1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
|
/*
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "hwmgr.h"
#include "pp_debug.h"
#include "ppatomctrl.h"
#include "ppsmc.h"
#include "atom.h"
uint8_t convert_to_vid(uint16_t vddc)
{
return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
}
uint16_t convert_to_vddc(uint8_t vid)
{
return (uint16_t) ((6200 - (vid * 25)) / VOLTAGE_SCALE);
}
uint32_t phm_set_field_to_u32(u32 offset, u32 original_data, u32 field, u32 size)
{
u32 mask = 0;
u32 shift = 0;
shift = (offset % 4) << 3;
if (size == sizeof(uint8_t))
mask = 0xFF << shift;
else if (size == sizeof(uint16_t))
mask = 0xFFFF << shift;
original_data &= ~mask;
original_data |= (field << shift);
return original_data;
}
/**
* Returns once the part of the register indicated by the mask has
* reached the given value.
*/
int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
uint32_t value, uint32_t mask)
{
uint32_t i;
uint32_t cur_value;
if (hwmgr == NULL || hwmgr->device == NULL) {
pr_err("Invalid Hardware Manager!");
return -EINVAL;
}
for (i = 0; i < hwmgr->usec_timeout; i++) {
cur_value = cgs_read_register(hwmgr->device, index);
if ((cur_value & mask) == (value & mask))
break;
udelay(1);
}
/* timeout means wrong logic*/
if (i == hwmgr->usec_timeout)
return -1;
return 0;
}
/**
* Returns once the part of the register indicated by the mask has
* reached the given value.The indirect space is described by giving
* the memory-mapped index of the indirect index register.
*/
int phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
uint32_t indirect_port,
uint32_t index,
uint32_t value,
uint32_t mask)
{
if (hwmgr == NULL || hwmgr->device == NULL) {
pr_err("Invalid Hardware Manager!");
return -EINVAL;
}
cgs_write_register(hwmgr->device, indirect_port, index);
return phm_wait_on_register(hwmgr, indirect_port + 1, mask, value);
}
int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
uint32_t index,
uint32_t value, uint32_t mask)
{
uint32_t i;
uint32_t cur_value;
if (hwmgr == NULL || hwmgr->device == NULL)
return -EINVAL;
for (i = 0; i < hwmgr->usec_timeout; i++) {
cur_value = cgs_read_register(hwmgr->device,
index);
if ((cur_value & mask) != (value & mask))
break;
udelay(1);
}
/* timeout means wrong logic */
if (i == hwmgr->usec_timeout)
return -ETIME;
return 0;
}
int phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr,
uint32_t indirect_port,
uint32_t index,
uint32_t value,
uint32_t mask)
{
if (hwmgr == NULL || hwmgr->device == NULL)
return -EINVAL;
cgs_write_register(hwmgr->device, indirect_port, index);
return phm_wait_for_register_unequal(hwmgr, indirect_port + 1,
value, mask);
}
bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr)
{
return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating);
}
bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr)
{
return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating);
}
int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table)
{
uint32_t i, j;
uint16_t vvalue;
bool found = false;
struct pp_atomctrl_voltage_table *table;
PP_ASSERT_WITH_CODE((NULL != vol_table),
"Voltage Table empty.", return -EINVAL);
table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
GFP_KERNEL);
if (NULL == table)
return -EINVAL;
table->mask_low = vol_table->mask_low;
table->phase_delay = vol_table->phase_delay;
for (i = 0; i < vol_table->count; i++) {
vvalue = vol_table->entries[i].value;
found = false;
for (j = 0; j < table->count; j++) {
if (vvalue == table->entries[j].value) {
found = true;
break;
}
}
if (!found) {
table->entries[table->count].value = vvalue;
table->entries[table->count].smio_low =
vol_table->entries[i].smio_low;
table->count++;
}
}
memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
kfree(table);
table = NULL;
return 0;
}
int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
uint32_t i;
int result;
PP_ASSERT_WITH_CODE((0 != dep_table->count),
"Voltage Dependency Table empty.", return -EINVAL);
PP_ASSERT_WITH_CODE((NULL != vol_table),
"vol_table empty.", return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = dep_table->count;
for (i = 0; i < dep_table->count; i++) {
vol_table->entries[i].value = dep_table->entries[i].mvdd;
vol_table->entries[i].smio_low = 0;
}
result = phm_trim_voltage_table(vol_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to trim MVDD table.", return result);
return 0;
}
int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
uint32_t i;
int result;
PP_ASSERT_WITH_CODE((0 != dep_table->count),
