1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* A small micro-assembler. It is intentionally kept simple, does only
* support a subset of instructions, and does not try to hide pipeline
* effects like branch delay slots.
*
* Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
* Copyright (C) 2005, 2007 Maciej W. Rozycki
* Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
* Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <asm/inst.h>
#include <asm/elf.h>
#include <asm/bugs.h>
#define UASM_ISA _UASM_ISA_MICROMIPS
#include <asm/uasm.h>
#define RS_MASK 0x1f
#define RS_SH 16
#define RT_MASK 0x1f
#define RT_SH 21
#define SCIMM_MASK 0x3ff
#define SCIMM_SH 16
/* This macro sets the non-variable bits of an instruction. */
#define M(a, b, c, d, e, f) \
((a) << OP_SH \
| (b) << RT_SH \
| (c) << RS_SH \
| (d) << RD_SH \
| (e) << RE_SH \
| (f) << FUNC_SH)
#include "uasm.c"
static const struct insn const insn_table_MM[insn_invalid] = {
[insn_addu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_addu32_op), RT | RS | RD},
[insn_addiu] = {M(mm_addiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_and] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_and_op), RT | RS | RD},
[insn_andi] = {M(mm_andi32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
[insn_beq] = {M(mm_beq32_op, 0, 0, 0, 0, 0), RS | RT | BIMM},
[insn_beql] = {0, 0},
[insn_bgez] = {M(mm_pool32i_op, mm_bgez_op, 0, 0, 0, 0), RS | BIMM},
[insn_bgezl] = {0, 0},
[insn_bltz] = {M(mm_pool32i_op, mm_bltz_op, 0, 0, 0, 0), RS | BIMM},
[insn_bltzl] = {0, 0},
[insn_bne] = {M(mm_bne32_op, 0, 0, 0, 0, 0), RT | RS | BIMM},
[insn_cache] = {M(mm_pool32b_op, 0, 0, mm_cache_func, 0, 0), RT | RS | SIMM},
[insn_cfc1] = {M(mm_pool32f_op, 0, 0, 0, mm_cfc1_op, mm_32f_73_op), RT | RS},
[insn_cfcmsa] = {M(mm_pool32s_op, 0, msa_cfc_op, 0, 0, mm_32s_elm_op), RD | RE},
[insn_ctc1] = {M(mm_pool32f_op, 0, 0, 0, mm_ctc1_op, mm_32f_73_op), RT | RS},
[insn_ctcmsa] = {M(mm_pool32s_op, 0, msa_ctc_op, 0, 0, mm_32s_elm_op), RD | RE},
[insn_daddu] = {0, 0},
[insn_daddiu] = {0, 0},
[insn_di] = {M(mm_pool32a_op, 0, 0, 0, mm_di_op, mm_pool32axf_op), RS},
[insn_divu] = {M(mm_pool32a_op, 0, 0, 0, mm_divu_op, mm_pool32axf_op), RT | RS},
[insn_dmfc0] = {0, 0},
[insn_dmtc0] = {0, 0},
[insn_dsll] = {0, 0},
[insn_dsll32] = {0, 0},
[insn_dsra] = {0, 0},
[insn_dsrl] = {0, 0},
[insn_dsrl32] = {0, 0},
[insn_drotr] = {0, 0},
[insn_drotr32] = {0, 0},
[insn_dsubu] = {0, 0},
[insn_eret] = {M(mm_pool32a_op, 0, 0, 0, mm_eret_op, mm_pool32axf_op), 0},
[insn_ins] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ins_op), RT | RS | RD | RE},
[insn_ext] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_ext_op), RT | RS | RD | RE},
[insn_j] = {M(mm_j32_op, 0, 0, 0, 0, 0), JIMM},
[insn_jal] = {M(mm_jal32_op, 0, 0, 0, 0, 0), JIMM},
[insn_jalr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RT | RS},
[insn_jr] = {M(mm_pool32a_op, 0, 0, 0, mm_jalr_op, mm_pool32axf_op), RS},
[insn_lb] = {M(mm_lb32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_ld] = {0, 0},
[insn_lh] = {M(mm_lh32_op, 0, 0, 0, 0, 0), RS | RS | SIMM},
[insn_ll] = {M(mm_pool32c_op, 0, 0, (mm_ll_func << 1), 0, 0), RS | RT | SIMM},
[insn_lld] = {0, 0},
[insn_lui] = {M(mm_pool32i_op, mm_lui_op, 0, 0, 0, 0), RS | SIMM},
[insn_lw] = {M(mm_lw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_mfc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mfc0_op, mm_pool32axf_op), RT | RS | RD},
[insn_mfhi] = {M(mm_pool32a_op, 0, 0, 0, mm_mfhi32_op, mm_pool32axf_op), RS},
[insn_mflo] = {M(mm_pool32a_op, 0, 0, 0, mm_mflo32_op, mm_pool32axf_op), RS},
[insn_mtc0] = {M(mm_pool32a_op, 0, 0, 0, mm_mtc0_op, mm_pool32axf_op), RT | RS | RD},
[insn_mthi] = {M(mm_pool32a_op, 0, 0, 0, mm_mthi32_op, mm_pool32axf_op), RS},
[insn_mtlo] = {M(mm_pool32a_op, 0, 0, 0, mm_mtlo32_op, mm_pool32axf_op), RS},
[insn_mul] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_mul_op), RT | RS | RD},
[insn_or] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_or32_op), RT | RS | RD},
[insn_ori] = {M(mm_ori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
[insn_pref] = {M(mm_pool32c_op, 0, 0, (mm_pref_func << 1), 0, 0), RT | RS | SIMM},
[insn_rfe] = {0, 0},
