summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/gma500/psb_intel_display.c
blob: 6cee07013a2d23bc5ed97d98b943a69915906de5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/*
 * Copyright © 2006-2011 Intel Corporation
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Authors:
 *	Eric Anholt <eric@anholt.net>
 */

#include <linux/i2c.h>

#include <drm/drmP.h>
#include "framebuffer.h"
#include "psb_drv.h"
#include "psb_intel_drv.h"
#include "psb_intel_reg.h"
#include "gma_display.h"
#include "power.h"

#define INTEL_LIMIT_I9XX_SDVO_DAC   0
#define INTEL_LIMIT_I9XX_LVDS	    1

static const struct gma_limit_t psb_intel_limits[] = {
	{			/* INTEL_LIMIT_I9XX_SDVO_DAC */
	 .dot = {.min = 20000, .max = 400000},
	 .vco = {.min = 1400000, .max = 2800000},
	 .n = {.min = 1, .max = 6},
	 .m = {.min = 70, .max = 120},
	 .m1 = {.min = 8, .max = 18},
	 .m2 = {.min = 3, .max = 7},
	 .p = {.min = 5, .max = 80},
	 .p1 = {.min = 1, .max = 8},
	 .p2 = {.dot_limit = 200000, .p2_slow = 10, .p2_fast = 5},
	 .find_pll = gma_find_best_pll,
	 },
	{			/* INTEL_LIMIT_I9XX_LVDS */
	 .dot = {.min = 20000, .max = 400000},
	 .vco = {.min = 1400000, .max = 2800000},
	 .n = {.min = 1, .max = 6},
	 .m = {.min = 70, .max = 120},
	 .m1 = {.min = 8, .max = 18},
	 .m2 = {.min = 3, .max = 7},
	 .p = {.min = 7, .max = 98},
	 .p1 = {.min = 1, .max = 8},
	 /* The single-channel range is 25-112Mhz, and dual-channel
	  * is 80-224Mhz.  Prefer single channel as much as possible.
	  */
	 .p2 = {.dot_limit = 112000, .p2_slow = 14, .p2_fast = 7},
	 .find_pll = gma_find_best_pll,
	 },
};

static const struct gma_limit_t *psb_intel_limit(struct drm_crtc *crtc,
						 int refclk)
{
	const struct gma_limit_t *limit;

	if (gma_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
	else
		limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
	return limit;
}

static void psb_intel_clock(int refclk, struct gma_clock_t *clock)
{
	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
	clock->p = clock->p1 * clock->p2;
	clock->vco = refclk * clock->m / (clock->n + 2);
	clock->dot = clock->vco / clock->p;
}

/**
 * Return the pipe currently connected to the panel fitter,
 * or -1 if the panel fitter is not present or not in use
 */
static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
{
	u32 pfit_control;

	pfit_control = REG_READ(PFIT_CONTROL);

	/* See if the panel fitter is in use */
	if ((pfit_control & PFIT_ENABLE) == 0)
		return -1;
	/* Must be on PIPE 1 for PSB */
	return 1;
}

static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
			       struct drm_display_mode *mode,
			       struct drm_display_mode *adjusted_mode,
			       int x, int y,
			       struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
	int pipe = gma_crtc->pipe;
	const struct psb_offset *map = &dev_priv->regmap[pipe];
	int refclk;
	struct gma_clock_t clock;
	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
	bool ok, is_sdvo = false;
	bool is_lvds = false, is_tv = false;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *connector;
	const struct gma_limit_t *limit;

	/* No scan out no play */
	if (crtc->fb == NULL) {
		crtc_funcs->mode_set_base(crtc, x, y, old_fb);
		return 0;
	}

	list_for_each_entry(connector, &mode_config->connector_list, head) {
		struct psb_intel_encoder *psb_intel_encoder =
						gma_attached_encoder(connector);

		if (!connector->encoder
		    || connector->encoder->crtc != crtc)
			continue;

		switch (psb_intel_encoder->type) {
		case INTEL_OUTPUT_LVDS:
			is_lvds = true;
			break;
		case INTEL_OUTPUT_SDVO:
			is_sdvo = true;
			break;
		case INTEL_OUTPUT_TVOUT:
			is_tv = true;
			break;
		}
	}

	refclk = 96000;

	limit = gma_crtc->clock_funcs->limit(crtc, refclk);

	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk,
				 &clock);
	if (!ok) {
		DRM_ERROR("Couldn't find PLL settings for mode! target: %d, actual: %d",
			  adjusted_mode->clock, clock.dot);
		return 0;
	}

