summaryrefslogtreecommitdiff
path: root/arch/arm64/kernel/module-plts.c
blob: fa3637284a3d8f4c7dbfe4b7e107af9af94f2685 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*
 * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/elf.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sort.h>

static bool in_init(const struct module *mod, void *loc)
{
	return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
}

u64 module_emit_plt_entry(struct module *mod, void *loc, const Elf64_Rela *rela,
			  Elf64_Sym *sym)
{
	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
							  &mod->arch.init;
	struct plt_entry *plt = (struct plt_entry *)pltsec->plt->sh_addr;
	int i = pltsec->plt_num_entries;
	u64 val = sym->st_value + rela->r_addend;

	plt[i] = get_plt_entry(val);

	/*
	 * Check if the entry we just created is a duplicate. Given that the
	 * relocations are sorted, this will be the last entry we allocated.
	 * (if one exists).
	 */
	if (i > 0 && plt_entries_equal(plt + i, plt + i - 1))
		return (u64)&plt[i - 1];

	pltsec->plt_num_entries++;
	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
		return 0;

	return (u64)&plt[i];
}

#ifdef CONFIG_ARM64_ERRATUM_843419
u64 module_emit_adrp_veneer(struct module *mod, void *loc, u64 val)
{
	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
							  &mod->arch.init;
	struct plt_entry *plt = (struct plt_entry *)pltsec->plt->sh_addr;
	int i = pltsec->plt_num_entries++;
	u32 mov0, mov1, mov2, br;
	int rd;

	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
		return 0;

	/* get the destination register of the ADRP instruction */
	rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
					  le32_to_cpup((__le32 *)loc));

	/* generate the veneer instructions */
	mov0 = aarch64_insn_gen_movewide(rd, (u16)~val, 0,
					 AARCH64_INSN_VARIANT_64BIT,
					 AARCH64_INSN_MOVEWIDE_INVERSE);
	mov1 = aarch64_insn_gen_movewide(rd, (u16)(val >> 16), 16,
					 AARCH64_INSN_VARIANT_64BIT,
					 AARCH64_INSN_MOVEWIDE_KEEP);
	mov2 = aarch64_insn_gen_movewide(rd, (u16)(val >> 32), 32,
					 AARCH64_INSN_VARIANT_64BIT,
					 AARCH64_INSN_MOVEWIDE_KEEP);
	br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
					 AARCH64_INSN_BRANCH_NOLINK);

	plt[i] = (struct plt_entry){
			cpu_to_le32(mov0),
			cpu_to_le32(mov1),
			cpu_to_le32(mov2),
			cpu_to_le32(br)
		};

	return (u64)&plt[i];
}
#endif

#define cmp_3way(a,b)	((a) < (b) ? -1 : (a) > (b))

static int cmp_rela(const void *a, const void *b)
{
	const Elf64_Rela *x = a, *y = b;
	int i;

	/* sort by type, symbol index and addend */
	i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
	if (i == 0)
		i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
	if (i == 0)
		i = cmp_3way(x->r_addend, y->r_addend);
	return i;
}

static bool duplicate_rel(const Elf64_Rela *rela, int num)
{
	/*
	 * Entries are sorted by type, symbol index and addend. That means
	 * that, if a duplicate entry exists, it must be in the preceding
	 * slot.
	 */
	return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
}

static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
			       Elf64_Word dstidx, Elf_Shdr *dstsec)
{
	unsigned int ret = 0;
	Elf64_Sym *s;
	int i;

	for (i = 0; i < num; i++) {
		u64 min_align;

		switch (ELF64_R_TYPE(rela[i].r_info)) {
		case R_AARCH64_JUMP26:
		case R_AARCH64_CALL26:
			if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
				break;

			/*
			 * We only have to consider branch targets that resolve
			 * to symbols that are defined in a different section.
			 * This is not simply a heuristic, it is a fundamental
			 * limitation, since there is no guaranteed way to emit
			 * PLT entries sufficiently close to the branch if the
			 * section size exceeds the range of a branch
			 * instruction. So ignore relocations against defined
			 * symbols if they live in the same section as the
			 * relocation target.
			 */
			s = syms + ELF64_R_SYM(rela[i].r_info);
			if (s->st_shndx == dstidx)
				break;

