1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
<book id="gpuDevelopersGuide">
<bookinfo>
<title>Linux GPU Driver Developer's Guide</title>
<authorgroup>
<author>
<firstname>Jesse</firstname>
<surname>Barnes</surname>
<contrib>Initial version</contrib>
<affiliation>
<orgname>Intel Corporation</orgname>
<address>
<email>jesse.barnes@intel.com</email>
</address>
</affiliation>
</author>
<author>
<firstname>Laurent</firstname>
<surname>Pinchart</surname>
<contrib>Driver internals</contrib>
<affiliation>
<orgname>Ideas on board SPRL</orgname>
<address>
<email>laurent.pinchart@ideasonboard.com</email>
</address>
</affiliation>
</author>
<author>
<firstname>Daniel</firstname>
<surname>Vetter</surname>
<contrib>Contributions all over the place</contrib>
<affiliation>
<orgname>Intel Corporation</orgname>
<address>
<email>daniel.vetter@ffwll.ch</email>
</address>
</affiliation>
</author>
<author>
<firstname>Lukas</firstname>
<surname>Wunner</surname>
<contrib>vga_switcheroo documentation</contrib>
<affiliation>
<address>
<email>lukas@wunner.de</email>
</address>
</affiliation>
</author>
</authorgroup>
<copyright>
<year>2008-2009</year>
<year>2013-2014</year>
<holder>Intel Corporation</holder>
</copyright>
<copyright>
<year>2012</year>
<holder>Laurent Pinchart</holder>
</copyright>
<copyright>
<year>2015</year>
<holder>Lukas Wunner</holder>
</copyright>
<legalnotice>
<para>
The contents of this file may be used under the terms of the GNU
General Public License version 2 (the "GPL") as distributed in
the kernel source COPYING file.
</para>
</legalnotice>
<revhistory>
<!-- Put document revisions here, newest first. -->
<revision>
<revnumber>1.0</revnumber>
<date>2012-07-13</date>
<authorinitials>LP</authorinitials>
<revremark>Added extensive documentation about driver internals.
</revremark>
</revision>
<revision>
<revnumber>1.1</revnumber>
<date>2015-10-11</date>
<authorinitials>LW</authorinitials>
<revremark>Added vga_switcheroo documentation.
</revremark>
</revision>
</revhistory>
</bookinfo>
<toc></toc>
<part id="drmCore">
<title>DRM Core</title>
<partintro>
<para>
This first part of the GPU Driver Developer's Guide documents core DRM
code, helper libraries for writing drivers and generic userspace
interfaces exposed by DRM drivers.
</para>
</partintro>
<chapter id="drmIntroduction">
<title>Introduction</title>
<para>
The Linux DRM layer contains code intended to support the needs
of complex graphics devices, usually containing programmable
pipelines well suited to 3D graphics acceleration. Graphics
drivers in the kernel may make use of DRM functions to make
tasks like memory management, interrupt handling and DMA easier,
and provide a uniform interface to applications.
</para>
<para>
A note on versions: this guide covers features found in the DRM
tree, including the TTM memory manager, output configuration and
mode setting, and the new vblank internals, in addition to all
the regular features found in current kernels.
</para>
<para>
[Insert diagram of typical DRM stack here]
</para>
<sect1>
<title>Style Guidelines</title>
<para>
For consistency this documentation uses American English. Abbreviations
are written as all-uppercase, for example: DRM, KMS, IOCTL, CRTC, and so
on. To aid in reading, documentations make full use of the markup
characters kerneldoc provides: @parameter for function parameters, @member
for structure members, &structure to reference structures and
function() for functions. These all get automatically hyperlinked if
kerneldoc for the referenced objects exists. When referencing entries in
function vtables please use ->vfunc(). Note that kerneldoc does
not support referencing struct members directly, so please add a reference
to the vtable struct somewhere in the same paragraph or at least section.
</para>
<para>
Except in special situations (to separate locked from unlocked variants)
locking requirements for functions aren't documented in the kerneldoc.
Instead locking should be check at runtime using e.g.
<code>WARN_ON(!mutex_is_locked(...));</code>. Since it's much easier to
ignore documentation than runtime noise this provides more value. And on
top of that runtime checks do need to be updated when the locking rules
change, increasing the chances that they're correct. Within the
documentation the locking rules should be explained in the relevant
structures: Either in the comment for the lock explaining what it
protects, or data fields need a note about which lock protects them, or
both.
</para>
<para>
Functions which have a non-<code>void</code> return value should have a
section called "Returns" explaining the expected return values in
different cases and their meanings. Currently there's no consensus whether
that section name should be all upper-case or not, and whether it should
end in a colon or not. Go with the file-local style. Other common section
names are "Notes" with information for dangerous or tricky corner cases,
and "FIXME" where the interface could be cleaned up.
</para>
</sect1>
</chapter>
<!-- Internals -->
<chapter id="drmInternals">
<title>DRM Internals</title>
<para>
This chapter documents DRM internals relevant to driver authors
and developers working to add support for the latest features to
existing drivers.
</para>
<para>
First, we go over some typical driver initialization
requirements, like setting up command buffers, creating an
initial output configuration, and initializing core services.
Subsequent sections cover core internals in more detail,
providing implementation notes and examples.
</para>
<para>
The DRM layer provides several services to graphics drivers,
many of them driven by the application interfaces it provides
through libdrm, the library that wraps most of the DRM ioctls.
These include vblank event handling, memory
management, output management, framebuffer management, command
submission & fencing, suspend/resume support, and DMA
services.
</para>
<!-- Internals: driver init -->
<sect1>
<title>Driver Initialization</title>
<para>
At the core of every DRM driver is a <structname>drm_driver</structname>
structure. Drivers typically statically initialize a drm_driver structure,
and then pass it to <function>drm_dev_alloc()</function> to allocate a
device instance. After the device instance is fully initialized it can be
registered (which makes it accessible from userspace) using
<function>drm_dev_register()</function>.
</para>
<para>
The <structname>drm_driver</structname> structure contains static
information that describes the driver and features it supports, and
pointers to methods that the DRM core will call to implement the DRM API.
We will first go through the <structname>drm_driver</structname> static
information fields, and will then describe individual operations in
details as they get used in later sections.
</para>
<sect2>
<title>Driver Information</title>
<sect3>
<title>Driver Features</title>
<para>
Drivers inform the DRM core about their requirements and supported
features by setting appropriate flags in the
<structfield>driver_features</structfield> field. Since those flags
influence the DRM core behaviour since registration time, most of them
must be set to registering the <structname>drm_driver</structname>
instance.
</para>
<synopsis>u32 driver_features;</synopsis>
<variablelist>
<title>Driver Feature Flags</title>
<varlistentry>
<term>DRIVER_USE_AGP</term>
<listitem><para>
Driver uses AGP interface, the DRM core will manage AGP resources.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_REQUIRE_AGP</term>
<listitem><para>
Driver needs AGP interface to function. AGP initialization failure
will become a fatal error.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_PCI_DMA</term>
<listitem><para>
Driver is capable of PCI DMA, mapping of PCI DMA buffers to
userspace will be enabled. Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_SG</term>
<listitem><para>
Driver can perform scatter/gather DMA, allocation and mapping of
scatter/gather buffers will be enabled. Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_HAVE_DMA</term>
<listitem><para>
Driver supports DMA, the userspace DMA API will be supported.
Deprecated.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
<listitem><para>
DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
managed by the DRM Core. The core will support simple IRQ handler
installation when the flag is set. The installation process is
described in <xref linkend="drm-irq-registration"/>.</para>
<para>DRIVER_IRQ_SHARED indicates whether the device & handler
support shared IRQs (note that this is required of PCI drivers).
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_GEM</term>
<listitem><para>
Driver use the GEM memory manager.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_MODESET</term>
<listitem><para>
Driver supports mode setting interfaces (KMS).
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_PRIME</term>
<listitem><para>
Driver implements DRM PRIME buffer sharing.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_RENDER</term>
<listitem><para>
Driver supports dedicated render nodes.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_ATOMIC</term>
<listitem><para>
Driver supports atomic properties. In this case the driver
must implement appropriate obj->atomic_get_property() vfuncs
for any modeset objects with driver specific properties.
</para></listitem>
</varlistentry>
</variablelist>
</sect3>
<sect3>
<title>Major, Minor and Patchlevel</title>
<synopsis>int major;
int minor;
int patchlevel;</synopsis>
<para>
The DRM core identifies driver versions by a major, minor and patch
level triplet. The information is printed to the kernel log at
initialization time and passed to userspace through the
DRM_IOCTL_VERSION ioctl.
</para>
<para>
The major and minor numbers are also used to verify the requested driver
API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
between minor versions, applications can call DRM_IOCTL_SET_VERSION to
select a specific version of the API. If the requested major isn't equal
to the driver major, or the requested minor is larger than the driver
minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
the driver's set_version() method will be called with the requested
version.
