summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/apic/msi.c
blob: dbacb9ec8843a53fac36ad58850b8008ac40f466 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Support of MSI, HPET and DMAR interrupts.
 *
 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
 *	Moved from arch/x86/kernel/apic/io_apic.c.
 * Jiang Liu <jiang.liu@linux.intel.com>
 *	Convert to hierarchical irqdomain
 */
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/pci.h>
#include <linux/dmar.h>
#include <linux/hpet.h>
#include <linux/msi.h>
#include <asm/irqdomain.h>
#include <asm/hpet.h>
#include <asm/hw_irq.h>
#include <asm/apic.h>
#include <asm/irq_remapping.h>

struct irq_domain *x86_pci_msi_default_domain __ro_after_init;

static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg)
{
	struct msi_msg msg[2] = { [1] = { }, };

	__irq_msi_compose_msg(cfg, msg, false);
	irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg);
}

static int
msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force)
{
	struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd);
	struct irq_data *parent = irqd->parent_data;
	unsigned int cpu;
	int ret;

	/* Save the current configuration */
	cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
	old_cfg = *cfg;

	/* Allocate a new target vector */
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;

	/*
	 * For non-maskable and non-remapped MSI interrupts the migration
	 * to a different destination CPU and a different vector has to be
	 * done careful to handle the possible stray interrupt which can be
	 * caused by the non-atomic update of the address/data pair.
	 *
	 * Direct update is possible when:
	 * - The MSI is maskable (remapped MSI does not use this code path)).
	 *   The quirk bit is not set in this case.
	 * - The new vector is the same as the old vector
	 * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up)
	 * - The interrupt is not yet started up
	 * - The new destination CPU is the same as the old destination CPU
	 */
	if (!irqd_msi_nomask_quirk(irqd) ||
	    cfg->vector == old_cfg.vector ||
	    old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR ||
	    !irqd_is_started(irqd) ||
	    cfg->dest_apicid == old_cfg.dest_apicid) {
		irq_msi_update_msg(irqd, cfg);
		return ret;
	}

	/*
	 * Paranoia: Validate that the interrupt target is the local
	 * CPU.
	 */
	if (WARN_ON_ONCE(cpu != smp_processor_id())) {
		irq_msi_update_msg(irqd, cfg);
		return ret;
	}

	/*
	 * Redirect the interrupt to the new vector on the current CPU
	 * first. This might cause a spurious interrupt on this vector if
	 * the device raises an interrupt right between this update and the
	 * update to the final destination CPU.
	 *
	 * If the vector is in use then the installed device handler will
	 * denote it as spurious which is no harm as this is a rare event
	 * and interrupt handlers have to cope with spurious interrupts
	 * anyway. If the vector is unused, then it is marked so it won't
	 * trigger the 'No irq handler for vector' warning in
	 * common_interrupt().
	 *
	 * This requires to hold vector lock to prevent concurrent updates to
	 * the affected vector.
	 */
	lock_vector_lock();

	/*
	 * Mark the new target vector on the local CPU if it is currently
	 * unused. Reuse the VECTOR_RETRIGGERED state which is also used in
	 * the CPU hotplug path for a similar purpose. This cannot be
	 * undone here as the current CPU has interrupts disabled and
	 * cannot handle the interrupt before the whole set_affinity()
	 * section is done. In the CPU unplug case, the current CPU is
	 * about to vanish and will not handle any interrupts anymore. The
	 * vector is cleaned up when the CPU comes online again.
	 */
	if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector])))
		this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED);

	/* Redirect it to the new vector on the local CPU temporarily */
	old_cfg.vector = cfg->vector;
	irq_msi_update_msg(irqd, &old_cfg);

	/* Now transition it to the target CPU */
	irq_msi_update_msg(irqd, cfg);

	/*
	 * All interrupts after this point are now targeted at the new
	 * vector/CPU.
	 *
	 * Drop vector lock before testing whether the temporary assignment
	 * to the local CPU was hit by an interrupt raised in the device,
	 * because the retrigger function acquires vector lock again.
	 */
	unlock_vector_lock();

	/*
	 * Check whether the transition raced with a device interrupt and
	 * is pending in the local APICs IRR. It is safe to do this outside
	 * of vector lock as the irq_desc::lock of this interrupt is still
	 * held and interrupts are disabled: The check is not accessing the
	 * underlying vector store. It's just checking the local APIC's
	 * IRR.
	 */
	if (lapic_vector_set_in_irr(cfg->vector))
		irq_data_get_irq_chip(irqd)->irq_retrigger(irqd);

	return ret;
}

/*
 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
 * which implement the MSI or MSI-X Capability Structure.
 */
static struct irq_chip pci_msi_controller = {
	.name			= "PCI-MSI",
	.irq_unmask		= pci_msi_unmask_irq,
	.irq_mask		= pci_msi_mask_irq,
	.irq_ack		= irq_chip_ack_parent,
	.irq_retrigger		= irq_chip_retrigger_hierarchy,
	.irq_set_affinity	= msi_set_affinity,
	.flags			= IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_AFFINITY_PRE_STARTUP,
};

int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec,
		    msi_alloc_info_t *arg)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct msi_desc *desc = first_pci_msi_entry(pdev);

