summaryrefslogtreecommitdiff
path: root/arch/unicore32/include/asm/pgtable.h
blob: 233c25880df403390d0c191c97a486d3e02a1ae5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
/*
 * linux/arch/unicore32/include/asm/pgtable.h
 *
 * Code specific to PKUnity SoC and UniCore ISA
 *
 * Copyright (C) 2001-2010 GUAN Xue-tao
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#ifndef __UNICORE_PGTABLE_H__
#define __UNICORE_PGTABLE_H__

#include <asm-generic/pgtable-nopmd.h>
#include <asm/cpu-single.h>

#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>

/*
 * Just any arbitrary offset to the start of the vmalloc VM area: the
 * current 8MB value just means that there will be a 8MB "hole" after the
 * physical memory until the kernel virtual memory starts.  That means that
 * any out-of-bounds memory accesses will hopefully be caught.
 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 * area for the same reason. ;)
 *
 * Note that platforms may override VMALLOC_START, but they must provide
 * VMALLOC_END.  VMALLOC_END defines the (exclusive) limit of this space,
 * which may not overlap IO space.
 */
#ifndef VMALLOC_START
#define VMALLOC_OFFSET		SZ_8M
#define VMALLOC_START		(((unsigned long)high_memory + VMALLOC_OFFSET) \
					& ~(VMALLOC_OFFSET-1))
#define VMALLOC_END		(0xff000000UL)
#endif

#define PTRS_PER_PTE		1024
#define PTRS_PER_PGD		1024

/*
 * PGDIR_SHIFT determines what a third-level page table entry can map
 */
#define PGDIR_SHIFT		22

#ifndef __ASSEMBLY__
extern void __pte_error(const char *file, int line, unsigned long val);
extern void __pgd_error(const char *file, int line, unsigned long val);

#define pte_ERROR(pte)		__pte_error(__FILE__, __LINE__, pte_val(pte))
#define pgd_ERROR(pgd)		__pgd_error(__FILE__, __LINE__, pgd_val(pgd))
#endif /* !__ASSEMBLY__ */

#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
#define PGDIR_MASK		(~(PGDIR_SIZE-1))

/*
 * This is the lowest virtual address we can permit any user space
 * mapping to be mapped at.  This is particularly important for
 * non-high vector CPUs.
 */
#define FIRST_USER_ADDRESS	PAGE_SIZE

#define FIRST_USER_PGD_NR	1
#define USER_PTRS_PER_PGD	((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)

/*
 * section address mask and size definitions.
 */
#define SECTION_SHIFT		22
#define SECTION_SIZE		(1UL << SECTION_SHIFT)
#define SECTION_MASK		(~(SECTION_SIZE-1))

#ifndef __ASSEMBLY__

/*
 * The pgprot_* and protection_map entries will be fixed up in runtime
 * to include the cachable bits based on memory policy, as well as any
 * architecture dependent bits.
 */
#define _PTE_DEFAULT		(PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE)

extern pgprot_t pgprot_user;
extern pgprot_t pgprot_kernel;

#define PAGE_NONE		pgprot_user
#define PAGE_SHARED		__pgprot(pgprot_val(pgprot_user | PTE_READ \
								| PTE_WRITE)
#define PAGE_SHARED_EXEC	__pgprot(pgprot_val(pgprot_user | PTE_READ \
								| PTE_WRITE \
								| PTE_EXEC)
#define PAGE_COPY		__pgprot(pgprot_val(pgprot_user | PTE_READ)
#define PAGE_COPY_EXEC		__pgprot(pgprot_val(pgprot_user | PTE_READ \
								| PTE_EXEC)
#define PAGE_READONLY		__pgprot(pgprot_val(pgprot_user | PTE_READ)
#define PAGE_READONLY_EXEC	__pgprot(pgprot_val(pgprot_user | PTE_READ \
								| PTE_EXEC)
#define PAGE_KERNEL		pgprot_kernel
#define PAGE_KERNEL_EXEC	__pgprot(pgprot_val(pgprot_kernel | PTE_EXEC))