"Voltage Dependency Table empty.", return -EINVAL);
PP_ASSERT_WITH_CODE((NULL != vol_table),
"vol_table empty.", return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = dep_table->count;
for (i = 0; i < dep_table->count; i++) {
vol_table->entries[i].value = dep_table->entries[i].vddci;
vol_table->entries[i].smio_low = 0;
}
result = phm_trim_voltage_table(vol_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to trim VDDCI table.", return result);
return 0;
}
int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
phm_ppt_v1_voltage_lookup_table *lookup_table)
{
int i = 0;
PP_ASSERT_WITH_CODE((0 != lookup_table->count),
"Voltage Lookup Table empty.", return -EINVAL);
PP_ASSERT_WITH_CODE((NULL != vol_table),
"vol_table empty.", return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = lookup_table->count;
for (i = 0; i < vol_table->count; i++) {
vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
vol_table->entries[i].smio_low = 0;
}
return 0;
}
void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,
struct pp_atomctrl_voltage_table *vol_table)
{
unsigned int i, diff;
if (vol_table->count <= max_vol_steps)
return;
diff = vol_table->count - max_vol_steps;
for (i = 0; i < max_vol_steps; i++)
vol_table->entries[i] = vol_table->entries[i + diff];
vol_table->count = max_vol_steps;
return;
}
int phm_reset_single_dpm_table(void *table,
uint32_t count, int max)
{
int i;
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
dpm_table->count = count > max ? max : count;
for (i = 0; i < dpm_table->count; i++)
dpm_table->dpm_level[i].enabled = false;
return 0;
}
void phm_setup_pcie_table_entry(
void *table,
uint32_t index, uint32_t pcie_gen,
uint32_t pcie_lanes)
{
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
dpm_table->dpm_level[index].value = pcie_gen;
dpm_table->dpm_level[index].param1 = pcie_lanes;
dpm_table->dpm_level[index].enabled = 1;
}
int32_t phm_get_dpm_level_enable_mask_value(void *table)
{
int32_t i;
int32_t mask = 0;
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
for (i = dpm_table->count; i > 0; i--) {
mask = mask << 1;
if (dpm_table->dpm_level[i - 1].enabled)
mask |= 0x1;
else
mask &= 0xFFFFFFFE;
}
return mask;
}
uint8_t phm_get_voltage_index(
struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
{
uint8_t count = (uint8_t) (lookup_table->count);
uint8_t i;
PP_ASSERT_WITH_CODE((NULL != lookup_table),
"Lookup Table empty.", return 0);
PP_ASSERT_WITH_CODE((0 != count),
"Lookup Table empty.", return 0);
for (i = 0; i < lookup_table->count; i++) {
/* find first voltage equal or bigger than requested */
if (lookup_table->entries[i].us_vdd >= voltage)
return i;
}
/* voltage is bigger than max voltage in the table */
return i - 1;
}
uint8_t phm_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
uint32_t voltage)
{
uint8_t count = (uint8_t) (voltage_table->count);
uint8_t i = 0;
PP_ASSERT_WITH_CODE((NULL != voltage_table),
"Voltage Table empty.", return 0;);
PP_ASSERT_WITH_CODE((0 != count),
"Voltage Table empty.", return 0;);
for (i = 0; i < count; i++) {
/* find first voltage bigger than requested */
if (voltage_table->entries[i].value >= voltage)
return i;
}
/* voltage is bigger than max voltage in the table */
return i - 1;
}
uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci)
{
uint32_t i;
for (i = 0; i < vddci_table->count; i++) {
if (vddci_table->entries[i].value >= vddci)
return vddci_table->entries[i].value;
}
pr_debug("vddci is larger than max value in vddci_table\n");
return vddci_table->entries[i-1].value;
}
int phm_find_boot_level(void *table,
uint32_t value, uint32_t *boot_level)
{
int result = -EINVAL;
uint32_t i;
struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
for (i = 0; i < dpm_table->count; i++) {
if (value == dpm_table->dpm_level[i].value) {
*boot_level = i;
result = 0;
}
}
return result;
}
int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table,
uint16_t virtual_voltage_id, int32_t *sclk)
{
uint8_t entry_id;
uint8_t voltage_id;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
voltage_id = table_info->vdd_dep_on_sclk->entries[entry_id].vddInd;
if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
break;
}
if (entry_id >= table_info->vdd_dep_on_sclk->count) {
pr_debug("Can't find requested voltage id in vdd_dep_on_sclk table\n");
return -EINVAL;
}
*sclk = table_info->vdd_dep_on_sclk->entries[entry_id].clk;
return 0;
}
/**
* Initialize Dynamic State Adjustment Rule Settings
*
* @param hwmgr the address of the powerplay hardware manager.
