused igb_runtime_resume(struct device *dev)
{
	return __igb_resume(dev, true);
}

static void igb_shutdown(struct pci_dev *pdev)
{
	bool wake;

	__igb_shutdown(pdev, &wake, 0);

	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, wake);
		pci_set_power_state(pdev, PCI_D3hot);
	}
}

#ifdef CONFIG_PCI_IOV
static int igb_sriov_reinit(struct pci_dev *dev)
{
	struct net_device *netdev = pci_get_drvdata(dev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct pci_dev *pdev = adapter->pdev;

	rtnl_lock();

	if (netif_running(netdev))
		igb_close(netdev);
	else
		igb_reset(adapter);

	igb_clear_interrupt_scheme(adapter);

	igb_init_queue_configuration(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		rtnl_unlock();
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		igb_open(netdev);

	rtnl_unlock();

	return 0;
}

static int igb_pci_disable_sriov(struct pci_dev *dev)
{
	int err = igb_disable_sriov(dev);

	if (!err)
		err = igb_sriov_reinit(dev);

	return err;
}

static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
{
	int err = igb_enable_sriov(dev, num_vfs);

	if (err)
		goto out;

	err = igb_sriov_reinit(dev);
	if (!err)
		return num_vfs;

out:
	return err;
}

#endif
static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
{
#ifdef CONFIG_PCI_IOV
	if (num_vfs == 0)
		return igb_pci_disable_sriov(dev);
	else
		return igb_pci_enable_sriov(dev, num_vfs);
#endif
	return 0;
}

/**
 *  igb_io_error_detected - called when PCI error is detected
 *  @pdev: Pointer to PCI device
 *  @state: The current pci connection state
 *
 *  This function is called after a PCI bus error affecting
 *  this device has been detected.
 **/
static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
					      pci_channel_state_t state)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	netif_device_detach(netdev);

	if (state == pci_channel_io_perm_failure)
		return PCI_ERS_RESULT_DISCONNECT;

	if (netif_running(netdev))
		igb_down(adapter);
	pci_disable_device(pdev);

	/* Request a slot slot reset. */
	return PCI_ERS_RESULT_NEED_RESET;
}

/**
 *  igb_io_slot_reset - called after the pci bus has been reset.
 *  @pdev: Pointer to PCI device
 *
 *  Restart the card from scratch, as if from a cold-boot. Implementation
 *  resembles the first-half of the __igb_resume routine.
 **/
static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	pci_ers_result_t result;

	if (pci_enable_device_mem(pdev)) {
		dev_err(&pdev->dev,
			"Cannot re-enable PCI device after reset.\n");
		result = PCI_ERS_RESULT_DISCONNECT;
	} else {
		pci_set_master(pdev);
		pci_restore_state(pdev);
		pci_save_state(pdev);

		pci_enable_wake(pdev, PCI_D3hot, 0);
		pci_enable_wake(pdev, PCI_D3cold, 0);

		/* In case of PCI error, adapter lose its HW address
		 * so we should re-assign it here.
		 */
		hw->hw_addr = adapter->io_addr;

		igb_reset(adapter);
		wr32(E1000_WUS, ~0);
		result = PCI_ERS_RESULT_RECOVERED;
	}

	return result;
}

/**
 *  igb_io_resume - called when traffic can start flowing again.
 *  @pdev: Pointer to PCI device
 *
 *  This callback is called when the error recovery driver tells us that
 *  its OK to resume normal operation. Implementation resembles the
 *  second-half of the __igb_resume routine.
 */
static void igb_io_resume(struct pci_dev *pdev)
{
	struct net_device *netdev = pci_get_drvdata(pdev);
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (netif_running(netdev)) {
		if (igb_up(adapter)) {
			dev_err(&pdev->dev, "igb_up failed after reset\n");
			return;
		}
	}

	netif_device_attach(netdev);

	/* let the f/w know that the h/w is now under the control of the
	 * driver.
	 */
	igb_get_hw_control(adapter);
}

/**
 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
 *  @adapter: Pointer to adapter structure
 *  @index: Index of the RAR entry which need to be synced with MAC table
 **/
static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 rar_low, rar_high;
	u8 *addr = adapter->mac_table[index].addr;