</para>
</sect3>
<sect3>
<title>Name, Description and Date</title>
<synopsis>char *name;
char *desc;
char *date;</synopsis>
<para>
The driver name is printed to the kernel log at initialization time,
used for IRQ registration and passed to userspace through
DRM_IOCTL_VERSION.
</para>
<para>
The driver description is a purely informative string passed to
userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
the kernel.
</para>
<para>
The driver date, formatted as YYYYMMDD, is meant to identify the date of
the latest modification to the driver. However, as most drivers fail to
update it, its value is mostly useless. The DRM core prints it to the
kernel log at initialization time and passes it to userspace through the
DRM_IOCTL_VERSION ioctl.
</para>
</sect3>
</sect2>
<sect2>
<title>Device Instance and Driver Handling</title>
!Pdrivers/gpu/drm/drm_drv.c driver instance overview
!Edrivers/gpu/drm/drm_drv.c
</sect2>
<sect2>
<title>Driver Load</title>
<sect3 id="drm-irq-registration">
<title>IRQ Registration</title>
<para>
The DRM core tries to facilitate IRQ handler registration and
unregistration by providing <function>drm_irq_install</function> and
<function>drm_irq_uninstall</function> functions. Those functions only
support a single interrupt per device, devices that use more than one
IRQs need to be handled manually.
</para>
<sect4>
<title>Managed IRQ Registration</title>
<para>
<function>drm_irq_install</function> starts by calling the
<methodname>irq_preinstall</methodname> driver operation. The operation
is optional and must make sure that the interrupt will not get fired by
clearing all pending interrupt flags or disabling the interrupt.
</para>
<para>
The passed-in IRQ will then be requested by a call to
<function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
requested.
</para>
<para>
The IRQ handler function must be provided as the mandatory irq_handler
driver operation. It will get passed directly to
<function>request_irq</function> and thus has the same prototype as all
IRQ handlers. It will get called with a pointer to the DRM device as the
second argument.
</para>
<para>
Finally the function calls the optional
<methodname>irq_postinstall</methodname> driver operation. The operation
usually enables interrupts (excluding the vblank interrupt, which is
enabled separately), but drivers may choose to enable/disable interrupts
at a different time.
</para>
<para>
<function>drm_irq_uninstall</function> is similarly used to uninstall an
IRQ handler. It starts by waking up all processes waiting on a vblank
interrupt to make sure they don't hang, and then calls the optional
<methodname>irq_uninstall</methodname> driver operation. The operation
must disable all hardware interrupts. Finally the function frees the IRQ
by calling <function>free_irq</function>.
</para>
</sect4>
<sect4>
<title>Manual IRQ Registration</title>
<para>
Drivers that require multiple interrupt handlers can't use the managed
IRQ registration functions. In that case IRQs must be registered and
unregistered manually (usually with the <function>request_irq</function>
and <function>free_irq</function> functions, or their devm_* equivalent).
</para>
<para>
When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ
driver feature flag, and must not provide the
<methodname>irq_handler</methodname> driver operation. They must set the
<structname>drm_device</structname> <structfield>irq_enabled</structfield>
field to 1 upon registration of the IRQs, and clear it to 0 after
unregistering the IRQs.
</para>
</sect4>
</sect3>
<sect3>
<title>Memory Manager Initialization</title>
<para>
Every DRM driver requires a memory manager which must be initialized at
load time. DRM currently contains two memory managers, the Translation
Table Manager (TTM) and the Graphics Execution Manager (GEM).
This document describes the use of the GEM memory manager only. See
<xref linkend="drm-memory-management"/> for details.
</para>
</sect3>
<sect3>
<title>Miscellaneous Device Configuration</title>
<para>
Another task that may be necessary for PCI devices during configuration
is mapping the video BIOS. On many devices, the VBIOS describes device
configuration, LCD panel timings (if any), and contains flags indicating
device state. Mapping the BIOS can be done using the pci_map_rom() call,
a convenience function that takes care of mapping the actual ROM,
whether it has been shadowed into memory (typically at address 0xc0000)
or exists on the PCI device in the ROM BAR. Note that after the ROM has
been mapped and any necessary information has been extracted, it should
be unmapped; on many devices, the ROM address decoder is shared with
other BARs, so leaving it mapped could cause undesired behaviour like
hangs or memory corruption.
<!--!Fdrivers/pci/rom.c pci_map_rom-->
</para>
</sect3>
</sect2>
<sect2>
<title>Bus-specific Device Registration and PCI Support</title>
<para>
A number of functions are provided to help with device registration.
The functions deal with PCI and platform devices respectively and are
only provided for historical reasons. These are all deprecated and
shouldn't be used in new drivers. Besides that there's a few
helpers for pci drivers.
</para>
!Edrivers/gpu/drm/drm_pci.c
!Edrivers/gpu/drm/drm_platform.c
</sect2>
</sect1>
<!-- Internals: memory management -->
<sect1 id="drm-memory-management">
<title>Memory management</title>
<para>
Modern Linux systems require large amount of graphics memory to store
frame buffers, textures, vertices and other graphics-related data. Given
the very dynamic nature of many of that data, managing graphics memory
efficiently is thus crucial for the graphics stack and plays a central
role in the DRM infrastructure.
</para>
<para>
The DRM core includes two memory managers, namely Translation Table Maps
(TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
manager to be developed and tried to be a one-size-fits-them all
solution. It provides a single userspace API to accommodate the need of
all hardware, supporting both Unified Memory Architecture (UMA) devices
and devices with dedicated video RAM (i.e. most discrete video cards).
This resulted in a large, complex piece of code that turned out to be
hard to use for driver development.
</para>
<para>
GEM started as an Intel-sponsored project in reaction to TTM's
complexity. Its design philosophy is completely different: instead of
providing a solution to every graphics memory-related problems, GEM
identified common code between drivers and created a support library to
share it. GEM has simpler initialization and execution requirements than
TTM, but has no video RAM management capabilities and is thus limited to
UMA devices.
</para>
<sect2>
<title>The Translation Table Manager (TTM)</title>
<para>
TTM design background and information belongs here.
</para>
<sect3>
<title>TTM initialization</title>
<warning><para>This section is outdated.</para></warning>
<para>
Drivers wishing to support TTM must fill out a drm_bo_driver
structure. The structure contains several fields with function
pointers for initializing the TTM, allocating and freeing memory,
waiting for command completion and fence synchronization, and memory
migration. See the radeon_ttm.c file for an example of usage.
</para>
<para>
The ttm_global_reference structure is made up of several fields:
</para>
<programlisting>
struct ttm_global_reference {
enum ttm_global_types global_type;
size_t size;
void *object;
int (*init) (struct ttm_global_reference *);
void (*release) (struct ttm_global_reference *);
};
</programlisting>
<para>
There should be one global reference structure for your memory
manager as a whole, and there will be others for each object
created by the memory manager at runtime. Your global TTM should
have a type of TTM_GLOBAL_TTM_MEM. The size field for the global
object should be sizeof(struct ttm_mem_global), and the init and
release hooks should point at your driver-specific init and
release routines, which probably eventually call
ttm_mem_global_init and ttm_mem_global_release, respectively.
</para>
<para>
Once your global TTM accounting structure is set up and initialized
by calling ttm_global_item_ref() on it,
you need to create a buffer object TTM to
provide a pool for buffer object allocation by clients and the
kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO,
and its size should be sizeof(struct ttm_bo_global). Again,
driver-specific init and release functions may be provided,
likely eventually calling ttm_bo_global_init() and
ttm_bo_global_release(), respectively. Also, like the previous
object, ttm_global_item_ref() is used to create an initial reference
count for the TTM, which will call your initialization function.
</para>
</sect3>
</sect2>
<sect2 id="drm-gem">
<title>The Graphics Execution Manager (GEM)</title>
<para>
The GEM design approach has resulted in a memory manager that doesn't
provide full coverage of all (or even all common) use cases in its
userspace or kernel API. GEM exposes a set of standard memory-related
operations to userspace and a set of helper functions to drivers, and let
drivers implement hardware-specific operations with their own private API.
</para>
<para>
The GEM userspace API is described in the
<ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
Execution Manager</citetitle></ulink> article on LWN. While slightly
outdated, the document provides a good overview of the GEM API principles.
Buffer allocation and read and write operations, described as part of the
common GEM API, are currently implemented using driver-specific ioctls.
</para>
<para>
GEM is data-agnostic. It manages abstract buffer objects without knowing
what individual buffers contain. APIs that require knowledge of buffer
contents or purpose, such as buffer allocation or synchronization
primitives, are thus outside of the scope of GEM and must be implemented
using driver-specific ioctls.