#define __PAGE_NONE		__pgprot(_PTE_DEFAULT)
#define __PAGE_SHARED		__pgprot(_PTE_DEFAULT | PTE_READ \
							| PTE_WRITE)
#define __PAGE_SHARED_EXEC	__pgprot(_PTE_DEFAULT | PTE_READ \
							| PTE_WRITE \
							| PTE_EXEC)
#define __PAGE_COPY		__pgprot(_PTE_DEFAULT | PTE_READ)
#define __PAGE_COPY_EXEC	__pgprot(_PTE_DEFAULT | PTE_READ \
							| PTE_EXEC)
#define __PAGE_READONLY		__pgprot(_PTE_DEFAULT | PTE_READ)
#define __PAGE_READONLY_EXEC	__pgprot(_PTE_DEFAULT | PTE_READ \
							| PTE_EXEC)

#endif /* __ASSEMBLY__ */

/*
 * The table below defines the page protection levels that we insert into our
 * Linux page table version.  These get translated into the best that the
 * architecture can perform.  Note that on UniCore hardware:
 *  1) We cannot do execute protection
 *  2) If we could do execute protection, then read is implied
 *  3) write implies read permissions
 */
#define __P000  __PAGE_NONE
#define __P001  __PAGE_READONLY
#define __P010  __PAGE_COPY
#define __P011  __PAGE_COPY
#define __P100  __PAGE_READONLY_EXEC
#define __P101  __PAGE_READONLY_EXEC
#define __P110  __PAGE_COPY_EXEC
#define __P111  __PAGE_COPY_EXEC

#define __S000  __PAGE_NONE
#define __S001  __PAGE_READONLY
#define __S010  __PAGE_SHARED
#define __S011  __PAGE_SHARED
#define __S100  __PAGE_READONLY_EXEC
#define __S101  __PAGE_READONLY_EXEC
#define __S110  __PAGE_SHARED_EXEC
#define __S111  __PAGE_SHARED_EXEC

#ifndef __ASSEMBLY__
/*
 * ZERO_PAGE is a global shared page that is always zero: used
 * for zero-mapped memory areas etc..
 */
extern struct page *empty_zero_page;
#define ZERO_PAGE(vaddr)		(empty_zero_page)

#define pte_pfn(pte)			(pte_val(pte) >> PAGE_SHIFT)
#define pfn_pte(pfn, prot)		(__pte(((pfn) << PAGE_SHIFT) \
						| pgprot_val(prot)))

#define pte_none(pte)			(!pte_val(pte))
#define pte_clear(mm, addr, ptep)	set_pte(ptep, __pte(0))
#define pte_page(pte)			(pfn_to_page(pte_pfn(pte)))
#define pte_offset_kernel(dir, addr)	(pmd_page_vaddr(*(dir)) \
						+ __pte_index(addr))

#define pte_offset_map(dir, addr)	(pmd_page_vaddr(*(dir)) \
						+ __pte_index(addr))
#define pte_unmap(pte)			do { } while (0)

#define set_pte(ptep, pte)	cpu_set_pte(ptep, pte)

#define set_pte_at(mm, addr, ptep, pteval)	\
	do {					\
		set_pte(ptep, pteval);          \
	} while (0)

/*
 * The following only work if pte_present() is true.
 * Undefined behaviour if not..
 */
#define pte_present(pte)	(pte_val(pte) & PTE_PRESENT)
#define pte_write(pte)		(pte_val(pte) & PTE_WRITE)
#define pte_dirty(pte)		(pte_val(pte) & PTE_DIRTY)
#define pte_young(pte)		(pte_val(pte) & PTE_YOUNG)
#define pte_exec(pte)		(pte_val(pte) & PTE_EXEC)
#define pte_special(pte)	(0)

#define PTE_BIT_FUNC(fn, op) \
static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }

PTE_BIT_FUNC(wrprotect, &= ~PTE_WRITE);
PTE_BIT_FUNC(mkwrite,   |= PTE_WRITE);
PTE_BIT_FUNC(mkclean,   &= ~PTE_DIRTY);
PTE_BIT_FUNC(mkdirty,   |= PTE_DIRTY);
PTE_BIT_FUNC(mkold,     &= ~PTE_YOUNG);
PTE_BIT_FUNC(mkyoung,   |= PTE_YOUNG);

static inline pte_t pte_mkspecial(pte_t pte) { return pte; }

/*
 * Mark the prot value as uncacheable.
 */
#define pgprot_noncached(prot)		\
	__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
#define pgprot_writecombine(prot)	\
	__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)
#define pgprot_dmacoherent(prot)	\
	__pgprot(pgprot_val(prot) & ~PTE_CACHEABLE)

#define pmd_none(pmd)		(!pmd_val(pmd))
#define pmd_present(pmd)	(pmd_val(pmd) & PMD_PRESENT)
#define pmd_bad(pmd)		(((pmd_val(pmd) &		\
				(PMD_PRESENT | PMD_TYPE_MASK))	\
				!= (PMD_PRESENT | PMD_TYPE_TABLE)))

#define set_pmd(pmdpd, pmdval)		\
	do {				\
		*(pmdpd) = pmdval;	\
	} while (0)

#define pmd_clear(pmdp)			\
	do {				\
		set_pmd(pmdp, __pmd(0));\
		clean_pmd_entry(pmdp);	\
	} while (0)

#define pmd_page_vaddr(pmd) ((pte_t *)__va(pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd)		pfn_to_page(__phys_to_pfn(pmd_val(pmd)))

/*
 * Conversion functions: convert a page and protection to a page entry,
 * and a page entry and page directory to the page they refer to.
 */
#define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot)

/* to find an entry in a page-table-directory */
#define pgd_index(addr)		((addr) >> PGDIR_SHIFT)

#define pgd_offset(mm, addr)	((mm)->pgd+pgd_index(addr))

/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(addr)	pgd_offset(&init_mm, addr)

/* Find an entry in the third-level page table.. */
#define __pte_index(addr)	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))

static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
	const unsigned long mask = PTE_EXEC | PTE_WRITE | PTE_READ;
	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
	return pte;
}

extern pgd_t swapper_pg_dir[PTRS_PER_PGD];

/*
 * Encode and decode a swap entry.  Swap entries are stored in the Linux
 * page tables as follows:
 *
 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 *   <--------------- offset --------------> <--- type --> 0 0 0 0 0
 *
 * This gives us up to 127 swap files and 32GB per swap file.  Note that
 * the offset field is always non-zero.
 */
#define __SWP_TYPE_SHIFT	5
#define __SWP_TYPE_BITS		7
#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)

#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT)		\
				& __SWP_TYPE_MASK)
#define __swp_offset(x)		((x).val >> __SWP_OFFSET_SHIFT)
#define __swp_entry(type, offset) ((swp_entry_t) {			\
				((type) << __SWP_TYPE_SHIFT) |		\
				((offset) << __SWP_OFFSET_SHIFT) })

#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })

/*
 * It is an error for the kernel to have more swap files than we can
 * encode in the PTEs.  This ensures that we know when MAX_SWAPFILES
 * is increased beyond what we presently support.
 */
#define MAX_SWAPFILES_CHECK()	\
	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)

/*
 * Encode and decode a file entry.  File entries are stored in the Linux
 * page tables as follows:
 *
 *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
 *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 *   <----------------------- offset ----------------------> 1 0 0 0
 */
#define pte_file(pte)		(pte_val(pte) & PTE_FILE)
#define pte_to_pgoff(x)		(pte_val(x) >> 4)
#define pgoff_to_pte(x)		__pte(((x) << 4) | PTE_FILE)

#define PTE_FILE_MAX_BITS	28

/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
/* FIXME: this is not correct */
#define kern_addr_valid(addr)	(1)

#include <asm-generic/pgtable.h>

#define pgtable_cache_init() do { } while (0)

#endif /* !__ASSEMBLY__ */

#endif /* __UNICORE_PGTABLE_H__ */