	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;

	dpll = DPLL_VGA_MODE_DIS;
	if (is_lvds) {
		dpll |= DPLLB_MODE_LVDS;
		dpll |= DPLL_DVO_HIGH_SPEED;
	} else
		dpll |= DPLLB_MODE_DAC_SERIAL;
	if (is_sdvo) {
		int sdvo_pixel_multiply =
			    adjusted_mode->clock / mode->clock;
		dpll |= DPLL_DVO_HIGH_SPEED;
		dpll |=
		    (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
	}

	/* compute bitmask from p1 value */
	dpll |= (1 << (clock.p1 - 1)) << 16;
	switch (clock.p2) {
	case 5:
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
		break;
	case 7:
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
		break;
	case 10:
		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
		break;
	case 14:
		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
		break;
	}

	if (is_tv) {
		/* XXX: just matching BIOS for now */
/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
		dpll |= 3;
	}
	dpll |= PLL_REF_INPUT_DREFCLK;

	/* setup pipeconf */
	pipeconf = REG_READ(map->conf);

	/* Set up the display plane register */
	dspcntr = DISPPLANE_GAMMA_ENABLE;

	if (pipe == 0)
		dspcntr |= DISPPLANE_SEL_PIPE_A;
	else
		dspcntr |= DISPPLANE_SEL_PIPE_B;

	dspcntr |= DISPLAY_PLANE_ENABLE;
	pipeconf |= PIPEACONF_ENABLE;
	dpll |= DPLL_VCO_ENABLE;


	/* Disable the panel fitter if it was on our pipe */
	if (psb_intel_panel_fitter_pipe(dev) == pipe)
		REG_WRITE(PFIT_CONTROL, 0);

	drm_mode_debug_printmodeline(mode);

	if (dpll & DPLL_VCO_ENABLE) {
		REG_WRITE(map->fp0, fp);
		REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
		REG_READ(map->dpll);
		udelay(150);
	}

	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
	 * This is an exception to the general rule that mode_set doesn't turn
	 * things on.
	 */
	if (is_lvds) {
		u32 lvds = REG_READ(LVDS);

		lvds &= ~LVDS_PIPEB_SELECT;
		if (pipe == 1)
			lvds |= LVDS_PIPEB_SELECT;

		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
		/* Set the B0-B3 data pairs corresponding to
		 * whether we're going to
		 * set the DPLLs for dual-channel mode or not.
		 */
		lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
		if (clock.p2 == 7)
			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;

		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
		 * appropriately here, but we need to look more
		 * thoroughly into how panels behave in the two modes.
		 */

		REG_WRITE(LVDS, lvds);
		REG_READ(LVDS);
	}

	REG_WRITE(map->fp0, fp);
	REG_WRITE(map->dpll, dpll);
	REG_READ(map->dpll);
	/* Wait for the clocks to stabilize. */
	udelay(150);

	/* write it again -- the BIOS does, after all */
	REG_WRITE(map->dpll, dpll);

	REG_READ(map->dpll);
	/* Wait for the clocks to stabilize. */
	udelay(150);

	REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
		  ((adjusted_mode->crtc_htotal - 1) << 16));
	REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
		  ((adjusted_mode->crtc_hblank_end - 1) << 16));
	REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
		  ((adjusted_mode->crtc_hsync_end - 1) << 16));
	REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
		  ((adjusted_mode->crtc_vtotal - 1) << 16));
	REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
		  ((adjusted_mode->crtc_vblank_end - 1) << 16));
	REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
		  ((adjusted_mode->crtc_vsync_end - 1) << 16));
	/* pipesrc and dspsize control the size that is scaled from,
	 * which should always be the user's requested size.
	 */
	REG_WRITE(map->size,
		  ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
	REG_WRITE(map->pos, 0);
	REG_WRITE(map->src,
		  ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
	REG_WRITE(map->conf, pipeconf);
	REG_READ(map->conf);

	gma_wait_for_vblank(dev);

	REG_WRITE(map->cntr, dspcntr);