			/*
			 * Jump relocations with non-zero addends against
			 * undefined symbols are supported by the ELF spec, but
			 * do not occur in practice (e.g., 'jump n bytes past
			 * the entry point of undefined function symbol f').
			 * So we need to support them, but there is no need to
			 * take them into consideration when trying to optimize
			 * this code. So let's only check for duplicates when
			 * the addend is zero: this allows us to record the PLT
			 * entry address in the symbol table itself, rather than
			 * having to search the list for duplicates each time we
			 * emit one.
			 */
			if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
				ret++;
			break;
		case R_AARCH64_ADR_PREL_PG_HI21_NC:
		case R_AARCH64_ADR_PREL_PG_HI21:
			if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
			    !cpus_have_const_cap(ARM64_WORKAROUND_843419))
				break;

			/*
			 * Determine the minimal safe alignment for this ADRP
			 * instruction: the section alignment at which it is
			 * guaranteed not to appear at a vulnerable offset.
			 *
			 * This comes down to finding the least significant zero
			 * bit in bits [11:3] of the section offset, and
			 * increasing the section's alignment so that the
			 * resulting address of this instruction is guaranteed
			 * to equal the offset in that particular bit (as well
			 * as all less signficant bits). This ensures that the
			 * address modulo 4 KB != 0xfff8 or 0xfffc (which would
			 * have all ones in bits [11:3])
			 */
			min_align = 2ULL << ffz(rela[i].r_offset | 0x7);

			/*
			 * Allocate veneer space for each ADRP that may appear
			 * at a vulnerable offset nonetheless. At relocation
			 * time, some of these will remain unused since some
			 * ADRP instructions can be patched to ADR instructions
			 * instead.
			 */
			if (min_align > SZ_4K)
				ret++;
			else
				dstsec->sh_addralign = max(dstsec->sh_addralign,
							   min_align);
			break;
		}
	}
	return ret;
}

int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
			      char *secstrings, struct module *mod)
{
	unsigned long core_plts = 0;
	unsigned long init_plts = 0;
	Elf64_Sym *syms = NULL;
	Elf_Shdr *tramp = NULL;
	int i;

	/*
	 * Find the empty .plt section so we can expand it to store the PLT
	 * entries. Record the symtab address as well.
	 */
	for (i = 0; i < ehdr->e_shnum; i++) {
		if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
			mod->arch.core.plt = sechdrs + i;
		else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
			mod->arch.init.plt = sechdrs + i;
		else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
			 !strcmp(secstrings + sechdrs[i].sh_name,
				 ".text.ftrace_trampoline"))
			tramp = sechdrs + i;
		else if (sechdrs[i].sh_type == SHT_SYMTAB)
			syms = (Elf64_Sym *)sechdrs[i].sh_addr;
	}

	if (!mod->arch.core.plt || !mod->arch.init.plt) {
		pr_err("%s: module PLT section(s) missing\n", mod->name);
		return -ENOEXEC;
	}
	if (!syms) {
		pr_err("%s: module symtab section missing\n", mod->name);
		return -ENOEXEC;
	}

	for (i = 0; i < ehdr->e_shnum; i++) {
		Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
		int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
		Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;

		if (sechdrs[i].sh_type != SHT_RELA)
			continue;

		/* ignore relocations that operate on non-exec sections */
		if (!(dstsec->sh_flags & SHF_EXECINSTR))
			continue;

		/* sort by type, symbol index and addend */
		sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);

		if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0)
			core_plts += count_plts(syms, rels, numrels,
						sechdrs[i].sh_info, dstsec);
		else
			init_plts += count_plts(syms, rels, numrels,
						sechdrs[i].sh_info, dstsec);
	}

	mod->arch.core.plt->sh_type = SHT_NOBITS;
	mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
	mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES;
	mod->arch.core.plt->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
	mod->arch.core.plt_num_entries = 0;
	mod->arch.core.plt_max_entries = core_plts;

	mod->arch.init.plt->sh_type = SHT_NOBITS;
	mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
	mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES;
	mod->arch.init.plt->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
	mod->arch.init.plt_num_entries = 0;
	mod->arch.init.plt_max_entries = init_plts;

	if (tramp) {
		tramp->sh_type = SHT_NOBITS;
		tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
		tramp->sh_addralign = __alignof__(struct plt_entry);
		tramp->sh_size = sizeof(struct plt_entry);
	}

	return 0;
}