summaryrefslogtreecommitdiff
path: root/arch/arm64/include/asm/efi.h
blob: d3e1825337be3a8d9ff00a262e74beca753de9f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_EFI_H
#define _ASM_EFI_H

#include <asm/boot.h>
#include <asm/cpufeature.h>
#include <asm/fpsimd.h>
#include <asm/io.h>
#include <asm/memory.h>
#include <asm/mmu_context.h>
#include <asm/neon.h>
#include <asm/ptrace.h>
#include <asm/tlbflush.h>

#ifdef CONFIG_EFI
extern void efi_init(void);
extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
#else
#define efi_init()
#endif

int efi_create_mapping(struct mm_struct *mm, efi_memory_desc_t *md);
int efi_set_mapping_permissions(struct mm_struct *mm, efi_memory_desc_t *md);

#define arch_efi_call_virt_setup()					\
({									\
	efi_virtmap_load();						\
	__efi_fpsimd_begin();						\
})

#define arch_efi_call_virt(p, f, args...)				\
({									\
	efi_##f##_t *__f;						\
	__f = p->f;							\
	__efi_rt_asm_wrapper(__f, #f, args);				\
})

#define arch_efi_call_virt_teardown()					\
({									\
	__efi_fpsimd_end();						\
	efi_virtmap_unload();						\
})

efi_status_t __efi_rt_asm_wrapper(void *, const char *, ...);

#define ARCH_EFI_IRQ_FLAGS_MASK (PSR_D_BIT | PSR_A_BIT | PSR_I_BIT | PSR_F_BIT)

/*
 * Even when Linux uses IRQ priorities for IRQ disabling, EFI does not.
 * And EFI shouldn't really play around with priority masking as it is not aware
 * which priorities the OS has assigned to its interrupts.
 */
#define arch_efi_save_flags(state_flags)		\
	((void)((state_flags) = read_sysreg(daif)))

#define arch_efi_restore_flags(state_flags)	write_sysreg(state_flags, daif)


/* arch specific definitions used by the stub code */

/*
 * In some configurations (e.g. VMAP_STACK && 64K pages), stacks built into the
 * kernel need greater alignment than we require the segments to be padded to.
 */
#define EFI_KIMG_ALIGN	\
	(SEGMENT_ALIGN > THREAD_ALIGN ? SEGMENT_ALIGN : THREAD_ALIGN)

/*
 * On arm64, we have to ensure that the initrd ends up in the linear region,
 * which is a 1 GB aligned region of size '1UL << (VA_BITS_MIN - 1)' that is
 * guaranteed to cover the kernel Image.
 *
 * Since the EFI stub is part of the kernel Image, we can relax the
 * usual requirements in Documentation/arm64/booting.rst, which still
 * apply to other bootloaders, and are required for some kernel
 * configurations.
 */
static inline unsigned long efi_get_max_initrd_addr(unsigned long image_addr)
{
	return (image_addr & ~(SZ_1G - 1UL)) + (1UL << (VA_BITS_MIN - 1));
}

#define alloc_screen_info(x...)		&screen_info

static inline void free_screen_info(struct screen_info *si)
{
}

#define EFI_ALLOC_ALIGN		SZ_64K

/*
 * On ARM systems, virtually remapped UEFI runtime services are set up in two
 * distinct stages:
 * - The stub retrieves the final version of the memory map from UEFI, populates
 *   the virt_addr fields and calls the SetVirtualAddressMap() [SVAM] runtime
 *   service to communicate the new mapping to the firmware (Note that the new
 *   mapping is not live at this time)
 * - During an early initcall(), the EFI system table is permanently remapped
 *   and the virtual remapping of the UEFI Runtime Services regions is loaded
 *   into a private set of page tables. If this all succeeds, the Runtime
 *   Services are enabled and the EFI_RUNTIME_SERVICES bit set.
 */

static inline void efi_set_pgd(struct mm_struct *mm)
{
	__switch_mm(mm);

	if (system_uses_ttbr0_pan()) {
		if (mm != current->active_mm) {
			/*
			 * Update the current thread's saved ttbr0 since it is
			 * restored as part of a return from exception. Enable
			 * access to the valid TTBR0_EL1 and invoke the errata
			 * workaround directly since there is no return from
			 * exception when invoking the EFI run-time services.
			 */
			update_saved_ttbr0(current, mm);
			uaccess_ttbr0_enable();
			post_ttbr_update_workaround();
		} else {
			/*
			 * Defer the switch to the current thread's TTBR0_EL1
			 * until uaccess_enable(). Restore the current
			 * thread's saved ttbr0 corresponding to its active_mm
			 */
			uaccess_ttbr0_disable();
			update_saved_ttbr0(current, current->active_mm);
		}
	}
}

void efi_virtmap_load(void);
void efi_virtmap_unload(void);

static inline void efi_capsule_flush_cache_range(void *addr, int size)
{
	dcache_clean_inval_poc((unsigned long)addr, (unsigned long)addr + size);
}

#endif /* _ASM_EFI_H */