1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
|
/*
* AMD CPU Microcode Update Driver for Linux
*
* This driver allows to upgrade microcode on F10h AMD
* CPUs and later.
*
* Copyright (C) 2008-2011 Advanced Micro Devices Inc.
*
* Author: Peter Oruba <peter.oruba@amd.com>
*
* Based on work by:
* Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
*
* early loader:
* Copyright (C) 2013 Advanced Micro Devices, Inc.
*
* Author: Jacob Shin <jacob.shin@amd.com>
* Fixes: Borislav Petkov <bp@suse.de>
*
* Licensed under the terms of the GNU General Public
* License version 2. See file COPYING for details.
*/
#define pr_fmt(fmt) "microcode: " fmt
#include <linux/earlycpio.h>
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/initrd.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <asm/microcode_amd.h>
#include <asm/microcode.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/cpu.h>
#include <asm/msr.h>
static struct equiv_cpu_entry *equiv_cpu_table;
struct ucode_patch {
struct list_head plist;
void *data;
u32 patch_id;
u16 equiv_cpu;
};
static LIST_HEAD(pcache);
/*
* This points to the current valid container of microcode patches which we will
* save from the initrd before jettisoning its contents.
*/
static u8 *container;
static size_t container_size;
static u32 ucode_new_rev;
u8 amd_ucode_patch[PATCH_MAX_SIZE];
static u16 this_equiv_id;
static struct cpio_data ucode_cpio;
static struct cpio_data __init find_ucode_in_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
char *path;
void *start;
size_t size;
/*
* Microcode patch container file is prepended to the initrd in cpio
* format. See Documentation/x86/early-microcode.txt
*/
static __initdata char ucode_path[] = "kernel/x86/microcode/AuthenticAMD.bin";
#ifdef CONFIG_X86_32
struct boot_params *p;
/*
* On 32-bit, early load occurs before paging is turned on so we need
* to use physical addresses.
*/
p = (struct boot_params *)__pa_nodebug(&boot_params);
path = (char *)__pa_nodebug(ucode_path);
start = (void *)p->hdr.ramdisk_image;
size = p->hdr.ramdisk_size;
#else
path = ucode_path;
start = (void *)(boot_params.hdr.ramdisk_image + PAGE_OFFSET);
size = boot_params.hdr.ramdisk_size;
#endif /* !CONFIG_X86_32 */
return find_cpio_data(path, start, size, NULL);
#else
return (struct cpio_data){ NULL, 0, "" };
#endif
}
static size_t compute_container_size(u8 *data, u32 total_size)
{
size_t size = 0;
u32 *header = (u32 *)data;
if (header[0] != UCODE_MAGIC ||
header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
header[2] == 0) /* size */
return size;
size = header[2] + CONTAINER_HDR_SZ;
total_size -= size;
data += size;
while (total_size) {
u16 patch_size;
header = (u32 *)data;
if (header[0] != UCODE_UCODE_TYPE)
break;
/*
* Sanity-check patch size.
*/
patch_size = header[1];
if (patch_size > PATCH_MAX_SIZE)
break;
size += patch_size + SECTION_HDR_SIZE;
data += patch_size + SECTION_HDR_SIZE;
total_size -= patch_size + SECTION_HDR_SIZE;
}
return size;
}
/*
* Early load occurs before we can vmalloc(). So we look for the microcode
* patch container file in initrd, traverse equivalent cpu table, look for a
* matching microcode patch, and update, all in initrd memory in place.
* When vmalloc() is available for use later -- on 64-bit during first AP load,
* and on 32-bit during save_microcode_in_initrd_amd() -- we can call
* load_microcode_amd() to save equivalent cpu table and microcode patches in
* kernel heap memory.