[insn_sc] = {M(mm_pool32c_op, 0, 0, (mm_sc_func << 1), 0, 0), RT | RS | SIMM},
[insn_scd] = {0, 0},
[insn_sd] = {0, 0},
[insn_sll] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sll32_op), RT | RS | RD},
[insn_sllv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sllv32_op), RT | RS | RD},
[insn_slt] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_slt_op), RT | RS | RD},
[insn_sltiu] = {M(mm_sltiu32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_sltu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sltu_op), RT | RS | RD},
[insn_sra] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_sra_op), RT | RS | RD},
[insn_srl] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srl32_op), RT | RS | RD},
[insn_srlv] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_srlv32_op), RT | RS | RD},
[insn_rotr] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_rotr_op), RT | RS | RD},
[insn_subu] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_subu32_op), RT | RS | RD},
[insn_sw] = {M(mm_sw32_op, 0, 0, 0, 0, 0), RT | RS | SIMM},
[insn_sync] = {M(mm_pool32a_op, 0, 0, 0, mm_sync_op, mm_pool32axf_op), RS},
[insn_tlbp] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbp_op, mm_pool32axf_op), 0},
[insn_tlbr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbr_op, mm_pool32axf_op), 0},
[insn_tlbwi] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwi_op, mm_pool32axf_op), 0},
[insn_tlbwr] = {M(mm_pool32a_op, 0, 0, 0, mm_tlbwr_op, mm_pool32axf_op), 0},
[insn_wait] = {M(mm_pool32a_op, 0, 0, 0, mm_wait_op, mm_pool32axf_op), SCIMM},
[insn_wsbh] = {M(mm_pool32a_op, 0, 0, 0, mm_wsbh_op, mm_pool32axf_op), RT | RS},
[insn_xor] = {M(mm_pool32a_op, 0, 0, 0, 0, mm_xor32_op), RT | RS | RD},
[insn_xori] = {M(mm_xori32_op, 0, 0, 0, 0, 0), RT | RS | UIMM},
[insn_dins] = {0, 0},
[insn_dinsm] = {0, 0},
[insn_syscall] = {M(mm_pool32a_op, 0, 0, 0, mm_syscall_op, mm_pool32axf_op), SCIMM},
[insn_bbit0] = {0, 0},
[insn_bbit1] = {0, 0},
[insn_lwx] = {0, 0},
[insn_ldx] = {0, 0},
};
#undef M
static inline u32 build_bimm(s32 arg)
{
WARN(arg > 0xffff || arg < -0x10000,
KERN_WARNING "Micro-assembler field overflow\n");
WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 1) & 0x7fff);
}
static inline u32 build_jimm(u32 arg)
{
WARN(arg & ~((JIMM_MASK << 2) | 1),
KERN_WARNING "Micro-assembler field overflow\n");
return (arg >> 1) & JIMM_MASK;
}
/*
* The order of opcode arguments is implicitly left to right,
* starting with RS and ending with FUNC or IMM.
*/
static void build_insn(u32 **buf, enum opcode opc, ...)
{
const struct insn *ip;
va_list ap;
u32 op;
if (opc < 0 || opc >= insn_invalid ||
(opc == insn_daddiu && r4k_daddiu_bug()) ||
(insn_table_MM[opc].match == 0 && insn_table_MM[opc].fields == 0))
panic("Unsupported Micro-assembler instruction %d", opc);
ip = &insn_table_MM[opc];
op = ip->match;
va_start(ap, opc);
if (ip->fields & RS) {
if (opc == insn_mfc0 || opc == insn_mtc0 ||
opc == insn_cfc1 || opc == insn_ctc1)
op |= build_rt(va_arg(ap, u32));
else
op |= build_rs(va_arg(ap, u32));
}
if (ip->fields & RT) {
if (opc == insn_mfc0 || opc == insn_mtc0 ||
opc == insn_cfc1 || opc == insn_ctc1)
op |= build_rs(va_arg(ap, u32));
else
op |= build_rt(va_arg(ap, u32));
}
if (ip->fields & RD)
op |= build_rd(va_arg(ap, u32));
if (ip->fields & RE)
op |= build_re(va_arg(ap, u32));
if (ip->fields & SIMM)
op |= build_simm(va_arg(ap, s32));
if (ip->fields & UIMM)
op |= build_uimm(va_arg(ap, u32));
if (ip->fields & BIMM)
op |= build_bimm(va_arg(ap, s32));
if (ip->fields & JIMM)
op |= build_jimm(va_arg(ap, u32));
if (ip->fields & FUNC)
op |= build_func(va_arg(ap, u32));
if (ip->fields & SET)
op |= build_set(va_arg(ap, u32));
if (ip->fields & SCIMM)
op |= build_scimm(va_arg(ap, u32));
va_end(ap);
#ifdef CONFIG_CPU_LITTLE_ENDIAN
**buf = ((op & 0xffff) << 16) | (op >> 16);
#else
**buf = op;
#endif
(*buf)++;
}
static inline void
__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
{
long laddr = (long)lab->addr;
long raddr = (long)rel->addr;
switch (rel->type) {
case R_MIPS_PC16:
#ifdef CONFIG_CPU_LITTLE_ENDIAN
*rel->addr |= (build_bimm(laddr - (raddr + 4)) << 16);
#else
*rel->addr |= build_bimm(laddr - (raddr + 4));
#endif
break;
default:
panic("Unsupported Micro-assembler relocation %d",
rel->type);
}
}
|