</para>
<para>
On a fundamental level, GEM involves several operations:
<itemizedlist>
<listitem>Memory allocation and freeing</listitem>
<listitem>Command execution</listitem>
<listitem>Aperture management at command execution time</listitem>
</itemizedlist>
Buffer object allocation is relatively straightforward and largely
provided by Linux's shmem layer, which provides memory to back each
object.
</para>
<para>
Device-specific operations, such as command execution, pinning, buffer
read & write, mapping, and domain ownership transfers are left to
driver-specific ioctls.
</para>
<sect3>
<title>GEM Initialization</title>
<para>
Drivers that use GEM must set the DRIVER_GEM bit in the struct
<structname>drm_driver</structname>
<structfield>driver_features</structfield> field. The DRM core will
then automatically initialize the GEM core before calling the
<methodname>load</methodname> operation. Behind the scene, this will
create a DRM Memory Manager object which provides an address space
pool for object allocation.
</para>
<para>
In a KMS configuration, drivers need to allocate and initialize a
command ring buffer following core GEM initialization if required by
the hardware. UMA devices usually have what is called a "stolen"
memory region, which provides space for the initial framebuffer and
large, contiguous memory regions required by the device. This space is
typically not managed by GEM, and must be initialized separately into
its own DRM MM object.
</para>
</sect3>
<sect3>
<title>GEM Objects Creation</title>
<para>
GEM splits creation of GEM objects and allocation of the memory that
backs them in two distinct operations.
</para>
<para>
GEM objects are represented by an instance of struct
<structname>drm_gem_object</structname>. Drivers usually need to extend
GEM objects with private information and thus create a driver-specific
GEM object structure type that embeds an instance of struct
<structname>drm_gem_object</structname>.
</para>
<para>
To create a GEM object, a driver allocates memory for an instance of its
specific GEM object type and initializes the embedded struct
<structname>drm_gem_object</structname> with a call to
<function>drm_gem_object_init</function>. The function takes a pointer to
the DRM device, a pointer to the GEM object and the buffer object size
in bytes.
</para>
<para>
GEM uses shmem to allocate anonymous pageable memory.
<function>drm_gem_object_init</function> will create an shmfs file of
the requested size and store it into the struct
<structname>drm_gem_object</structname> <structfield>filp</structfield>
field. The memory is used as either main storage for the object when the
graphics hardware uses system memory directly or as a backing store
otherwise.
</para>
<para>
Drivers are responsible for the actual physical pages allocation by
calling <function>shmem_read_mapping_page_gfp</function> for each page.
Note that they can decide to allocate pages when initializing the GEM
object, or to delay allocation until the memory is needed (for instance
when a page fault occurs as a result of a userspace memory access or
when the driver needs to start a DMA transfer involving the memory).
</para>
<para>
Anonymous pageable memory allocation is not always desired, for instance
when the hardware requires physically contiguous system memory as is
often the case in embedded devices. Drivers can create GEM objects with
no shmfs backing (called private GEM objects) by initializing them with
a call to <function>drm_gem_private_object_init</function> instead of
<function>drm_gem_object_init</function>. Storage for private GEM
objects must be managed by drivers.
</para>
</sect3>
<sect3>
<title>GEM Objects Lifetime</title>
<para>
All GEM objects are reference-counted by the GEM core. References can be
acquired and release by <function>calling drm_gem_object_reference</function>
and <function>drm_gem_object_unreference</function> respectively. The
caller must hold the <structname>drm_device</structname>
<structfield>struct_mutex</structfield> lock when calling
<function>drm_gem_object_reference</function>. As a convenience, GEM
provides <function>drm_gem_object_unreference_unlocked</function>
functions that can be called without holding the lock.
</para>
<para>
When the last reference to a GEM object is released the GEM core calls
the <structname>drm_driver</structname>
<methodname>gem_free_object</methodname> operation. That operation is
mandatory for GEM-enabled drivers and must free the GEM object and all
associated resources.
</para>
<para>
<synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis>
Drivers are responsible for freeing all GEM object resources. This includes
the resources created by the GEM core, which need to be released with
<function>drm_gem_object_release</function>.
</para>
</sect3>
<sect3>
<title>GEM Objects Naming</title>
<para>
Communication between userspace and the kernel refers to GEM objects
using local handles, global names or, more recently, file descriptors.
All of those are 32-bit integer values; the usual Linux kernel limits
apply to the file descriptors.
</para>
<para>
GEM handles are local to a DRM file. Applications get a handle to a GEM
object through a driver-specific ioctl, and can use that handle to refer
to the GEM object in other standard or driver-specific ioctls. Closing a
DRM file handle frees all its GEM handles and dereferences the
associated GEM objects.
</para>
<para>
To create a handle for a GEM object drivers call
<function>drm_gem_handle_create</function>. The function takes a pointer
to the DRM file and the GEM object and returns a locally unique handle.
When the handle is no longer needed drivers delete it with a call to
<function>drm_gem_handle_delete</function>. Finally the GEM object
associated with a handle can be retrieved by a call to
<function>drm_gem_object_lookup</function>.
</para>
<para>
Handles don't take ownership of GEM objects, they only take a reference
to the object that will be dropped when the handle is destroyed. To
avoid leaking GEM objects, drivers must make sure they drop the
reference(s) they own (such as the initial reference taken at object
creation time) as appropriate, without any special consideration for the
handle. For example, in the particular case of combined GEM object and
handle creation in the implementation of the
<methodname>dumb_create</methodname> operation, drivers must drop the
initial reference to the GEM object before returning the handle.
</para>
<para>
GEM names are similar in purpose to handles but are not local to DRM
files. They can be passed between processes to reference a GEM object
globally. Names can't be used directly to refer to objects in the DRM
API, applications must convert handles to names and names to handles
using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
respectively. The conversion is handled by the DRM core without any
driver-specific support.
</para>
<para>
GEM also supports buffer sharing with dma-buf file descriptors through
PRIME. GEM-based drivers must use the provided helpers functions to
implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />.
Since sharing file descriptors is inherently more secure than the
easily guessable and global GEM names it is the preferred buffer
sharing mechanism. Sharing buffers through GEM names is only supported
for legacy userspace. Furthermore PRIME also allows cross-device
buffer sharing since it is based on dma-bufs.
</para>
</sect3>
<sect3 id="drm-gem-objects-mapping">
<title>GEM Objects Mapping</title>
<para>
Because mapping operations are fairly heavyweight GEM favours
read/write-like access to buffers, implemented through driver-specific
ioctls, over mapping buffers to userspace. However, when random access
to the buffer is needed (to perform software rendering for instance),
direct access to the object can be more efficient.
</para>
<para>
The mmap system call can't be used directly to map GEM objects, as they
don't have their own file handle. Two alternative methods currently
co-exist to map GEM objects to userspace. The first method uses a
driver-specific ioctl to perform the mapping operation, calling
<function>do_mmap</function> under the hood. This is often considered
dubious, seems to be discouraged for new GEM-enabled drivers, and will
thus not be described here.
</para>
<para>
The second method uses the mmap system call on the DRM file handle.
<synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd,
off_t offset);</synopsis>
DRM identifies the GEM object to be mapped by a fake offset passed
through the mmap offset argument. Prior to being mapped, a GEM object
must thus be associated with a fake offset. To do so, drivers must call
<function>drm_gem_create_mmap_offset</function> on the object.
</para>
<para>
Once allocated, the fake offset value
must be passed to the application in a driver-specific way and can then
be used as the mmap offset argument.
</para>
<para>
The GEM core provides a helper method <function>drm_gem_mmap</function>
to handle object mapping. The method can be set directly as the mmap
file operation handler. It will look up the GEM object based on the
offset value and set the VMA operations to the
<structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
field. Note that <function>drm_gem_mmap</function> doesn't map memory to
userspace, but relies on the driver-provided fault handler to map pages
individually.
</para>
<para>
To use <function>drm_gem_mmap</function>, drivers must fill the struct
<structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
field with a pointer to VM operations.
</para>
<para>
<synopsis>struct vm_operations_struct *gem_vm_ops
struct vm_operations_struct {
void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
};</synopsis>
</para>
<para>
The <methodname>open</methodname> and <methodname>close</methodname>
operations must update the GEM object reference count. Drivers can use
the <function>drm_gem_vm_open</function> and
<function>drm_gem_vm_close</function> helper functions directly as open
and close handlers.
</para>
<para>
The fault operation handler is responsible for mapping individual pages
to userspace when a page fault occurs. Depending on the memory
allocation scheme, drivers can allocate pages at fault time, or can
decide to allocate memory for the GEM object at the time the object is
created.
</para>
<para>
Drivers that want to map the GEM object upfront instead of handling page
faults can implement their own mmap file operation handler.