	/* HW expects these to be in network order when they are plugged
	 * into the registers which are little endian.  In order to guarantee
	 * that ordering we need to do an leXX_to_cpup here in order to be
	 * ready for the byteswap that occurs with writel
	 */
	rar_low = le32_to_cpup((__le32 *)(addr));
	rar_high = le16_to_cpup((__le16 *)(addr + 4));

	/* Indicate to hardware the Address is Valid. */
	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
		if (is_valid_ether_addr(addr))
			rar_high |= E1000_RAH_AV;

		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
			rar_high |= E1000_RAH_ASEL_SRC_ADDR;

		switch (hw->mac.type) {
		case e1000_82575:
		case e1000_i210:
			if (adapter->mac_table[index].state &
			    IGB_MAC_STATE_QUEUE_STEERING)
				rar_high |= E1000_RAH_QSEL_ENABLE;

			rar_high |= E1000_RAH_POOL_1 *
				    adapter->mac_table[index].queue;
			break;
		default:
			rar_high |= E1000_RAH_POOL_1 <<
				    adapter->mac_table[index].queue;
			break;
		}
	}

	wr32(E1000_RAL(index), rar_low);
	wrfl();
	wr32(E1000_RAH(index), rar_high);
	wrfl();
}

static int igb_set_vf_mac(struct igb_adapter *adapter,
			  int vf, unsigned char *mac_addr)
{
	struct e1000_hw *hw = &adapter->hw;
	/* VF MAC addresses start at end of receive addresses and moves
	 * towards the first, as a result a collision should not be possible
	 */
	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;

	ether_addr_copy(vf_mac_addr, mac_addr);
	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
	adapter->mac_table[rar_entry].queue = vf;
	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
	igb_rar_set_index(adapter, rar_entry);

	return 0;
}

static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
	 * flag and allows to overwrite the MAC via VF netdev.  This
	 * is necessary to allow libvirt a way to restore the original
	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
	 * down a VM.
	 */
	if (is_zero_ether_addr(mac)) {
		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
		dev_info(&adapter->pdev->dev,
			 "remove administratively set MAC on VF %d\n",
			 vf);
	} else if (is_valid_ether_addr(mac)) {
		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
			 mac, vf);
		dev_info(&adapter->pdev->dev,
			 "Reload the VF driver to make this change effective.");
		/* Generate additional warning if PF is down */
		if (test_bit(__IGB_DOWN, &adapter->state)) {
			dev_warn(&adapter->pdev->dev,
				 "The VF MAC address has been set, but the PF device is not up.\n");
			dev_warn(&adapter->pdev->dev,
				 "Bring the PF device up before attempting to use the VF device.\n");
		}
	} else {
		return -EINVAL;
	}
	return igb_set_vf_mac(adapter, vf, mac);
}

static int igb_link_mbps(int internal_link_speed)
{
	switch (internal_link_speed) {
	case SPEED_100:
		return 100;
	case SPEED_1000:
		return 1000;
	default:
		return 0;
	}
}

static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
				  int link_speed)
{
	int rf_dec, rf_int;
	u32 bcnrc_val;

	if (tx_rate != 0) {
		/* Calculate the rate factor values to set */
		rf_int = link_speed / tx_rate;
		rf_dec = (link_speed - (rf_int * tx_rate));
		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
			 tx_rate;

		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
			      E1000_RTTBCNRC_RF_INT_MASK);
		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
	} else {
		bcnrc_val = 0;
	}

	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
	 */
	wr32(E1000_RTTBCNRM, 0x14);
	wr32(E1000_RTTBCNRC, bcnrc_val);
}

static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
{
	int actual_link_speed, i;
	bool reset_rate = false;

