summaryrefslogtreecommitdiff
path: root/arch/arm/mm/nommu.c
blob: 33a45bd9686012c2547b218133f59a0169fea33d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/*
 *  linux/arch/arm/mm/nommu.c
 *
 * ARM uCLinux supporting functions.
 */
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/io.h>
#include <linux/memblock.h>
#include <linux/kernel.h>

#include <asm/cacheflush.h>
#include <asm/cp15.h>
#include <asm/sections.h>
#include <asm/page.h>
#include <asm/setup.h>
#include <asm/traps.h>
#include <asm/mach/arch.h>
#include <asm/cputype.h>
#include <asm/mpu.h>
#include <asm/procinfo.h>

#include "mm.h"

unsigned long vectors_base;

#ifdef CONFIG_ARM_MPU
struct mpu_rgn_info mpu_rgn_info;

/* Region number */
static void rgnr_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
}

/* Data-side / unified region attributes */

/* Region access control register */
static void dracr_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
}

/* Region size register */
static void drsr_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
}

/* Region base address register */
static void drbar_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
}

static u32 drbar_read(void)
{
	u32 v;
	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
	return v;
}
/* Optional instruction-side region attributes */

/* I-side Region access control register */
static void iracr_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
}

/* I-side Region size register */
static void irsr_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
}

/* I-side Region base address register */
static void irbar_write(u32 v)
{
	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
}

static unsigned long irbar_read(void)
{
	unsigned long v;
	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
	return v;
}

/* MPU initialisation functions */
void __init adjust_lowmem_bounds_mpu(void)
{
	phys_addr_t phys_offset = PHYS_OFFSET;
	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
	struct memblock_region *reg;
	bool first = true;
	phys_addr_t mem_start;
	phys_addr_t mem_end;

	for_each_memblock(memory, reg) {
		if (first) {
			/*
			 * Initially only use memory continuous from
			 * PHYS_OFFSET */
			if (reg->base != phys_offset)
				panic("First memory bank must be contiguous from PHYS_OFFSET");

			mem_start = reg->base;
			mem_end = reg->base + reg->size;
			specified_mem_size = reg->size;
			first = false;
		} else {
			/*
			 * memblock auto merges contiguous blocks, remove
			 * all blocks afterwards in one go (we can't remove
			 * blocks separately while iterating)
			 */
			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
				  &mem_end, &reg->base);
			memblock_remove(reg->base, 0 - reg->base);
			break;
		}
	}

	/*
	 * MPU has curious alignment requirements: Size must be power of 2, and
	 * region start must be aligned to the region size
	 */
	if (phys_offset != 0)
		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");

	/*
	 * Maximum aligned region might overflow phys_addr_t if phys_offset is
	 * 0. Hence we keep everything below 4G until we take the smaller of
	 * the aligned_region_size and rounded_mem_size, one of which is
	 * guaranteed to be smaller than the maximum physical address.
	 */
	aligned_region_size = (phys_offset - 1) ^ (phys_offset);
	/* Find the max power-of-two sized region that fits inside our bank */
	rounded_mem_size = (1 <<  __fls(specified_mem_size)) - 1;

	/* The actual region size is the smaller of the two */
	aligned_region_size = aligned_region_size < rounded_mem_size
				? aligned_region_size + 1
				: rounded_mem_size + 1;

	if (aligned_region_size != specified_mem_size) {
		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
				&specified_mem_size, &aligned_region_size);
		memblock_remove(mem_start + aligned_region_size,
				specified_mem_size - aligned_region_size);

		mem_end = mem_start + aligned_region_size;
	}

	pr_debug("MPU Region from %pa size %pa (end %pa))\n",
		&phys_offset, &aligned_region_size, &mem_end);

}

static int mpu_present(void)
{
	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
}

static int mpu_max_regions(void)
{
	/*
	 * We don't support a different number of I/D side regions so if we
	 * have separate instruction and data memory maps then return
	 * whichever side has a smaller number of supported regions.
	 */
	u32 dregions, iregions, mpuir;
	mpuir = read_cpuid(CPUID_MPUIR);

	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;

	/* Check for separate d-side and i-side memory maps */
	if (mpuir & MPUIR_nU)
		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;

	/* Use the smallest of the two maxima */
	return min(dregions, iregions);
}

static int mpu_iside_independent(void)
{
	/* MPUIR.nU specifies whether there is *not* a unified memory map */
	return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
}

static int mpu_min_region_order(void)
{
	u32 drbar_result, irbar_result;
	/* We've kept a region free for this probing */
	rgnr_write(MPU_PROBE_REGION);
	isb();
	/*
	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
	 * region order
	*/
	drbar_write(0xFFFFFFFC);
	drbar_result = irbar_result = drbar_read();
	drbar_write(0x0);
	/* If the MPU is non-unified, we use the larger of the two minima*/
	if (mpu_iside_independent()) {
		irbar_write(0xFFFFFFFC);
		irbar_result = irbar_read();
		irbar_write(0x0);
	}
	isb(); /* Ensure that MPU region operations have completed */
	/* Return whichever result is larger */
	return __ffs(max(drbar_result, irbar_result));
}

static int mpu_setup_region(unsigned int number, phys_addr_t start,
			unsigned int size_order, unsigned int properties)
{
	u32 size_data;

	/* We kept a region free for probing resolution of MPU regions*/
	if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
		return -ENOENT;

	if (size_order > 32)
		return -ENOMEM;

	if (size_order < mpu_min_region_order())
		return -ENOMEM;

	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;

	dsb(); /* Ensure all previous data accesses occur with old mappings */
	rgnr_write(number);
	isb();
	drbar_write(start);
	dracr_write(properties);
	isb(); /* Propagate properties before enabling region */
	drsr_write(size_data);