*/
static void apply_ucode_in_initrd(void *ucode, size_t size, bool save_patch)
{
struct equiv_cpu_entry *eq;
size_t *cont_sz;
u32 *header;
u8 *data, **cont;
u8 (*patch)[PATCH_MAX_SIZE];
u16 eq_id = 0;
int offset, left;
u32 rev, eax, ebx, ecx, edx;
u32 *new_rev;
#ifdef CONFIG_X86_32
new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
cont_sz = (size_t *)__pa_nodebug(&container_size);
cont = (u8 **)__pa_nodebug(&container);
patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
#else
new_rev = &ucode_new_rev;
cont_sz = &container_size;
cont = &container;
patch = &amd_ucode_patch;
#endif
data = ucode;
left = size;
header = (u32 *)data;
/* find equiv cpu table */
if (header[0] != UCODE_MAGIC ||
header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
header[2] == 0) /* size */
return;
eax = 0x00000001;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
while (left > 0) {
eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);
*cont = data;
/* Advance past the container header */
offset = header[2] + CONTAINER_HDR_SZ;
data += offset;
left -= offset;
eq_id = find_equiv_id(eq, eax);
if (eq_id) {
this_equiv_id = eq_id;
*cont_sz = compute_container_size(*cont, left + offset);
/*
* truncate how much we need to iterate over in the
* ucode update loop below
*/
left = *cont_sz - offset;
break;
}
/*
* support multiple container files appended together. if this
* one does not have a matching equivalent cpu entry, we fast
* forward to the next container file.
*/
while (left > 0) {
header = (u32 *)data;
if (header[0] == UCODE_MAGIC &&
header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
break;
offset = header[1] + SECTION_HDR_SIZE;
data += offset;
left -= offset;
}
/* mark where the next microcode container file starts */
offset = data - (u8 *)ucode;
ucode = data;
}
if (!eq_id) {
*cont = NULL;
*cont_sz = 0;
return;
}
if (check_current_patch_level(&rev, true))
return;
while (left > 0) {
struct microcode_amd *mc;
header = (u32 *)data;
if (header[0] != UCODE_UCODE_TYPE || /* type */
header[1] == 0) /* size */
break;
mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);
if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {
if (!__apply_microcode_amd(mc)) {
rev = mc->hdr.patch_id;
*new_rev = rev;
if (save_patch)
memcpy(patch, mc,
min_t(u32, header[1], PATCH_MAX_SIZE));
}
}
offset = header[1] + SECTION_HDR_SIZE;
data += offset;
left -= offset;
}
}
static bool __init load_builtin_amd_microcode(struct cpio_data *cp,
unsigned int family)
{
#ifdef CONFIG_X86_64
char fw_name[36] = "amd-ucode/microcode_amd.bin";
if (family >= 0x15)
snprintf(fw_name, sizeof(fw_name),
"amd-ucode/microcode_amd_fam%.2xh.bin", family);
return get_builtin_firmware(cp, fw_name);
#else
return false;
#endif
}
void __init load_ucode_amd_bsp(unsigned int family)
{
struct cpio_data cp;
void **data;
size_t *size;
#ifdef CONFIG_X86_32
data = (void **)__pa_nodebug(&ucode_cpio.data);
size = (size_t *)__pa_nodebug(&ucode_cpio.size);
#else
data = &ucode_cpio.data;
size = &ucode_cpio.size;
#endif
if (!load_builtin_amd_microcode(&cp, family))
cp = find_ucode_in_initrd();
if (!(cp.data && cp.size))
return;
*data = cp.data;
*size = cp.size;
apply_ucode_in_initrd(cp.data, cp.size, true);
}
#ifdef CONFIG_X86_32
/*
* On 32-bit, since AP's early load occurs before paging is turned on, we
* cannot traverse cpu_equiv_table and pcache in kernel heap memory. So during
* cold boot, AP will apply_ucode_in_initrd() just like the BSP. During
* save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
* which is used upon resume from suspend.
*/
void load_ucode_amd_ap(void)
{
struct microcode_amd *mc;
size_t *usize;
void **ucode;
mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
__apply_microcode_amd(mc);
return;
}
ucode = (void *)__pa_nodebug(&container);
usize = (size_t *)__pa_nodebug(&container_size);
if (!*ucode || !*usize)
return;
apply_ucode_in_initrd(*ucode, *usize, false);
}
static void __init collect_cpu_sig_on_bsp(void *arg)
{
unsigned int cpu = smp_processor_id();
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
uci->cpu_sig.sig = cpuid_eax(0x00000001);
}
static void __init get_bsp_sig(void)
{
unsigned int bsp = boot_cpu_data.cpu_index;
struct ucode_cpu_info *uci = ucode_cpu_info + bsp;
if (!uci->cpu_sig.sig)
smp_call_function_single(bsp, collect_cpu_sig_on_bsp, NULL, 1);
}
#else
void load_ucode_amd_ap(void)
{
unsigned int cpu = smp_processor_id();
struct equiv_cpu_entry *eq;
struct microcode_amd *mc;
u32 rev, eax;
u16 eq_id;
/* Exit if called on the BSP. */
if (!cpu)
return;
if (!container)
return;
/*
* 64-bit runs with paging enabled, thus early==false.
