summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/meson/meson_rdma.c
blob: 130382178c6310db0ba9e56f1c01f306f4cdeaf5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2019 BayLibre, SAS
 * Author: Neil Armstrong <narmstrong@baylibre.com>
 */

#include <linux/bitfield.h>
#include <linux/dma-mapping.h>

#include "meson_drv.h"
#include "meson_registers.h"
#include "meson_rdma.h"

/*
 * The VPU embeds a "Register DMA" that can write a sequence of registers
 * on the VPU AHB bus, either manually or triggered by an internal IRQ
 * event like VSYNC or a line input counter.
 * The initial implementation handles a single channel (over 8), triggered
 * by the VSYNC irq and does not handle the RDMA irq.
 */

#define RDMA_DESC_SIZE	(sizeof(uint32_t) * 2)

int meson_rdma_init(struct meson_drm *priv)
{
	if (!priv->rdma.addr) {
		/* Allocate a PAGE buffer */
		priv->rdma.addr =
			dma_alloc_coherent(priv->dev, SZ_4K,
					   &priv->rdma.addr_dma,
					   GFP_KERNEL);
		if (!priv->rdma.addr)
			return -ENOMEM;
	}

	priv->rdma.offset = 0;

	writel_relaxed(RDMA_CTRL_SW_RESET,
		       priv->io_base + _REG(RDMA_CTRL));
	writel_relaxed(RDMA_DEFAULT_CONFIG |
		       FIELD_PREP(RDMA_CTRL_AHB_WR_BURST, 3) |
		       FIELD_PREP(RDMA_CTRL_AHB_RD_BURST, 0),
		       priv->io_base + _REG(RDMA_CTRL));

	return 0;
}

void meson_rdma_free(struct meson_drm *priv)
{
	if (!priv->rdma.addr && !priv->rdma.addr_dma)
		return;

	meson_rdma_stop(priv);

	dma_free_coherent(priv->dev, SZ_4K,
			  priv->rdma.addr, priv->rdma.addr_dma);

	priv->rdma.addr = NULL;
	priv->rdma.addr_dma = (dma_addr_t)0;
}

void meson_rdma_setup(struct meson_drm *priv)
{
	/* Channel 1: Write Flag, No Address Increment */
	writel_bits_relaxed(RDMA_ACCESS_RW_FLAG_CHAN1 |
			    RDMA_ACCESS_ADDR_INC_CHAN1,
			    RDMA_ACCESS_RW_FLAG_CHAN1,
			    priv->io_base + _REG(RDMA_ACCESS_AUTO));
}

void meson_rdma_stop(struct meson_drm *priv)
{
	writel_bits_relaxed(RDMA_IRQ_CLEAR_CHAN1,
			    RDMA_IRQ_CLEAR_CHAN1,
			    priv->io_base + _REG(RDMA_CTRL));

	/* Stop Channel 1 */
	writel_bits_relaxed(RDMA_ACCESS_TRIGGER_CHAN1,
			    FIELD_PREP(RDMA_ACCESS_ADDR_INC_CHAN1,
				       RDMA_ACCESS_TRIGGER_STOP),
			    priv->io_base + _REG(RDMA_ACCESS_AUTO));
}

void meson_rdma_reset(struct meson_drm *priv)
{
	meson_rdma_stop(priv);

	priv->rdma.offset = 0;
}

static void meson_rdma_writel(struct meson_drm *priv, uint32_t val,
			      uint32_t reg)
{
	if (priv->rdma.offset >= (SZ_4K / RDMA_DESC_SIZE)) {
		dev_warn_once(priv->dev, "%s: overflow\n", __func__);
		return;
	}

	priv->rdma.addr[priv->rdma.offset++] = reg;
	priv->rdma.addr[priv->rdma.offset++] = val;
}

/*
 * This will add the register to the RDMA buffer and write it to the
 * hardware at the same time.
 * When meson_rdma_flush is called, the RDMA will replay the register
 * writes in order.
 */
void meson_rdma_writel_sync(struct meson_drm *priv, uint32_t val, uint32_t reg)
{
	meson_rdma_writel(priv, val, reg);

	writel_relaxed(val, priv->io_base + _REG(reg));
}

void meson_rdma_flush(struct meson_drm *priv)
{
	meson_rdma_stop(priv);

	/* Start of Channel 1 register writes buffer */
	writel(priv->rdma.addr_dma,
	       priv->io_base + _REG(RDMA_AHB_START_ADDR_1));

	/* Last byte on Channel 1 register writes buffer */
	writel(priv->rdma.addr_dma + (priv->rdma.offset * RDMA_DESC_SIZE) - 1,
	       priv->io_base + _REG(RDMA_AHB_END_ADDR_1));

	/* Trigger Channel 1 on VSYNC event */
	writel_bits_relaxed(RDMA_ACCESS_TRIGGER_CHAN1,
			    FIELD_PREP(RDMA_ACCESS_TRIGGER_CHAN1,
				       RDMA_ACCESS_TRIGGER_VSYNC),
			    priv->io_base + _REG(RDMA_ACCESS_AUTO));

	priv->rdma.offset = 0;
}