</para>
</sect3>
<sect3>
<title>Memory Coherency</title>
<para>
When mapped to the device or used in a command buffer, backing pages
for an object are flushed to memory and marked write combined so as to
be coherent with the GPU. Likewise, if the CPU accesses an object
after the GPU has finished rendering to the object, then the object
must be made coherent with the CPU's view of memory, usually involving
GPU cache flushing of various kinds. This core CPU<->GPU
coherency management is provided by a device-specific ioctl, which
evaluates an object's current domain and performs any necessary
flushing or synchronization to put the object into the desired
coherency domain (note that the object may be busy, i.e. an active
render target; in that case, setting the domain blocks the client and
waits for rendering to complete before performing any necessary
flushing operations).
</para>
</sect3>
<sect3>
<title>Command Execution</title>
<para>
Perhaps the most important GEM function for GPU devices is providing a
command execution interface to clients. Client programs construct
command buffers containing references to previously allocated memory
objects, and then submit them to GEM. At that point, GEM takes care to
bind all the objects into the GTT, execute the buffer, and provide
necessary synchronization between clients accessing the same buffers.
This often involves evicting some objects from the GTT and re-binding
others (a fairly expensive operation), and providing relocation
support which hides fixed GTT offsets from clients. Clients must take
care not to submit command buffers that reference more objects than
can fit in the GTT; otherwise, GEM will reject them and no rendering
will occur. Similarly, if several objects in the buffer require fence
registers to be allocated for correct rendering (e.g. 2D blits on
pre-965 chips), care must be taken not to require more fence registers
than are available to the client. Such resource management should be
abstracted from the client in libdrm.
</para>
</sect3>
</sect2>
<sect2>
<title>GEM Function Reference</title>
!Edrivers/gpu/drm/drm_gem.c
!Iinclude/drm/drm_gem.h
</sect2>
<sect2>
<title>VMA Offset Manager</title>
!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
!Edrivers/gpu/drm/drm_vma_manager.c
!Iinclude/drm/drm_vma_manager.h
</sect2>
<sect2 id="drm-prime-support">
<title>PRIME Buffer Sharing</title>
<para>
PRIME is the cross device buffer sharing framework in drm, originally
created for the OPTIMUS range of multi-gpu platforms. To userspace
PRIME buffers are dma-buf based file descriptors.
</para>
<sect3>
<title>Overview and Driver Interface</title>
<para>
Similar to GEM global names, PRIME file descriptors are
also used to share buffer objects across processes. They offer
additional security: as file descriptors must be explicitly sent over
UNIX domain sockets to be shared between applications, they can't be
guessed like the globally unique GEM names.
</para>
<para>
Drivers that support the PRIME
API must set the DRIVER_PRIME bit in the struct
<structname>drm_driver</structname>
<structfield>driver_features</structfield> field, and implement the
<methodname>prime_handle_to_fd</methodname> and
<methodname>prime_fd_to_handle</methodname> operations.
</para>
<para>
<synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
struct drm_file *file_priv, uint32_t handle,
uint32_t flags, int *prime_fd);
int (*prime_fd_to_handle)(struct drm_device *dev,
struct drm_file *file_priv, int prime_fd,
uint32_t *handle);</synopsis>
Those two operations convert a handle to a PRIME file descriptor and
vice versa. Drivers must use the kernel dma-buf buffer sharing framework
to manage the PRIME file descriptors. Similar to the mode setting
API PRIME is agnostic to the underlying buffer object manager, as
long as handles are 32bit unsigned integers.
</para>
<para>
While non-GEM drivers must implement the operations themselves, GEM
drivers must use the <function>drm_gem_prime_handle_to_fd</function>
and <function>drm_gem_prime_fd_to_handle</function> helper functions.
Those helpers rely on the driver
<methodname>gem_prime_export</methodname> and
<methodname>gem_prime_import</methodname> operations to create a dma-buf
instance from a GEM object (dma-buf exporter role) and to create a GEM
object from a dma-buf instance (dma-buf importer role).
</para>
<para>
<synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
struct drm_gem_object *obj,
int flags);
struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
struct dma_buf *dma_buf);</synopsis>
These two operations are mandatory for GEM drivers that support
PRIME.
</para>
</sect3>
<sect3>
<title>PRIME Helper Functions</title>
!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
</sect3>
</sect2>
<sect2>
<title>PRIME Function References</title>
!Edrivers/gpu/drm/drm_prime.c
</sect2>
<sect2>
<title>DRM MM Range Allocator</title>
<sect3>
<title>Overview</title>
!Pdrivers/gpu/drm/drm_mm.c Overview
</sect3>
<sect3>
<title>LRU Scan/Eviction Support</title>
!Pdrivers/gpu/drm/drm_mm.c lru scan roaster
</sect3>
</sect2>
<sect2>
<title>DRM MM Range Allocator Function References</title>
!Edrivers/gpu/drm/drm_mm.c
!Iinclude/drm/drm_mm.h
</sect2>
<sect2>
<title>CMA Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_gem_cma_helper.c cma helpers
!Edrivers/gpu/drm/drm_gem_cma_helper.c
!Iinclude/drm/drm_gem_cma_helper.h
</sect2>
</sect1>
<!-- Internals: mode setting -->
<sect1 id="drm-mode-setting">
<title>Mode Setting</title>
<para>
Drivers must initialize the mode setting core by calling
<function>drm_mode_config_init</function> on the DRM device. The function
initializes the <structname>drm_device</structname>
<structfield>mode_config</structfield> field and never fails. Once done,
mode configuration must be setup by initializing the following fields.
</para>
<itemizedlist>
<listitem>
<synopsis>int min_width, min_height;
int max_width, max_height;</synopsis>
<para>
Minimum and maximum width and height of the frame buffers in pixel
units.
</para>
</listitem>
<listitem>
<synopsis>struct drm_mode_config_funcs *funcs;</synopsis>
<para>Mode setting functions.</para>
</listitem>
</itemizedlist>
<sect2>
<title>Display Modes Function Reference</title>
!Iinclude/drm/drm_modes.h
!Edrivers/gpu/drm/drm_modes.c
</sect2>
<sect2>
<title>Atomic Mode Setting Function Reference</title>
!Edrivers/gpu/drm/drm_atomic.c
!Idrivers/gpu/drm/drm_atomic.c
</sect2>
<sect2>
<title>Frame Buffer Abstraction</title>
<para>
Frame buffers are abstract memory objects that provide a source of
pixels to scanout to a CRTC. Applications explicitly request the
creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
receive an opaque handle that can be passed to the KMS CRTC control,
plane configuration and page flip functions.
</para>
<para>
Frame buffers rely on the underneath memory manager for low-level memory
operations. When creating a frame buffer applications pass a memory
handle (or a list of memory handles for multi-planar formats) through
the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using
GEM as their userspace buffer management interface this would be a GEM
handle. Drivers are however free to use their own backing storage object
handles, e.g. vmwgfx directly exposes special TTM handles to userspace
and so expects TTM handles in the create ioctl and not GEM handles.
</para>
<para>
The lifetime of a drm framebuffer is controlled with a reference count,
drivers can grab additional references with
<function>drm_framebuffer_reference</function>and drop them
again with <function>drm_framebuffer_unreference</function>. For
driver-private framebuffers for which the last reference is never
dropped (e.g. for the fbdev framebuffer when the struct
<structname>drm_framebuffer</structname> is embedded into the fbdev
helper struct) drivers can manually clean up a framebuffer at module
unload time with
<function>drm_framebuffer_unregister_private</function>.
</para>
</sect2>
<sect2>
<title>Dumb Buffer Objects</title>
<para>
The KMS API doesn't standardize backing storage object creation and
leaves it to driver-specific ioctls. Furthermore actually creating a
buffer object even for GEM-based drivers is done through a
driver-specific ioctl - GEM only has a common userspace interface for
sharing and destroying objects. While not an issue for full-fledged
graphics stacks that include device-specific userspace components (in
libdrm for instance), this limit makes DRM-based early boot graphics
unnecessarily complex.
</para>
<para>
Dumb objects partly alleviate the problem by providing a standard
API to create dumb buffers suitable for scanout, which can then be used
to create KMS frame buffers.
</para>
<para>
To support dumb objects drivers must implement the
<methodname>dumb_create</methodname>,
<methodname>dumb_destroy</methodname> and
<methodname>dumb_map_offset</methodname> operations.
</para>
<itemizedlist>
<listitem>
<synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
struct drm_mode_create_dumb *args);</synopsis>
<para>
The <methodname>dumb_create</methodname> operation creates a driver
object (GEM or TTM handle) suitable for scanout based on the
width, height and depth from the struct
<structname>drm_mode_create_dumb</structname> argument. It fills the
argument's <structfield>handle</structfield>,
<structfield>pitch</structfield> and <structfield>size</structfield>
fields with a handle for the newly created object and its line
pitch and size in bytes.