*/
if (check_current_patch_level(&rev, false))
return;
eax = cpuid_eax(0x00000001);
eq = (struct equiv_cpu_entry *)(container + CONTAINER_HDR_SZ);
eq_id = find_equiv_id(eq, eax);
if (!eq_id)
return;
if (eq_id == this_equiv_id) {
mc = (struct microcode_amd *)amd_ucode_patch;
if (mc && rev < mc->hdr.patch_id) {
if (!__apply_microcode_amd(mc))
ucode_new_rev = mc->hdr.patch_id;
}
} else {
if (!ucode_cpio.data)
return;
/*
* AP has a different equivalence ID than BSP, looks like
* mixed-steppings silicon so go through the ucode blob anew.
*/
apply_ucode_in_initrd(ucode_cpio.data, ucode_cpio.size, false);
}
}
#endif
int __init save_microcode_in_initrd_amd(void)
{
unsigned long cont;
int retval = 0;
enum ucode_state ret;
u8 *cont_va;
u32 eax;
if (!container)
return -EINVAL;
#ifdef CONFIG_X86_32
get_bsp_sig();
cont = (unsigned long)container;
cont_va = __va(container);
#else
/*
* We need the physical address of the container for both bitness since
* boot_params.hdr.ramdisk_image is a physical address.
*/
cont = __pa(container);
cont_va = container;
#endif
/*
* Take into account the fact that the ramdisk might get relocated and
* therefore we need to recompute the container's position in virtual
* memory space.
*/
if (relocated_ramdisk)
container = (u8 *)(__va(relocated_ramdisk) +
(cont - boot_params.hdr.ramdisk_image));
else
container = cont_va;
eax = cpuid_eax(0x00000001);
eax = ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff);
ret = load_microcode_amd(smp_processor_id(), eax, container, container_size);
if (ret != UCODE_OK)
retval = -EINVAL;
/*
* This will be freed any msec now, stash patches for the current
* family and switch to patch cache for cpu hotplug, etc later.
*/
container = NULL;
container_size = 0;
return retval;
}
void reload_ucode_amd(void)
{
struct microcode_amd *mc;
u32 rev;
/*
* early==false because this is a syscore ->resume path and by
* that time paging is long enabled.
*/
if (check_current_patch_level(&rev, false))
return;
mc = (struct microcode_amd *)amd_ucode_patch;
if (mc && rev < mc->hdr.patch_id) {
if (!__apply_microcode_amd(mc)) {
ucode_new_rev = mc->hdr.patch_id;
pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
}
}
}
static u16 __find_equiv_id(unsigned int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
}
static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
{
int i = 0;
BUG_ON(!equiv_cpu_table);
while (equiv_cpu_table[i].equiv_cpu != 0) {
if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
return equiv_cpu_table[i].installed_cpu;
i++;
}
return 0;
}
/*
* a small, trivial cache of per-family ucode patches
*/
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
{
struct ucode_patch *p;
list_for_each_entry(p, &pcache, plist)
if (p->equiv_cpu == equiv_cpu)
return p;
return NULL;
}
static void update_cache(struct ucode_patch *new_patch)
{
struct ucode_patch *p;
list_for_each_entry(p, &pcache, plist) {
if (p->equiv_cpu == new_patch->equiv_cpu) {
if (p->patch_id >= new_patch->patch_id)
/* we already have the latest patch */
return;
list_replace(&p->plist, &new_patch->plist);
kfree(p->data);
kfree(p);
return;
}
}
/* no patch found, add it */
list_add_tail(&new_patch->plist, &pcache);
}
static void free_cache(void)
{
struct ucode_patch *p, *tmp;
list_for_each_entry_safe(p, tmp, &pcache, plist) {
__list_del(p->plist.prev, p->plist.next);
kfree(p->data);
kfree(p);
}
}
static struct ucode_patch *find_patch(unsigned int cpu)
{
u16 equiv_id;
equiv_id = __find_equiv_id(cpu);
if (!equiv_id)
return NULL;
return cache_find_patch(equiv_id);
}
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
struct ucode_patch *p;
csig->sig = cpuid_eax(0x00000001);
csig->rev = c->microcode;
/*
* a patch could have been loaded early, set uci->mc so that
* mc_bp_resume() can call apply_microcode()
*/
p = find_patch(cpu);
if (p && (p->patch_id == csig->rev))
uci->mc = p->data;
pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
return 0;
}
static unsigned int verify_patch_size(u8 family, u32 patch_size,
unsigned int size)
{
u32 max_size;
#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824
#define F15H_MPB_MAX_SIZE 4096
#define F16H_MPB_MAX_SIZE 3458
switch (family) {
case 0x14:
max_size = F14H_MPB_MAX_SIZE;
break;
case 0x15:
max_size = F15H_MPB_MAX_SIZE;
break;
case 0x16:
max_size = F16H_MPB_MAX_SIZE;
break;
default:
max_size = F1XH_MPB_MAX_SIZE;
break;
}
if (patch_size > min_t(u32, size, max_size)) {
pr_err("patch size mismatch\n");
return 0;
}
return patch_size;
}
/*
* Those patch levels cannot be updated to newer ones and thus should be final.