*/
int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
{
uint32_t table_size;
struct phm_clock_voltage_dependency_table *table_clk_vlt;
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
/* initialize vddc_dep_on_dal_pwrl table */
table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
table_clk_vlt = kzalloc(table_size, GFP_KERNEL);
if (NULL == table_clk_vlt) {
pr_err("Can not allocate space for vddc_dep_on_dal_pwrl! \n");
return -ENOMEM;
} else {
table_clk_vlt->count = 4;
table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
table_clk_vlt->entries[0].v = 0;
table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
table_clk_vlt->entries[1].v = 720;
table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
table_clk_vlt->entries[2].v = 810;
table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
table_clk_vlt->entries[3].v = 900;
if (pptable_info != NULL)
pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
}
return 0;
}
uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask)
{
uint32_t level = 0;
while (0 == (mask & (1 << level)))
level++;
return level;
}
void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_clock_voltage_dependency_table *table =
table_info->vddc_dep_on_dal_pwrl;
struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
uint32_t req_vddc = 0, req_volt, i;
if (!table || table->count <= 0
|| dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW
|| dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE)
return;
for (i = 0; i < table->count; i++) {
if (dal_power_level == table->entries[i].clk) {
req_vddc = table->entries[i].v;
break;
}
}
vddc_table = table_info->vdd_dep_on_sclk;
for (i = 0; i < vddc_table->count; i++) {
if (req_vddc <= vddc_table->entries[i].vddc) {
req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE);
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_VddC_Request, req_volt);
return;
}
}
pr_err("DAL requested level can not"
" found a available voltage in VDDC DPM Table \n");
}
int phm_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
uint32_t sclk, uint16_t id, uint16_t *voltage)
{
uint32_t vol;
int ret = 0;
if (hwmgr->chip_id < CHIP_TONGA) {
ret = atomctrl_get_voltage_evv(hwmgr, id, voltage);
} else if (hwmgr->chip_id < CHIP_POLARIS10) {
ret = atomctrl_get_voltage_evv_on_sclk(hwmgr, voltage_type, sclk, id, voltage);
if (*voltage >= 2000 || *voltage == 0)
*voltage = 1150;
} else {
ret = atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, voltage_type, sclk, id, &vol);
*voltage = (uint16_t)(vol/100);
}
return ret;
}
int phm_irq_process(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
uint32_t client_id = entry->client_id;
uint32_t src_id = entry->src_id;
if (client_id == AMDGPU_IH_CLIENTID_LEGACY) {
if (src_id == 230)
pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
PCI_BUS_NUM(adev->pdev->devfn),
PCI_SLOT(adev->pdev->devfn),
PCI_FUNC(adev->pdev->devfn));
else if (src_id == 231)
pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
PCI_BUS_NUM(adev->pdev->devfn),
PCI_SLOT(adev->pdev->devfn),
PCI_FUNC(adev->pdev->devfn));
else if (src_id == 83)
pr_warn("GPU Critical Temperature Fault detected on PCIe %d:%d.%d!\n",
PCI_BUS_NUM(adev->pdev->devfn),
PCI_SLOT(adev->pdev->devfn),
PCI_FUNC(adev->pdev->devfn));
} else if (client_id == SOC15_IH_CLIENTID_THM) {
if (src_id == 0)
pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
PCI_BUS_NUM(adev->pdev->devfn),
PCI_SLOT(adev->pdev->devfn),
PCI_FUNC(adev->pdev->devfn));
else
pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
PCI_BUS_NUM(adev->pdev->devfn),
PCI_SLOT(adev->pdev->devfn),
PCI_FUNC(adev->pdev->devfn));
} else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO)
pr_warn("GPU Critical Temperature Fault detected on PCIe %d:%d.%d!\n",