</para>
</listitem>
<listitem>
<synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
uint32_t handle);</synopsis>
<para>
The <methodname>dumb_destroy</methodname> operation destroys a dumb
object created by <methodname>dumb_create</methodname>.
</para>
</listitem>
<listitem>
<synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
uint32_t handle, uint64_t *offset);</synopsis>
<para>
The <methodname>dumb_map_offset</methodname> operation associates an
mmap fake offset with the object given by the handle and returns
it. Drivers must use the
<function>drm_gem_create_mmap_offset</function> function to
associate the fake offset as described in
<xref linkend="drm-gem-objects-mapping"/>.
</para>
</listitem>
</itemizedlist>
<para>
Note that dumb objects may not be used for gpu acceleration, as has been
attempted on some ARM embedded platforms. Such drivers really must have
a hardware-specific ioctl to allocate suitable buffer objects.
</para>
</sect2>
<sect2>
<title>Output Polling</title>
<synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
<para>
This operation notifies the driver that the status of one or more
connectors has changed. Drivers that use the fb helper can just call the
<function>drm_fb_helper_hotplug_event</function> function to handle this
operation.
</para>
</sect2>
<sect2>
<title>Locking</title>
<para>
Beside some lookup structures with their own locking (which is hidden
behind the interface functions) most of the modeset state is protected
by the <code>dev-<mode_config.lock</code> mutex and additionally
per-crtc locks to allow cursor updates, pageflips and similar operations
to occur concurrently with background tasks like output detection.
Operations which cross domains like a full modeset always grab all
locks. Drivers there need to protect resources shared between crtcs with
additional locking. They also need to be careful to always grab the
relevant crtc locks if a modset functions touches crtc state, e.g. for
load detection (which does only grab the <code>mode_config.lock</code>
to allow concurrent screen updates on live crtcs).
</para>
</sect2>
</sect1>
<!-- Internals: kms initialization and cleanup -->
<sect1 id="drm-kms-init">
<title>KMS Initialization and Cleanup</title>
<para>
A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders
and connectors. KMS drivers must thus create and initialize all those
objects at load time after initializing mode setting.
</para>
<sect2>
<title>CRTCs (struct <structname>drm_crtc</structname>)</title>
<para>
A CRTC is an abstraction representing a part of the chip that contains a
pointer to a scanout buffer. Therefore, the number of CRTCs available
determines how many independent scanout buffers can be active at any
given time. The CRTC structure contains several fields to support this:
a pointer to some video memory (abstracted as a frame buffer object), a
display mode, and an (x, y) offset into the video memory to support
panning or configurations where one piece of video memory spans multiple
CRTCs.
</para>
<sect3>
<title>CRTC Initialization</title>
<para>
A KMS device must create and register at least one struct
<structname>drm_crtc</structname> instance. The instance is allocated
and zeroed by the driver, possibly as part of a larger structure, and
registered with a call to <function>drm_crtc_init</function> with a
pointer to CRTC functions.
</para>
</sect3>
</sect2>
<sect2>
<title>Planes (struct <structname>drm_plane</structname>)</title>
<para>
A plane represents an image source that can be blended with or overlayed
on top of a CRTC during the scanout process. Planes are associated with
a frame buffer to crop a portion of the image memory (source) and
optionally scale it to a destination size. The result is then blended
with or overlayed on top of a CRTC.
</para>
<para>
The DRM core recognizes three types of planes:
<itemizedlist>
<listitem>
DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary
planes are the planes operated upon by CRTC modesetting and flipping
operations described in the page_flip hook in <structname>drm_crtc_funcs</structname>.
</listitem>
<listitem>
DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC. Cursor
planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and
DRM_IOCTL_MODE_CURSOR2 ioctls.
</listitem>
<listitem>
DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes.
Some drivers refer to these types of planes as "sprites" internally.
</listitem>
</itemizedlist>
For compatibility with legacy userspace, only overlay planes are made
available to userspace by default. Userspace clients may set the
DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that
they wish to receive a universal plane list containing all plane types.
</para>
<sect3>
<title>Plane Initialization</title>
<para>
To create a plane, a KMS drivers allocates and
zeroes an instances of struct <structname>drm_plane</structname>
(possibly as part of a larger structure) and registers it with a call
to <function>drm_universal_plane_init</function>. The function takes a bitmask
of the CRTCs that can be associated with the plane, a pointer to the
plane functions, a list of format supported formats, and the type of
plane (primary, cursor, or overlay) being initialized.
</para>
<para>
Cursor and overlay planes are optional. All drivers should provide
one primary plane per CRTC (although this requirement may change in
the future); drivers that do not wish to provide special handling for
primary planes may make use of the helper functions described in
<xref linkend="drm-kms-planehelpers"/> to create and register a
primary plane with standard capabilities.
</para>
</sect3>
</sect2>
<sect2>
<title>Encoders (struct <structname>drm_encoder</structname>)</title>
<para>
An encoder takes pixel data from a CRTC and converts it to a format
suitable for any attached connectors. On some devices, it may be
possible to have a CRTC send data to more than one encoder. In that
case, both encoders would receive data from the same scanout buffer,
resulting in a "cloned" display configuration across the connectors
attached to each encoder.
</para>
<sect3>
<title>Encoder Initialization</title>
<para>
As for CRTCs, a KMS driver must create, initialize and register at
least one struct <structname>drm_encoder</structname> instance. The
instance is allocated and zeroed by the driver, possibly as part of a
larger structure.
</para>
<para>
Drivers must initialize the struct <structname>drm_encoder</structname>
<structfield>possible_crtcs</structfield> and
<structfield>possible_clones</structfield> fields before registering the
encoder. Both fields are bitmasks of respectively the CRTCs that the
encoder can be connected to, and sibling encoders candidate for cloning.
</para>
<para>
After being initialized, the encoder must be registered with a call to
<function>drm_encoder_init</function>. The function takes a pointer to
the encoder functions and an encoder type. Supported types are
<itemizedlist>
<listitem>
DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A
</listitem>
<listitem>
DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort
</listitem>
<listitem>
DRM_MODE_ENCODER_LVDS for display panels
</listitem>
<listitem>
DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component,
SCART)
</listitem>
<listitem>
DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
</listitem>
</itemizedlist>
</para>
<para>
Encoders must be attached to a CRTC to be used. DRM drivers leave
encoders unattached at initialization time. Applications (or the fbdev
compatibility layer when implemented) are responsible for attaching the
encoders they want to use to a CRTC.
</para>
</sect3>
</sect2>
<sect2>
<title>Connectors (struct <structname>drm_connector</structname>)</title>
<para>
A connector is the final destination for pixel data on a device, and
usually connects directly to an external display device like a monitor
or laptop panel. A connector can only be attached to one encoder at a
time. The connector is also the structure where information about the
attached display is kept, so it contains fields for display data, EDID
data, DPMS & connection status, and information about modes
supported on the attached displays.
</para>
<sect3>
<title>Connector Initialization</title>
<para>
Finally a KMS driver must create, initialize, register and attach at
least one struct <structname>drm_connector</structname> instance. The
instance is created as other KMS objects and initialized by setting the
following fields.
</para>
<variablelist>
<varlistentry>
<term><structfield>interlace_allowed</structfield></term>
<listitem><para>
Whether the connector can handle interlaced modes.
</para></listitem>
</varlistentry>
<varlistentry>
<term><structfield>doublescan_allowed</structfield></term>
<listitem><para>
Whether the connector can handle doublescan.
</para></listitem>
</varlistentry>
<varlistentry>
<term><structfield>display_info
</structfield></term>
<listitem><para>
Display information is filled from EDID information when a display
is detected. For non hot-pluggable displays such as flat panels in
embedded systems, the driver should initialize the
<structfield>display_info</structfield>.<structfield>width_mm</structfield>
and
<structfield>display_info</structfield>.<structfield>height_mm</structfield>
fields with the physical size of the display.
</para></listitem>
</varlistentry>
<varlistentry>
<term id="drm-kms-connector-polled"><structfield>polled</structfield></term>
<listitem><para>
Connector polling mode, a combination of
<variablelist>
<varlistentry>
<term>DRM_CONNECTOR_POLL_HPD</term>
<listitem><para>
The connector generates hotplug events and doesn't need to be
periodically polled. The CONNECT and DISCONNECT flags must not
be set together with the HPD flag.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRM_CONNECTOR_POLL_CONNECT</term>
<listitem><para>
Periodically poll the connector for connection.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRM_CONNECTOR_POLL_DISCONNECT</term>
<listitem><para>
Periodically poll the connector for disconnection.
</para></listitem>
</varlistentry>
</variablelist>
Set to 0 for connectors that don't support connection status
discovery.