	/* Flush the plane changes */
	crtc_funcs->mode_set_base(crtc, x, y, old_fb);

	gma_wait_for_vblank(dev);

	return 0;
}

/* Returns the clock of the currently programmed mode of the given pipe. */
static int psb_intel_crtc_clock_get(struct drm_device *dev,
				struct drm_crtc *crtc)
{
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
	struct drm_psb_private *dev_priv = dev->dev_private;
	int pipe = gma_crtc->pipe;
	const struct psb_offset *map = &dev_priv->regmap[pipe];
	u32 dpll;
	u32 fp;
	struct gma_clock_t clock;
	bool is_lvds;
	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];

	if (gma_power_begin(dev, false)) {
		dpll = REG_READ(map->dpll);
		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
			fp = REG_READ(map->fp0);
		else
			fp = REG_READ(map->fp1);
		is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
		gma_power_end(dev);
	} else {
		dpll = p->dpll;

		if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
			fp = p->fp0;
		else
		        fp = p->fp1;

		is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
								LVDS_PORT_EN);
	}

	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
	clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
	clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;

	if (is_lvds) {
		clock.p1 =
		    ffs((dpll &
			 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
			DPLL_FPA01_P1_POST_DIV_SHIFT);
		clock.p2 = 14;

		if ((dpll & PLL_REF_INPUT_MASK) ==
		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
			/* XXX: might not be 66MHz */
			psb_intel_clock(66000, &clock);
		} else
			psb_intel_clock(48000, &clock);
	} else {
		if (dpll & PLL_P1_DIVIDE_BY_TWO)
			clock.p1 = 2;
		else {
			clock.p1 =
			    ((dpll &
			      DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
			     DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
		}
		if (dpll & PLL_P2_DIVIDE_BY_4)
			clock.p2 = 4;
		else
			clock.p2 = 2;

		psb_intel_clock(48000, &clock);
	}

	/* XXX: It would be nice to validate the clocks, but we can't reuse
	 * i830PllIsValid() because it relies on the xf86_config connector
	 * configuration being accurate, which it isn't necessarily.
	 */

	return clock.dot;
}

/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
					     struct drm_crtc *crtc)
{
	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
	int pipe = gma_crtc->pipe;
	struct drm_display_mode *mode;
	int htot;
	int hsync;
	int vtot;
	int vsync;
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
	const struct psb_offset *map = &dev_priv->regmap[pipe];

	if (gma_power_begin(dev, false)) {
		htot = REG_READ(map->htotal);
		hsync = REG_READ(map->hsync);
		vtot = REG_READ(map->vtotal);
		vsync = REG_READ(map->vsync);
		gma_power_end(dev);
	} else {
		htot = p->htotal;
		hsync = p->hsync;
		vtot = p->vtotal;
		vsync = p->vsync;
	}

	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
	if (!mode)
		return NULL;

	mode->clock = psb_intel_crtc_clock_get(dev, crtc);
	mode->hdisplay = (htot & 0xffff) + 1;
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
	mode->hsync_start = (hsync & 0xffff) + 1;
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
	mode->vdisplay = (vtot & 0xffff) + 1;
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
	mode->vsync_start = (vsync & 0xffff) + 1;
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;

	drm_mode_set_name(mode);
	drm_mode_set_crtcinfo(mode, 0);

	return mode;
}

const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
	.dpms = gma_crtc_dpms,
	.mode_fixup = gma_crtc_mode_fixup,
	.mode_set = psb_intel_crtc_mode_set,
	.mode_set_base = gma_pipe_set_base,
	.prepare = gma_crtc_prepare,
	.commit = gma_crtc_commit,
	.disable = gma_crtc_disable,
};

const struct drm_crtc_funcs psb_intel_crtc_funcs = {
	.save = gma_crtc_save,
	.restore = gma_crtc_restore,
	.cursor_set = gma_crtc_cursor_set,
	.cursor_move = gma_crtc_cursor_move,
	.gamma_set = gma_crtc_gamma_set,
	.set_config = gma_crtc_set_config,
	.destroy = gma_crtc_destroy,
};

const struct gma_clock_funcs psb_clock_funcs = {
	.clock = psb_intel_clock,
	.limit = psb_intel_limit,
	.pll_is_valid = gma_pll_is_valid,
};