PCI_BUS_NUM(adev->pdev->devfn),
PCI_SLOT(adev->pdev->devfn),
PCI_FUNC(adev->pdev->devfn));
return 0;
}
static const struct amdgpu_irq_src_funcs smu9_irq_funcs = {
.process = phm_irq_process,
};
int smu9_register_irq_handlers(struct pp_hwmgr *hwmgr)
{
struct amdgpu_irq_src *source =
kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
if (!source)
return -ENOMEM;
source->funcs = &smu9_irq_funcs;
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
SOC15_IH_CLIENTID_THM,
0,
source);
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
SOC15_IH_CLIENTID_THM,
1,
source);
/* Register CTF(GPIO_19) interrupt */
amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
SOC15_IH_CLIENTID_ROM_SMUIO,
83,
source);
return 0;
}
void *smu_atom_get_data_table(void *dev, uint32_t table, uint16_t *size,
uint8_t *frev, uint8_t *crev)
{
struct amdgpu_device *adev = dev;
uint16_t data_start;
if (amdgpu_atom_parse_data_header(
adev->mode_info.atom_context, table, size,
frev, crev, &data_start))
return (uint8_t *)adev->mode_info.atom_context->bios +
data_start;
return NULL;
}
int smu_get_voltage_dependency_table_ppt_v1(
const struct phm_ppt_v1_clock_voltage_dependency_table *allowed_dep_table,
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
uint8_t i = 0;
PP_ASSERT_WITH_CODE((0 != allowed_dep_table->count),
"Voltage Lookup Table empty",
return -EINVAL);
dep_table->count = allowed_dep_table->count;
for (i=0; i<dep_table->count; i++) {
dep_table->entries[i].clk = allowed_dep_table->entries[i].clk;
dep_table->entries[i].vddInd = allowed_dep_table->entries[i].vddInd;
dep_table->entries[i].vdd_offset = allowed_dep_table->entries[i].vdd_offset;
dep_table->entries[i].vddc = allowed_dep_table->entries[i].vddc;
dep_table->entries[i].vddgfx = allowed_dep_table->entries[i].vddgfx;
dep_table->entries[i].vddci = allowed_dep_table->entries[i].vddci;
dep_table->entries[i].mvdd = allowed_dep_table->entries[i].mvdd;
dep_table->entries[i].phases = allowed_dep_table->entries[i].phases;
dep_table->entries[i].cks_enable = allowed_dep_table->entries[i].cks_enable;
dep_table->entries[i].cks_voffset = allowed_dep_table->entries[i].cks_voffset;
}
return 0;
}
int smu_set_watermarks_for_clocks_ranges(void *wt_table,
struct pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
{
uint32_t i;
struct watermarks *table = wt_table;
if (!table || !wm_with_clock_ranges)
return -EINVAL;
if (wm_with_clock_ranges->num_wm_sets_dmif > 4 || wm_with_clock_ranges->num_wm_sets_mcif > 4)
return -EINVAL;
for (i = 0; i < wm_with_clock_ranges->num_wm_sets_dmif; i++) {
table->WatermarkRow[1][i].MinClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_min_dcefclk_in_khz) /
100);
table->WatermarkRow[1][i].MaxClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_max_dcefclk_in_khz) /
100);
table->WatermarkRow[1][i].MinUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_min_memclk_in_khz) /
100);
table->WatermarkRow[1][i].MaxUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_dmif[i].wm_max_memclk_in_khz) /
100);
table->WatermarkRow[1][i].WmSetting = (uint8_t)
wm_with_clock_ranges->wm_sets_dmif[i].wm_set_id;
}
for (i = 0; i < wm_with_clock_ranges->num_wm_sets_mcif; i++) {
table->WatermarkRow[0][i].MinClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_min_socclk_in_khz) /
100);
table->WatermarkRow[0][i].MaxClock =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_max_socclk_in_khz) /
100);
table->WatermarkRow[0][i].MinUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_min_memclk_in_khz) /
100);
table->WatermarkRow[0][i].MaxUclk =
cpu_to_le16((uint16_t)
(wm_with_clock_ranges->wm_sets_mcif[i].wm_max_memclk_in_khz) /
100);
table->WatermarkRow[0][i].WmSetting = (uint8_t)
wm_with_clock_ranges->wm_sets_mcif[i].wm_set_id;
}
return 0;
}
|