</para></listitem>
</varlistentry>
</variablelist>
<para>
The connector is then registered with a call to
<function>drm_connector_init</function> with a pointer to the connector
functions and a connector type, and exposed through sysfs with a call to
<function>drm_connector_register</function>.
</para>
<para>
Supported connector types are
<itemizedlist>
<listitem>DRM_MODE_CONNECTOR_VGA</listitem>
<listitem>DRM_MODE_CONNECTOR_DVII</listitem>
<listitem>DRM_MODE_CONNECTOR_DVID</listitem>
<listitem>DRM_MODE_CONNECTOR_DVIA</listitem>
<listitem>DRM_MODE_CONNECTOR_Composite</listitem>
<listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem>
<listitem>DRM_MODE_CONNECTOR_LVDS</listitem>
<listitem>DRM_MODE_CONNECTOR_Component</listitem>
<listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem>
<listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem>
<listitem>DRM_MODE_CONNECTOR_HDMIA</listitem>
<listitem>DRM_MODE_CONNECTOR_HDMIB</listitem>
<listitem>DRM_MODE_CONNECTOR_TV</listitem>
<listitem>DRM_MODE_CONNECTOR_eDP</listitem>
<listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem>
</itemizedlist>
</para>
<para>
Connectors must be attached to an encoder to be used. For devices that
map connectors to encoders 1:1, the connector should be attached at
initialization time with a call to
<function>drm_mode_connector_attach_encoder</function>. The driver must
also set the <structname>drm_connector</structname>
<structfield>encoder</structfield> field to point to the attached
encoder.
</para>
<para>
Finally, drivers must initialize the connectors state change detection
with a call to <function>drm_kms_helper_poll_init</function>. If at
least one connector is pollable but can't generate hotplug interrupts
(indicated by the DRM_CONNECTOR_POLL_CONNECT and
DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will
automatically be queued to periodically poll for changes. Connectors
that can generate hotplug interrupts must be marked with the
DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must
call <function>drm_helper_hpd_irq_event</function>. The function will
queue a delayed work to check the state of all connectors, but no
periodic polling will be done.
</para>
</sect3>
<sect3>
<title>Connector Operations</title>
<note><para>
Unless otherwise state, all operations are mandatory.
</para></note>
<sect4>
<title>DPMS</title>
<synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis>
<para>
The DPMS operation sets the power state of a connector. The mode
argument is one of
<itemizedlist>
<listitem><para>DRM_MODE_DPMS_ON</para></listitem>
<listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem>
<listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem>
<listitem><para>DRM_MODE_DPMS_OFF</para></listitem>
</itemizedlist>
</para>
<para>
In all but DPMS_ON mode the encoder to which the connector is attached
should put the display in low-power mode by driving its signals
appropriately. If more than one connector is attached to the encoder
care should be taken not to change the power state of other displays as
a side effect. Low-power mode should be propagated to the encoders and
CRTCs when all related connectors are put in low-power mode.
</para>
</sect4>
<sect4>
<title>Modes</title>
<synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
uint32_t max_height);</synopsis>
<para>
Fill the mode list with all supported modes for the connector. If the
<parameter>max_width</parameter> and <parameter>max_height</parameter>
arguments are non-zero, the implementation must ignore all modes wider
than <parameter>max_width</parameter> or higher than
<parameter>max_height</parameter>.
</para>
<para>
The connector must also fill in this operation its
<structfield>display_info</structfield>
<structfield>width_mm</structfield> and
<structfield>height_mm</structfield> fields with the connected display
physical size in millimeters. The fields should be set to 0 if the value
isn't known or is not applicable (for instance for projector devices).
</para>
</sect4>
<sect4>
<title>Connection Status</title>
<para>
The connection status is updated through polling or hotplug events when
supported (see <xref linkend="drm-kms-connector-polled"/>). The status
value is reported to userspace through ioctls and must not be used
inside the driver, as it only gets initialized by a call to
<function>drm_mode_getconnector</function> from userspace.
</para>
<synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector,
bool force);</synopsis>
<para>
Check to see if anything is attached to the connector. The
<parameter>force</parameter> parameter is set to false whilst polling or
to true when checking the connector due to user request.
<parameter>force</parameter> can be used by the driver to avoid
expensive, destructive operations during automated probing.
</para>
<para>
Return connector_status_connected if something is connected to the
connector, connector_status_disconnected if nothing is connected and
connector_status_unknown if the connection state isn't known.
</para>
<para>
Drivers should only return connector_status_connected if the connection
status has really been probed as connected. Connectors that can't detect
the connection status, or failed connection status probes, should return
connector_status_unknown.
</para>
</sect4>
</sect3>
</sect2>
<sect2>
<title>Cleanup</title>
<para>
The DRM core manages its objects' lifetime. When an object is not needed
anymore the core calls its destroy function, which must clean up and
free every resource allocated for the object. Every
<function>drm_*_init</function> call must be matched with a
corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs
(<function>drm_crtc_cleanup</function>), planes
(<function>drm_plane_cleanup</function>), encoders
(<function>drm_encoder_cleanup</function>) and connectors
(<function>drm_connector_cleanup</function>). Furthermore, connectors
that have been added to sysfs must be removed by a call to
<function>drm_connector_unregister</function> before calling
<function>drm_connector_cleanup</function>.
</para>
<para>
Connectors state change detection must be cleanup up with a call to
<function>drm_kms_helper_poll_fini</function>.
</para>
</sect2>
<sect2>
<title>Output discovery and initialization example</title>
<programlisting><![CDATA[
void intel_crt_init(struct drm_device *dev)
{
struct drm_connector *connector;
struct intel_output *intel_output;
intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
if (!intel_output)
return;
connector = &intel_output->base;
drm_connector_init(dev, &intel_output->base,
&intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
DRM_MODE_ENCODER_DAC);
drm_mode_connector_attach_encoder(&intel_output->base,
&intel_output->enc);
/* Set up the DDC bus. */
intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
if (!intel_output->ddc_bus) {
dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
"failed.\n");
return;
}
intel_output->type = INTEL_OUTPUT_ANALOG;
connector->interlace_allowed = 0;
connector->doublescan_allowed = 0;
drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
drm_connector_register(connector);
}]]></programlisting>
<para>
In the example above (taken from the i915 driver), a CRTC, connector and
encoder combination is created. A device-specific i2c bus is also
created for fetching EDID data and performing monitor detection. Once
the process is complete, the new connector is registered with sysfs to
make its properties available to applications.
</para>
</sect2>
<sect2>
<title>KMS API Functions</title>
!Edrivers/gpu/drm/drm_crtc.c
</sect2>
<sect2>
<title>KMS Data Structures</title>
!Iinclude/drm/drm_crtc.h
</sect2>
<sect2>
<title>KMS Locking</title>
!Pdrivers/gpu/drm/drm_modeset_lock.c kms locking
!Iinclude/drm/drm_modeset_lock.h
!Edrivers/gpu/drm/drm_modeset_lock.c
</sect2>
</sect1>
<!-- Internals: kms helper functions -->
<sect1>
<title>Mode Setting Helper Functions</title>
<para>
The plane, CRTC, encoder and connector functions provided by the drivers
implement the DRM API. They're called by the DRM core and ioctl handlers
to handle device state changes and configuration request. As implementing
those functions often requires logic not specific to drivers, mid-layer
helper functions are available to avoid duplicating boilerplate code.
</para>
<para>
The DRM core contains one mid-layer implementation. The mid-layer provides
implementations of several plane, CRTC, encoder and connector functions
(called from the top of the mid-layer) that pre-process requests and call
lower-level functions provided by the driver (at the bottom of the
mid-layer). For instance, the
<function>drm_crtc_helper_set_config</function> function can be used to
fill the struct <structname>drm_crtc_funcs</structname>
<structfield>set_config</structfield> field. When called, it will split
the <methodname>set_config</methodname> operation in smaller, simpler
operations and call the driver to handle them.
</para>
<para>
To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>,
<function>drm_encoder_helper_add</function> and
<function>drm_connector_helper_add</function> functions to install their
mid-layer bottom operations handlers, and fill the
<structname>drm_crtc_funcs</structname>,
<structname>drm_encoder_funcs</structname> and
<structname>drm_connector_funcs</structname> structures with pointers to
the mid-layer top API functions. Installing the mid-layer bottom operation
handlers is best done right after registering the corresponding KMS object.
</para>
<para>
The mid-layer is not split between CRTC, encoder and connector operations.
To use it, a driver must provide bottom functions for all of the three KMS
entities.