/*
 * Set the default value of cursor control and base register
 * to zero. This is a workaround for h/w defect on Oaktrail
 */
static void psb_intel_cursor_init(struct drm_device *dev,
				  struct gma_crtc *gma_crtc)
{
	struct drm_psb_private *dev_priv = dev->dev_private;
	u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
	u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
	struct gtt_range *cursor_gt;

	if (dev_priv->ops->cursor_needs_phys) {
		/* Allocate 4 pages of stolen mem for a hardware cursor. That
		 * is enough for the 64 x 64 ARGB cursors we support.
		 */
		cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1);
		if (!cursor_gt) {
			gma_crtc->cursor_gt = NULL;
			goto out;
		}
		gma_crtc->cursor_gt = cursor_gt;
		gma_crtc->cursor_addr = dev_priv->stolen_base +
							cursor_gt->offset;
	} else {
		gma_crtc->cursor_gt = NULL;
	}

out:
	REG_WRITE(control[gma_crtc->pipe], 0);
	REG_WRITE(base[gma_crtc->pipe], 0);
}

void psb_intel_crtc_init(struct drm_device *dev, int pipe,
		     struct psb_intel_mode_device *mode_dev)
{
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct gma_crtc *gma_crtc;
	int i;
	uint16_t *r_base, *g_base, *b_base;

	/* We allocate a extra array of drm_connector pointers
	 * for fbdev after the crtc */
	gma_crtc = kzalloc(sizeof(struct gma_crtc) +
			(INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
			GFP_KERNEL);
	if (gma_crtc == NULL)
		return;

	gma_crtc->crtc_state =
		kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
	if (!gma_crtc->crtc_state) {
		dev_err(dev->dev, "Crtc state error: No memory\n");
		kfree(gma_crtc);
		return;
	}

	/* Set the CRTC operations from the chip specific data */
	drm_crtc_init(dev, &gma_crtc->base, dev_priv->ops->crtc_funcs);

	/* Set the CRTC clock functions from chip specific data */
	gma_crtc->clock_funcs = dev_priv->ops->clock_funcs;

	drm_mode_crtc_set_gamma_size(&gma_crtc->base, 256);
	gma_crtc->pipe = pipe;
	gma_crtc->plane = pipe;

	r_base = gma_crtc->base.gamma_store;
	g_base = r_base + 256;
	b_base = g_base + 256;
	for (i = 0; i < 256; i++) {
		gma_crtc->lut_r[i] = i;
		gma_crtc->lut_g[i] = i;
		gma_crtc->lut_b[i] = i;
		r_base[i] = i << 8;
		g_base[i] = i << 8;
		b_base[i] = i << 8;

		gma_crtc->lut_adj[i] = 0;
	}

	gma_crtc->mode_dev = mode_dev;
	gma_crtc->cursor_addr = 0;

	drm_crtc_helper_add(&gma_crtc->base,
						dev_priv->ops->crtc_helper);

	/* Setup the array of drm_connector pointer array */
	gma_crtc->mode_set.crtc = &gma_crtc->base;
	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
	       dev_priv->plane_to_crtc_mapping[gma_crtc->plane] != NULL);
	dev_priv->plane_to_crtc_mapping[gma_crtc->plane] = &gma_crtc->base;
	dev_priv->pipe_to_crtc_mapping[gma_crtc->pipe] = &gma_crtc->base;
	gma_crtc->mode_set.connectors = (struct drm_connector **)(gma_crtc + 1);
	gma_crtc->mode_set.num_connectors = 0;
	psb_intel_cursor_init(dev, gma_crtc);

	/* Set to true so that the pipe is forced off on initial config. */
	gma_crtc->active = true;
}

int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
				struct drm_file *file_priv)
{
	struct drm_psb_private *dev_priv = dev->dev_private;
	struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
	struct drm_mode_object *drmmode_obj;
	struct gma_crtc *crtc;

	if (!dev_priv) {
		dev_err(dev->dev, "called with no initialization\n");
		return -EINVAL;
	}

	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
			DRM_MODE_OBJECT_CRTC);

	if (!drmmode_obj) {
		dev_err(dev->dev, "no such CRTC id\n");
		return -EINVAL;
	}

	crtc = to_gma_crtc(obj_to_crtc(drmmode_obj));
	pipe_from_crtc_id->pipe = crtc->pipe;

	return 0;
}

struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
{
	struct drm_crtc *crtc = NULL;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
		if (gma_crtc->pipe == pipe)
			break;
	}
	return crtc;
}

int gma_connector_clones(struct drm_device *dev, int type_mask)
{
	int index_mask = 0;
	struct drm_connector *connector;
	int entry = 0;

	list_for_each_entry(connector, &dev->mode_config.connector_list,
			    head) {
		struct psb_intel_encoder *psb_intel_encoder =
						gma_attached_encoder(connector);
		if (type_mask & (1 << psb_intel_encoder->type))
			index_mask |= (1 << entry);
		entry++;
	}
	return index_mask;
}