	/* Check for independent I-side registers */
	if (mpu_iside_independent()) {
		irbar_write(start);
		iracr_write(properties);
		isb();
		irsr_write(size_data);
	}
	isb();

	/* Store region info (we treat i/d side the same, so only store d) */
	mpu_rgn_info.rgns[number].dracr = properties;
	mpu_rgn_info.rgns[number].drbar = start;
	mpu_rgn_info.rgns[number].drsr = size_data;
	return 0;
}

/*
* Set up default MPU regions, doing nothing if there is no MPU
*/
void __init mpu_setup(void)
{
	int region_err;
	if (!mpu_present())
		return;

	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
					ilog2(memblock.memory.regions[0].size),
					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
	if (region_err) {
		panic("MPU region initialization failure! %d", region_err);
	} else {
		pr_info("Using ARMv7 PMSA Compliant MPU. "
			 "Region independence: %s, Max regions: %d\n",
			mpu_iside_independent() ? "Yes" : "No",
			mpu_max_regions());
	}
}
#else
static void adjust_lowmem_bounds_mpu(void) {}
static void __init mpu_setup(void) {}
#endif /* CONFIG_ARM_MPU */

#ifdef CONFIG_CPU_CP15
#ifdef CONFIG_CPU_HIGH_VECTOR
static unsigned long __init setup_vectors_base(void)
{
	unsigned long reg = get_cr();

	set_cr(reg | CR_V);
	return 0xffff0000;
}
#else /* CONFIG_CPU_HIGH_VECTOR */
/* Write exception base address to VBAR */
static inline void set_vbar(unsigned long val)
{
	asm("mcr p15, 0, %0, c12, c0, 0" : : "r" (val) : "cc");
}

/*
 * Security extensions, bits[7:4], permitted values,
 * 0b0000 - not implemented, 0b0001/0b0010 - implemented
 */
static inline bool security_extensions_enabled(void)
{
	/* Check CPUID Identification Scheme before ID_PFR1 read */
	if ((read_cpuid_id() & 0x000f0000) == 0x000f0000)
		return !!cpuid_feature_extract(CPUID_EXT_PFR1, 4);
	return 0;
}

static unsigned long __init setup_vectors_base(void)
{
	unsigned long base = 0, reg = get_cr();

	set_cr(reg & ~CR_V);
	if (security_extensions_enabled()) {
		if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM))
			base = CONFIG_DRAM_BASE;
		set_vbar(base);
	} else if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM)) {
		if (CONFIG_DRAM_BASE != 0)
			pr_err("Security extensions not enabled, vectors cannot be remapped to RAM, vectors base will be 0x00000000\n");
	}

	return base;
}
#endif /* CONFIG_CPU_HIGH_VECTOR */
#endif /* CONFIG_CPU_CP15 */

void __init arm_mm_memblock_reserve(void)
{
#ifndef CONFIG_CPU_V7M
	vectors_base = IS_ENABLED(CONFIG_CPU_CP15) ? setup_vectors_base() : 0;
	/*
	 * Register the exception vector page.
	 * some architectures which the DRAM is the exception vector to trap,
	 * alloc_page breaks with error, although it is not NULL, but "0."
	 */
	memblock_reserve(vectors_base, 2 * PAGE_SIZE);
#else /* ifndef CONFIG_CPU_V7M */
	/*
	 * There is no dedicated vector page on V7-M. So nothing needs to be
	 * reserved here.
	 */
#endif
}

void __init adjust_lowmem_bounds(void)
{
	phys_addr_t end;
	adjust_lowmem_bounds_mpu();
	end = memblock_end_of_DRAM();
	high_memory = __va(end - 1) + 1;
	memblock_set_current_limit(end);
}

/*
 * paging_init() sets up the page tables, initialises the zone memory
 * maps, and sets up the zero page, bad page and bad page tables.
 */
void __init paging_init(const struct machine_desc *mdesc)
{
	early_trap_init((void *)vectors_base);
	mpu_setup();
	bootmem_init();
}

/*
 * We don't need to do anything here for nommu machines.
 */
void setup_mm_for_reboot(void)
{
}

void flush_dcache_page(struct page *page)
{
	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
}
EXPORT_SYMBOL(flush_dcache_page);

void flush_kernel_dcache_page(struct page *page)
{
	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
}
EXPORT_SYMBOL(flush_kernel_dcache_page);

void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
		       unsigned long uaddr, void *dst, const void *src,
		       unsigned long len)
{
	memcpy(dst, src, len);
	if (vma->vm_flags & VM_EXEC)
		__cpuc_coherent_user_range(uaddr, uaddr + len);
}

void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
				size_t size, unsigned int mtype)
{
	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
		return NULL;
	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
}
EXPORT_SYMBOL(__arm_ioremap_pfn);

void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
				   unsigned int mtype, void *caller)
{
	return (void __iomem *)phys_addr;
}

void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);

void __iomem *ioremap(resource_size_t res_cookie, size_t size)
{
	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
				    __builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap);

void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
	__alias(ioremap_cached);

void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
{
	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
				    __builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_cache);
EXPORT_SYMBOL(ioremap_cached);

void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
{
	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
				    __builtin_return_address(0));
}
EXPORT_SYMBOL(ioremap_wc);

void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
{
	return (void *)phys_addr;
}

void __iounmap(volatile void __iomem *addr)
{
}
EXPORT_SYMBOL(__iounmap);

void (*arch_iounmap)(volatile void __iomem *);

void iounmap(volatile void __iomem *addr)
{
}
EXPORT_SYMBOL(iounmap);