	init_irq_alloc_info(arg, NULL);
	if (desc->msi_attrib.is_msix) {
		arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX;
	} else {
		arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI;
		arg->flags |= X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(pci_msi_prepare);

static struct msi_domain_ops pci_msi_domain_ops = {
	.msi_prepare	= pci_msi_prepare,
};

static struct msi_domain_info pci_msi_domain_info = {
	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
			  MSI_FLAG_PCI_MSIX,
	.ops		= &pci_msi_domain_ops,
	.chip		= &pci_msi_controller,
	.handler	= handle_edge_irq,
	.handler_name	= "edge",
};

struct irq_domain * __init native_create_pci_msi_domain(void)
{
	struct fwnode_handle *fn;
	struct irq_domain *d;

	if (disable_apic)
		return NULL;

	fn = irq_domain_alloc_named_fwnode("PCI-MSI");
	if (!fn)
		return NULL;

	d = pci_msi_create_irq_domain(fn, &pci_msi_domain_info,
				      x86_vector_domain);
	if (!d) {
		irq_domain_free_fwnode(fn);
		pr_warn("Failed to initialize PCI-MSI irqdomain.\n");
	} else {
		d->flags |= IRQ_DOMAIN_MSI_NOMASK_QUIRK;
	}
	return d;
}

void __init x86_create_pci_msi_domain(void)
{
	x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain();
}

#ifdef CONFIG_IRQ_REMAP
static struct irq_chip pci_msi_ir_controller = {
	.name			= "IR-PCI-MSI",
	.irq_unmask		= pci_msi_unmask_irq,
	.irq_mask		= pci_msi_mask_irq,
	.irq_ack		= irq_chip_ack_parent,
	.irq_retrigger		= irq_chip_retrigger_hierarchy,
	.flags			= IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_AFFINITY_PRE_STARTUP,
};

static struct msi_domain_info pci_msi_ir_domain_info = {
	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
			  MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
	.ops		= &pci_msi_domain_ops,
	.chip		= &pci_msi_ir_controller,
	.handler	= handle_edge_irq,
	.handler_name	= "edge",
};

struct irq_domain *arch_create_remap_msi_irq_domain(struct irq_domain *parent,
						    const char *name, int id)
{
	struct fwnode_handle *fn;
	struct irq_domain *d;

	fn = irq_domain_alloc_named_id_fwnode(name, id);
	if (!fn)
		return NULL;
	d = pci_msi_create_irq_domain(fn, &pci_msi_ir_domain_info, parent);
	if (!d)
		irq_domain_free_fwnode(fn);
	return d;
}
#endif

#ifdef CONFIG_DMAR_TABLE
/*
 * The Intel IOMMU (ab)uses the high bits of the MSI address to contain the
 * high bits of the destination APIC ID. This can't be done in the general
 * case for MSIs as it would be targeting real memory above 4GiB not the
 * APIC.
 */
static void dmar_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
{
	__irq_msi_compose_msg(irqd_cfg(data), msg, true);
}

static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
{
	dmar_msi_write(data->irq, msg);
}

static struct irq_chip dmar_msi_controller = {
	.name			= "DMAR-MSI",
	.irq_unmask		= dmar_msi_unmask,
	.irq_mask		= dmar_msi_mask,
	.irq_ack		= irq_chip_ack_parent,
	.irq_set_affinity	= msi_domain_set_affinity,
	.irq_retrigger		= irq_chip_retrigger_hierarchy,
	.irq_compose_msi_msg	= dmar_msi_compose_msg,
	.irq_write_msi_msg	= dmar_msi_write_msg,
	.flags			= IRQCHIP_SKIP_SET_WAKE |
				  IRQCHIP_AFFINITY_PRE_STARTUP,
};

static int dmar_msi_init(struct irq_domain *domain,
			 struct msi_domain_info *info, unsigned int virq,
			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
{
	irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL,
			    handle_edge_irq, arg->data, "edge");

	return 0;
}

static struct msi_domain_ops dmar_msi_domain_ops = {
	.msi_init	= dmar_msi_init,
};

static struct msi_domain_info dmar_msi_domain_info = {
	.ops		= &dmar_msi_domain_ops,
	.chip		= &dmar_msi_controller,
	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
};

static struct irq_domain *dmar_get_irq_domain(void)
{
	static struct irq_domain *dmar_domain;
	static DEFINE_MUTEX(dmar_lock);
	struct fwnode_handle *fn;

	mutex_lock(&dmar_lock);
	if (dmar_domain)
		goto out;

	fn = irq_domain_alloc_named_fwnode("DMAR-MSI");
	if (fn) {
		dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info,
						    x86_vector_domain);
		if (!dmar_domain)
			irq_domain_free_fwnode(fn);
	}
out:
	mutex_unlock(&dmar_lock);
	return dmar_domain;
}

int dmar_alloc_hwirq(int id, int node, void *arg)
{
	struct irq_domain *domain = dmar_get_irq_domain();
	struct irq_alloc_info info;

	if (!domain)
		return -1;

	init_irq_alloc_info(&info, NULL);
	info.type = X86_IRQ_ALLOC_TYPE_DMAR;
	info.devid = id;
	info.hwirq = id;
	info.data = arg;

	return irq_domain_alloc_irqs(domain, 1, node, &info);
}

void dmar_free_hwirq(int irq)
{
	irq_domain_free_irqs(irq, 1);
}
#endif