	/* VF TX rate limit was not set or not supported */
	if ((adapter->vf_rate_link_speed == 0) ||
	    (adapter->hw.mac.type != e1000_82576))
		return;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if (actual_link_speed != adapter->vf_rate_link_speed) {
		reset_rate = true;
		adapter->vf_rate_link_speed = 0;
		dev_info(&adapter->pdev->dev,
			 "Link speed has been changed. VF Transmit rate is disabled\n");
	}

	for (i = 0; i < adapter->vfs_allocated_count; i++) {
		if (reset_rate)
			adapter->vf_data[i].tx_rate = 0;

		igb_set_vf_rate_limit(&adapter->hw, i,
				      adapter->vf_data[i].tx_rate,
				      actual_link_speed);
	}
}

static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
			     int min_tx_rate, int max_tx_rate)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	int actual_link_speed;

	if (hw->mac.type != e1000_82576)
		return -EOPNOTSUPP;

	if (min_tx_rate)
		return -EINVAL;

	actual_link_speed = igb_link_mbps(adapter->link_speed);
	if ((vf >= adapter->vfs_allocated_count) ||
	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
	    (max_tx_rate < 0) ||
	    (max_tx_rate > actual_link_speed))
		return -EINVAL;

	adapter->vf_rate_link_speed = actual_link_speed;
	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);

	return 0;
}

static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
				   bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	struct e1000_hw *hw = &adapter->hw;
	u32 reg_val, reg_offset;

	if (!adapter->vfs_allocated_count)
		return -EOPNOTSUPP;

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;

	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
	reg_val = rd32(reg_offset);
	if (setting)
		reg_val |= (BIT(vf) |
			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
	else
		reg_val &= ~(BIT(vf) |
			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
	wr32(reg_offset, reg_val);

	adapter->vf_data[vf].spoofchk_enabled = setting;
	return 0;
}

static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
{
	struct igb_adapter *adapter = netdev_priv(netdev);

	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	if (adapter->vf_data[vf].trusted == setting)
		return 0;

	adapter->vf_data[vf].trusted = setting;

	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
		 vf, setting ? "" : "not ");
	return 0;
}

static int igb_ndo_get_vf_config(struct net_device *netdev,
				 int vf, struct ifla_vf_info *ivi)
{
	struct igb_adapter *adapter = netdev_priv(netdev);
	if (vf >= adapter->vfs_allocated_count)
		return -EINVAL;
	ivi->vf = vf;
	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
	ivi->min_tx_rate = 0;
	ivi->vlan = adapter->vf_data[vf].pf_vlan;
	ivi->qos = adapter->vf_data[vf].pf_qos;
	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
	ivi->trusted = adapter->vf_data[vf].trusted;
	return 0;
}

static void igb_vmm_control(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 reg;

	switch (hw->mac.type) {
	case e1000_82575:
	case e1000_i210:
	case e1000_i211:
	case e1000_i354:
	default:
		/* replication is not supported for 82575 */
		return;
	case e1000_82576:
		/* notify HW that the MAC is adding vlan tags */
		reg = rd32(E1000_DTXCTL);
		reg |= E1000_DTXCTL_VLAN_ADDED;
		wr32(E1000_DTXCTL, reg);
		fallthrough;
	case e1000_82580:
		/* enable replication vlan tag stripping */
		reg = rd32(E1000_RPLOLR);
		reg |= E1000_RPLOLR_STRVLAN;
		wr32(E1000_RPLOLR, reg);
		fallthrough;
	case e1000_i350:
		/* none of the above registers are supported by i350 */
		break;
	}

	if (adapter->vfs_allocated_count) {
		igb_vmdq_set_loopback_pf(hw, true);
		igb_vmdq_set_replication_pf(hw, true);
		igb_vmdq_set_anti_spoofing_pf(hw, true,
					      adapter->vfs_allocated_count);
	} else {
		igb_vmdq_set_loopback_pf(hw, false);
		igb_vmdq_set_replication_pf(hw, false);
	}
}

static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
{
	struct e1000_hw *hw = &adapter->hw;
	u32 dmac_thr;
	u16 hwm;

	if (hw->mac.type > e1000_82580) {
		if (adapter->flags & IGB_FLAG_DMAC) {
			u32 reg;

			/* force threshold to 0. */
			wr32(E1000_DMCTXTH, 0);