</para>
<sect2>
<title>Atomic Modeset Helper Functions Reference</title>
<sect3>
<title>Overview</title>
!Pdrivers/gpu/drm/drm_atomic_helper.c overview
</sect3>
<sect3>
<title>Implementing Asynchronous Atomic Commit</title>
!Pdrivers/gpu/drm/drm_atomic_helper.c implementing async commit
</sect3>
<sect3>
<title>Atomic State Reset and Initialization</title>
!Pdrivers/gpu/drm/drm_atomic_helper.c atomic state reset and initialization
</sect3>
!Iinclude/drm/drm_atomic_helper.h
!Edrivers/gpu/drm/drm_atomic_helper.c
</sect2>
<sect2>
<title>Modeset Helper Reference for Common Vtables</title>
!Iinclude/drm/drm_modeset_helper_vtables.h
!Pinclude/drm/drm_modeset_helper_vtables.h overview
</sect2>
<sect2>
<title>Legacy CRTC/Modeset Helper Functions Reference</title>
!Edrivers/gpu/drm/drm_crtc_helper.c
!Pdrivers/gpu/drm/drm_crtc_helper.c overview
</sect2>
<sect2>
<title>Output Probing Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview
!Edrivers/gpu/drm/drm_probe_helper.c
</sect2>
<sect2>
<title>fbdev Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
!Edrivers/gpu/drm/drm_fb_helper.c
!Iinclude/drm/drm_fb_helper.h
</sect2>
<sect2>
<title>Framebuffer CMA Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_fb_cma_helper.c framebuffer cma helper functions
!Edrivers/gpu/drm/drm_fb_cma_helper.c
</sect2>
<sect2>
<title>Display Port Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_dp_helper.c dp helpers
!Iinclude/drm/drm_dp_helper.h
!Edrivers/gpu/drm/drm_dp_helper.c
</sect2>
<sect2>
<title>Display Port Dual Mode Adaptor Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_dp_dual_mode_helper.c dp dual mode helpers
!Iinclude/drm/drm_dp_dual_mode_helper.h
!Edrivers/gpu/drm/drm_dp_dual_mode_helper.c
</sect2>
<sect2>
<title>Display Port MST Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_dp_mst_topology.c dp mst helper
!Iinclude/drm/drm_dp_mst_helper.h
!Edrivers/gpu/drm/drm_dp_mst_topology.c
</sect2>
<sect2>
<title>MIPI DSI Helper Functions Reference</title>
!Pdrivers/gpu/drm/drm_mipi_dsi.c dsi helpers
!Iinclude/drm/drm_mipi_dsi.h
!Edrivers/gpu/drm/drm_mipi_dsi.c
</sect2>
<sect2>
<title>EDID Helper Functions Reference</title>
!Edrivers/gpu/drm/drm_edid.c
</sect2>
<sect2>
<title>Rectangle Utilities Reference</title>
!Pinclude/drm/drm_rect.h rect utils
!Iinclude/drm/drm_rect.h
!Edrivers/gpu/drm/drm_rect.c
</sect2>
<sect2>
<title>Flip-work Helper Reference</title>
!Pinclude/drm/drm_flip_work.h flip utils
!Iinclude/drm/drm_flip_work.h
!Edrivers/gpu/drm/drm_flip_work.c
</sect2>
<sect2>
<title>HDMI Infoframes Helper Reference</title>
<para>
Strictly speaking this is not a DRM helper library but generally useable
by any driver interfacing with HDMI outputs like v4l or alsa drivers.
But it nicely fits into the overall topic of mode setting helper
libraries and hence is also included here.
</para>
!Iinclude/linux/hdmi.h
!Edrivers/video/hdmi.c
</sect2>
<sect2>
<title id="drm-kms-planehelpers">Plane Helper Reference</title>
!Edrivers/gpu/drm/drm_plane_helper.c
!Pdrivers/gpu/drm/drm_plane_helper.c overview
</sect2>
<sect2>
<title>Tile group</title>
!Pdrivers/gpu/drm/drm_crtc.c Tile group
</sect2>
<sect2>
<title>Bridges</title>
<sect3>
<title>Overview</title>
!Pdrivers/gpu/drm/drm_bridge.c overview
</sect3>
<sect3>
<title>Default bridge callback sequence</title>
!Pdrivers/gpu/drm/drm_bridge.c bridge callbacks
</sect3>
!Edrivers/gpu/drm/drm_bridge.c
</sect2>
<sect2>
<title>Panel Helper Reference</title>
!Iinclude/drm/drm_panel.h
!Edrivers/gpu/drm/drm_panel.c
!Pdrivers/gpu/drm/drm_panel.c drm panel
</sect2>
</sect1>
<!-- Internals: kms properties -->
<sect1 id="drm-kms-properties">
<title>KMS Properties</title>
<para>
Drivers may need to expose additional parameters to applications than
those described in the previous sections. KMS supports attaching
properties to CRTCs, connectors and planes and offers a userspace API to
list, get and set the property values.
</para>
<para>
Properties are identified by a name that uniquely defines the property
purpose, and store an associated value. For all property types except blob
properties the value is a 64-bit unsigned integer.
</para>
<para>
KMS differentiates between properties and property instances. Drivers
first create properties and then create and associate individual instances
of those properties to objects. A property can be instantiated multiple
times and associated with different objects. Values are stored in property
instances, and all other property information are stored in the property
and shared between all instances of the property.
</para>
<para>
Every property is created with a type that influences how the KMS core
handles the property. Supported property types are
<variablelist>
<varlistentry>
<term>DRM_MODE_PROP_RANGE</term>
<listitem><para>Range properties report their minimum and maximum
admissible values. The KMS core verifies that values set by
application fit in that range.</para></listitem>
</varlistentry>
<varlistentry>
<term>DRM_MODE_PROP_ENUM</term>
<listitem><para>Enumerated properties take a numerical value that
ranges from 0 to the number of enumerated values defined by the
property minus one, and associate a free-formed string name to each
value. Applications can retrieve the list of defined value-name pairs
and use the numerical value to get and set property instance values.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRM_MODE_PROP_BITMASK</term>
<listitem><para>Bitmask properties are enumeration properties that
additionally restrict all enumerated values to the 0..63 range.
Bitmask property instance values combine one or more of the
enumerated bits defined by the property.</para></listitem>
</varlistentry>
<varlistentry>
<term>DRM_MODE_PROP_BLOB</term>
<listitem><para>Blob properties store a binary blob without any format
restriction. The binary blobs are created as KMS standalone objects,
and blob property instance values store the ID of their associated
blob object.</para>
<para>Blob properties are only used for the connector EDID property
and cannot be created by drivers.</para></listitem>
</varlistentry>
</variablelist>
</para>
<para>
To create a property drivers call one of the following functions depending
on the property type. All property creation functions take property flags
and name, as well as type-specific arguments.
<itemizedlist>
<listitem>
<synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
const char *name,
uint64_t min, uint64_t max);</synopsis>
<para>Create a range property with the given minimum and maximum
values.</para>
</listitem>
<listitem>
<synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
const char *name,
const struct drm_prop_enum_list *props,
int num_values);</synopsis>
<para>Create an enumerated property. The <parameter>props</parameter>
argument points to an array of <parameter>num_values</parameter>
value-name pairs.</para>
</listitem>
<listitem>
<synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
int flags, const char *name,
const struct drm_prop_enum_list *props,
int num_values);</synopsis>
<para>Create a bitmask property. The <parameter>props</parameter>
argument points to an array of <parameter>num_values</parameter>
value-name pairs.</para>
</listitem>
</itemizedlist>
</para>
<para>
Properties can additionally be created as immutable, in which case they
will be read-only for applications but can be modified by the driver. To
create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE
flag at property creation time.
</para>
<para>
When no array of value-name pairs is readily available at property
creation time for enumerated or range properties, drivers can create
the property using the <function>drm_property_create</function> function
and manually add enumeration value-name pairs by calling the
<function>drm_property_add_enum</function> function. Care must be taken to
properly specify the property type through the <parameter>flags</parameter>
argument.
</para>
<para>
After creating properties drivers can attach property instances to CRTC,
connector and plane objects by calling the
<function>drm_object_attach_property</function>. The function takes a
pointer to the target object, a pointer to the previously created property
and an initial instance value.
</para>
<sect2>
<title>Existing KMS Properties</title>
<para>
The following table gives description of drm properties exposed by various
modules/drivers.