*/
static u32 final_levels[] = {
0x01000098,
0x0100009f,
0x010000af,
0, /* T-101 terminator */
};
/*
* Check the current patch level on this CPU.
*
* @rev: Use it to return the patch level. It is set to 0 in the case of
* error.
*
* Returns:
* - true: if update should stop
* - false: otherwise
*/
bool check_current_patch_level(u32 *rev, bool early)
{
u32 lvl, dummy, i;
bool ret = false;
u32 *levels;
native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
if (IS_ENABLED(CONFIG_X86_32) && early)
levels = (u32 *)__pa_nodebug(&final_levels);
else
levels = final_levels;
for (i = 0; levels[i]; i++) {
if (lvl == levels[i]) {
lvl = 0;
ret = true;
break;
}
}
if (rev)
*rev = lvl;
return ret;
}
int __apply_microcode_amd(struct microcode_amd *mc_amd)
{
u32 rev, dummy;
native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);
/* verify patch application was successful */
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
if (rev != mc_amd->hdr.patch_id)
return -1;
return 0;
}
int apply_microcode_amd(int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct microcode_amd *mc_amd;
struct ucode_cpu_info *uci;
struct ucode_patch *p;
u32 rev;
BUG_ON(raw_smp_processor_id() != cpu);
uci = ucode_cpu_info + cpu;
p = find_patch(cpu);
if (!p)
return 0;
mc_amd = p->data;
uci->mc = p->data;
if (check_current_patch_level(&rev, false))
return -1;
/* need to apply patch? */
if (rev >= mc_amd->hdr.patch_id) {
c->microcode = rev;
uci->cpu_sig.rev = rev;
return 0;
}
if (__apply_microcode_amd(mc_amd)) {
pr_err("CPU%d: update failed for patch_level=0x%08x\n",
cpu, mc_amd->hdr.patch_id);
return -1;
}
pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
mc_amd->hdr.patch_id);
uci->cpu_sig.rev = mc_amd->hdr.patch_id;
c->microcode = mc_amd->hdr.patch_id;
return 0;
}
static int install_equiv_cpu_table(const u8 *buf)
{
unsigned int *ibuf = (unsigned int *)buf;
unsigned int type = ibuf[1];
unsigned int size = ibuf[2];
if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
pr_err("empty section/"
"invalid type field in container file section header\n");
return -EINVAL;
}
equiv_cpu_table = vmalloc(size);
if (!equiv_cpu_table) {
pr_err("failed to allocate equivalent CPU table\n");
return -ENOMEM;
}
memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
/* add header length */
return size + CONTAINER_HDR_SZ;
}
static void free_equiv_cpu_table(void)
{
vfree(equiv_cpu_table);
equiv_cpu_table = NULL;
}
static void cleanup(void)
{
free_equiv_cpu_table();
free_cache();
}
/*
* We return the current size even if some of the checks failed so that
* we can skip over the next patch. If we return a negative value, we
* signal a grave error like a memory allocation has failed and the
* driver cannot continue functioning normally. In such cases, we tear
* down everything we've used up so far and exit.