			/* DMA Coalescing high water mark needs to be greater
			 * than the Rx threshold. Set hwm to PBA - max frame
			 * size in 16B units, capping it at PBA - 6KB.
			 */
			hwm = 64 * (pba - 6);
			reg = rd32(E1000_FCRTC);
			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
				& E1000_FCRTC_RTH_COAL_MASK);
			wr32(E1000_FCRTC, reg);

			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
			 * frame size, capping it at PBA - 10KB.
			 */
			dmac_thr = pba - 10;
			reg = rd32(E1000_DMACR);
			reg &= ~E1000_DMACR_DMACTHR_MASK;
			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
				& E1000_DMACR_DMACTHR_MASK);

			/* transition to L0x or L1 if available..*/
			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);

			/* watchdog timer= +-1000 usec in 32usec intervals */
			reg |= (1000 >> 5);

			/* Disable BMC-to-OS Watchdog Enable */
			if (hw->mac.type != e1000_i354)
				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;

			wr32(E1000_DMACR, reg);

			/* no lower threshold to disable
			 * coalescing(smart fifb)-UTRESH=0
			 */
			wr32(E1000_DMCRTRH, 0);

			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);

			wr32(E1000_DMCTLX, reg);

			/* free space in tx packet buffer to wake from
			 * DMA coal
			 */
			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);

			/* make low power state decision controlled
			 * by DMA coal
			 */
			reg = rd32(E1000_PCIEMISC);
			reg &= ~E1000_PCIEMISC_LX_DECISION;
			wr32(E1000_PCIEMISC, reg);
		} /* endif adapter->dmac is not disabled */
	} else if (hw->mac.type == e1000_82580) {
		u32 reg = rd32(E1000_PCIEMISC);

		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
		wr32(E1000_DMACR, 0);
	}
}

/**
 *  igb_read_i2c_byte - Reads 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: device address
 *  @data: value read
 *
 *  Performs byte read operation over I2C interface at
 *  a specified device address.
 **/
s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
		      u8 dev_addr, u8 *data)
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
	struct i2c_client *this_client = adapter->i2c_client;
	s32 status;
	u16 swfw_mask = 0;

	if (!this_client)
		return E1000_ERR_I2C;

	swfw_mask = E1000_SWFW_PHY0_SM;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
		return E1000_ERR_SWFW_SYNC;

	status = i2c_smbus_read_byte_data(this_client, byte_offset);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status < 0)
		return E1000_ERR_I2C;
	else {
		*data = status;
		return 0;
	}
}

/**
 *  igb_write_i2c_byte - Writes 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: device address
 *  @data: value to write
 *
 *  Performs byte write operation over I2C interface at
 *  a specified device address.
 **/
s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
		       u8 dev_addr, u8 data)
{
	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
	struct i2c_client *this_client = adapter->i2c_client;
	s32 status;
	u16 swfw_mask = E1000_SWFW_PHY0_SM;

	if (!this_client)
		return E1000_ERR_I2C;

	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
		return E1000_ERR_SWFW_SYNC;
	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
	hw->mac.ops.release_swfw_sync(hw, swfw_mask);

	if (status)
		return E1000_ERR_I2C;
	else
		return 0;

}

int igb_reinit_queues(struct igb_adapter *adapter)
{
	struct net_device *netdev = adapter->netdev;
	struct pci_dev *pdev = adapter->pdev;
	int err = 0;

	if (netif_running(netdev))
		igb_close(netdev);

	igb_reset_interrupt_capability(adapter);

	if (igb_init_interrupt_scheme(adapter, true)) {
		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
		return -ENOMEM;
	}

	if (netif_running(netdev))
		err = igb_open(netdev);

	return err;
}

static void igb_nfc_filter_exit(struct igb_adapter *adapter)
{
	struct igb_nfc_filter *rule;

	spin_lock(&adapter->nfc_lock);

	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
		igb_erase_filter(adapter, rule);

	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
		igb_erase_filter(adapter, rule);

	spin_unlock(&adapter->nfc_lock);
}

static void igb_nfc_filter_restore(struct igb_adapter *adapter)
{
	struct igb_nfc_filter *rule;

	spin_lock(&adapter->nfc_lock);

	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
		igb_add_filter(adapter, rule);

	spin_unlock(&adapter->nfc_lock);
}
/* igb_main.c */