*/
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
{
struct microcode_header_amd *mc_hdr;
struct ucode_patch *patch;
unsigned int patch_size, crnt_size, ret;
u32 proc_fam;
u16 proc_id;
patch_size = *(u32 *)(fw + 4);
crnt_size = patch_size + SECTION_HDR_SIZE;
mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
proc_id = mc_hdr->processor_rev_id;
proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
if (!proc_fam) {
pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
return crnt_size;
}
/* check if patch is for the current family */
proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
if (proc_fam != family)
return crnt_size;
if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
mc_hdr->patch_id);
return crnt_size;
}
ret = verify_patch_size(family, patch_size, leftover);
if (!ret) {
pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
return crnt_size;
}
patch = kzalloc(sizeof(*patch), GFP_KERNEL);
if (!patch) {
pr_err("Patch allocation failure.\n");
return -EINVAL;
}
patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
if (!patch->data) {
pr_err("Patch data allocation failure.\n");
kfree(patch);
return -EINVAL;
}
INIT_LIST_HEAD(&patch->plist);
patch->patch_id = mc_hdr->patch_id;
patch->equiv_cpu = proc_id;
pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
__func__, patch->patch_id, proc_id);
/* ... and add to cache. */
update_cache(patch);
return crnt_size;
}
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
size_t size)
{
enum ucode_state ret = UCODE_ERROR;
unsigned int leftover;
u8 *fw = (u8 *)data;
int crnt_size = 0;
int offset;
offset = install_equiv_cpu_table(data);
if (offset < 0) {
pr_err("failed to create equivalent cpu table\n");
return ret;
}
fw += offset;
leftover = size - offset;
if (*(u32 *)fw != UCODE_UCODE_TYPE) {
pr_err("invalid type field in container file section header\n");
free_equiv_cpu_table();
return ret;
}
while (leftover) {
crnt_size = verify_and_add_patch(family, fw, leftover);
if (crnt_size < 0)
return ret;
fw += crnt_size;
leftover -= crnt_size;
}
return UCODE_OK;
}
enum ucode_state load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
{
enum ucode_state ret;
/* free old equiv table */
free_equiv_cpu_table();
ret = __load_microcode_amd(family, data, size);
if (ret != UCODE_OK)
cleanup();
#ifdef CONFIG_X86_32
/* save BSP's matching patch for early load */
if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
struct ucode_patch *p = find_patch(cpu);
if (p) {
memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
PATCH_MAX_SIZE));
}
}
#endif
return ret;
}
/*
* AMD microcode firmware naming convention, up to family 15h they are in
* the legacy file:
*
* amd-ucode/microcode_amd.bin
*
* This legacy file is always smaller than 2K in size.
*
* Beginning with family 15h, they are in family-specific firmware files:
*
* amd-ucode/microcode_amd_fam15h.bin
* amd-ucode/microcode_amd_fam16h.bin
* ...
*
* These might be larger than 2K.
*/
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
bool refresh_fw)
{
char fw_name[36] = "amd-ucode/microcode_amd.bin";
struct cpuinfo_x86 *c = &cpu_data(cpu);
enum ucode_state ret = UCODE_NFOUND;
const struct firmware *fw;
/* reload ucode container only on the boot cpu */
if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
return UCODE_OK;
if (c->x86 >= 0x15)
snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
pr_debug("failed to load file %s\n", fw_name);
goto out;
}
ret = UCODE_ERROR;
if (*(u32 *)fw->data != UCODE_MAGIC) {
pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
goto fw_release;
}
ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
fw_release:
release_firmware(fw);
out:
return ret;
}
static enum ucode_state
request_microcode_user(int cpu, const void __user *buf, size_t size)
{
return UCODE_ERROR;
}
static void microcode_fini_cpu_amd(int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
uci->mc = NULL;
}
static struct microcode_ops microcode_amd_ops = {
.request_microcode_user = request_microcode_user,
.request_microcode_fw = request_microcode_amd,
.collect_cpu_info = collect_cpu_info_amd,
.apply_microcode = apply_microcode_amd,
.microcode_fini_cpu = microcode_fini_cpu_amd,
};
struct microcode_ops * __init init_amd_microcode(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
return NULL;
}
if (ucode_new_rev)
pr_info_once("microcode updated early to new patch_level=0x%08x\n",
ucode_new_rev);
return µcode_amd_ops;
}
void __exit exit_amd_microcode(void)
{
cleanup();
}
|