</para>
<table border="1" cellpadding="0" cellspacing="0">
<tbody>
<tr style="font-weight: bold;">
<td valign="top" >Owner Module/Drivers</td>
<td valign="top" >Group</td>
<td valign="top" >Property Name</td>
<td valign="top" >Type</td>
<td valign="top" >Property Values</td>
<td valign="top" >Object attached</td>
<td valign="top" >Description/Restrictions</td>
</tr>
<tr>
<td rowspan="42" valign="top" >DRM</td>
<td rowspan="2" valign="top" >Generic</td>
<td valign="top" >“rotation”</td>
<td valign="top" >BITMASK</td>
<td valign="top" >{ 0, "rotate-0" },
{ 1, "rotate-90" },
{ 2, "rotate-180" },
{ 3, "rotate-270" },
{ 4, "reflect-x" },
{ 5, "reflect-y" }</td>
<td valign="top" >CRTC, Plane</td>
<td valign="top" >rotate-(degrees) rotates the image by the specified amount in degrees
in counter clockwise direction. reflect-x and reflect-y reflects the
image along the specified axis prior to rotation</td>
</tr>
<tr>
<td valign="top" >“scaling mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td>
<td valign="top" >Connector</td>
<td valign="top" >Supported by: amdgpu, gma500, i915, nouveau and radeon.</td>
</tr>
<tr>
<td rowspan="5" valign="top" >Connector</td>
<td valign="top" >“EDID”</td>
<td valign="top" >BLOB | IMMUTABLE</td>
<td valign="top" >0</td>
<td valign="top" >Connector</td>
<td valign="top" >Contains id of edid blob ptr object.</td>
</tr>
<tr>
<td valign="top" >“DPMS”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td>
<td valign="top" >Connector</td>
<td valign="top" >Contains DPMS operation mode value.</td>
</tr>
<tr>
<td valign="top" >“PATH”</td>
<td valign="top" >BLOB | IMMUTABLE</td>
<td valign="top" >0</td>
<td valign="top" >Connector</td>
<td valign="top" >Contains topology path to a connector.</td>
</tr>
<tr>
<td valign="top" >“TILE”</td>
<td valign="top" >BLOB | IMMUTABLE</td>
<td valign="top" >0</td>
<td valign="top" >Connector</td>
<td valign="top" >Contains tiling information for a connector.</td>
</tr>
<tr>
<td valign="top" >“CRTC_ID”</td>
<td valign="top" >OBJECT</td>
<td valign="top" >DRM_MODE_OBJECT_CRTC</td>
<td valign="top" >Connector</td>
<td valign="top" >CRTC that connector is attached to (atomic)</td>
</tr>
<tr>
<td rowspan="11" valign="top" >Plane</td>
<td valign="top" >“type”</td>
<td valign="top" >ENUM | IMMUTABLE</td>
<td valign="top" >{ "Overlay", "Primary", "Cursor" }</td>
<td valign="top" >Plane</td>
<td valign="top" >Plane type</td>
</tr>
<tr>
<td valign="top" >“SRC_X”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source x coordinate in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“SRC_Y”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source y coordinate in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“SRC_W”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source width in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“SRC_H”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source height in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_X”</td>
<td valign="top" >SIGNED_RANGE</td>
<td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) x coordinate (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_Y”</td>
<td valign="top" >SIGNED_RANGE</td>
<td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) y coordinate (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_W”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) width (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_H”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) height (atomic)</td>
</tr>
<tr>
<td valign="top" >“FB_ID”</td>
<td valign="top" >OBJECT</td>
<td valign="top" >DRM_MODE_OBJECT_FB</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout framebuffer (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_ID”</td>
<td valign="top" >OBJECT</td>
<td valign="top" >DRM_MODE_OBJECT_CRTC</td>
<td valign="top" >Plane</td>
<td valign="top" >CRTC that plane is attached to (atomic)</td>
</tr>
<tr>
<td rowspan="2" valign="top" >DVI-I</td>
<td valign="top" >“subconnector”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“select subconnector”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="13" valign="top" >TV</td>
<td valign="top" >“subconnector”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“select subconnector”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“left margin”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“right margin”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“top margin”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“bottom margin”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“brightness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“contrast”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker reduction”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“overscan”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“saturation”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hue”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="2" valign="top" >Virtual GPU</td>
<td valign="top" >“suggested X”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffffff</td>
<td valign="top" >Connector</td>
<td valign="top" >property to suggest an X offset for a connector</td>
</tr>
<tr>
<td valign="top" >“suggested Y”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffffff</td>
<td valign="top" >Connector</td>
<td valign="top" >property to suggest an Y offset for a connector</td>
</tr>
<tr>
<td rowspan="7" valign="top" >Optional</td>
<td valign="top" >"aspect ratio"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "None", "4:3", "16:9" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TDB</td>
</tr>
<tr>
<td valign="top" >“dirty”</td>
<td valign="top" >ENUM | IMMUTABLE</td>
<td valign="top" >{ "Off", "On", "Annotate" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“DEGAMMA_LUT”</td>
<td valign="top" >BLOB</td>
<td valign="top" >0</td>
<td valign="top" >CRTC</td>
<td valign="top" >DRM property to set the degamma lookup table
(LUT) mapping pixel data from the framebuffer before it is
given to the transformation matrix. The data is an interpreted
as an array of struct drm_color_lut elements. Hardware might
choose not to use the full precision of the LUT elements nor
use all the elements of the LUT (for example the hardware
might choose to interpolate between LUT[0] and LUT[4]). </td>
</tr>
<tr>
<td valign="top" >“DEGAMMA_LUT_SIZE”</td>
<td valign="top" >RANGE | IMMUTABLE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >CRTC</td>
<td valign="top" >DRM property to gives the size of the lookup
table to be set on the DEGAMMA_LUT property (the size depends
on the underlying hardware).</td>
</tr>
<tr>
<td valign="top" >“CTM”</td>
<td valign="top" >BLOB</td>
<td valign="top" >0</td>
<td valign="top" >CRTC</td>
<td valign="top" >DRM property to set the current
transformation matrix (CTM) apply to pixel data after the
lookup through the degamma LUT and before the lookup through
the gamma LUT. The data is an interpreted as a struct
drm_color_ctm.</td>
</tr>
<tr>
<td valign="top" >“GAMMA_LUT”</td>
<td valign="top" >BLOB</td>
<td valign="top" >0</td>
<td valign="top" >CRTC</td>
<td valign="top" >DRM property to set the gamma lookup table
(LUT) mapping pixel data after to the transformation matrix to
data sent to the connector. The data is an interpreted as an
array of struct drm_color_lut elements. Hardware might choose
not to use the full precision of the LUT elements nor use all
the elements of the LUT (for example the hardware might choose
to interpolate between LUT[0] and LUT[4]).</td>
</tr>
<tr>
<td valign="top" >“GAMMA_LUT_SIZE”</td>
<td valign="top" >RANGE | IMMUTABLE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >CRTC</td>
<td valign="top" >DRM property to gives the size of the lookup
table to be set on the GAMMA_LUT property (the size depends on
the underlying hardware).</td>
</tr>
<tr>
<td rowspan="20" valign="top" >i915</td>
<td rowspan="2" valign="top" >Generic</td>
<td valign="top" >"Broadcast RGB"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td>
<td valign="top" >Connector</td>
<td valign="top" >When this property is set to Limited 16:235
and CTM is set, the hardware will be programmed with the
result of the multiplication of CTM by the limited range
matrix to ensure the pixels normaly in the range 0..1.0 are
remapped to the range 16/255..235/255.</td>
</tr>
<tr>
<td valign="top" >“audio”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "force-dvi", "off", "auto", "on" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="17" valign="top" >SDVO-TV</td>
<td valign="top" >“mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"left_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"right_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"top_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"bottom_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hpos”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“vpos”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“contrast”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“saturation”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hue”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“sharpness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter_adaptive”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter_2d”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“tv_chroma_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“tv_luma_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“dot_crawl”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >SDVO-TV/LVDS</td>
<td valign="top" >“brightness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="2" valign="top" >CDV gma-500</td>
<td rowspan="2" valign="top" >Generic</td>
<td valign="top" >"Broadcast RGB"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ “Full”, “Limited 16:235” }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"Broadcast RGB"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ “off”, “auto”, “on” }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="19" valign="top" >Poulsbo</td>
<td rowspan="1" valign="top" >Generic</td>
<td valign="top" >“backlight”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=100</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="17" valign="top" >SDVO-TV</td>
<td valign="top" >“mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"left_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"right_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"top_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"bottom_margin"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hpos”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“vpos”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“contrast”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“saturation”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hue”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“sharpness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter_adaptive”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“flicker_filter_2d”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“tv_chroma_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“tv_luma_filter”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“dot_crawl”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >SDVO-TV/LVDS</td>
<td valign="top" >“brightness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max= SDVO dependent</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="11" valign="top" >armada</td>
<td rowspan="2" valign="top" >CRTC</td>
<td valign="top" >"CSC_YUV"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td>
<td valign="top" >CRTC</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"CSC_RGB"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "Auto", "Computer system", "Studio" }</td>
<td valign="top" >CRTC</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="9" valign="top" >Overlay</td>
<td valign="top" >"colorkey"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey_min"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey_max"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey_val"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey_alpha"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0xffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey_mode"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "disabled", "Y component", "U component"
, "V component", "RGB", “R component", "G component", "B component" }</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"brightness"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=256 + 255</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"contrast"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0x7fff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"saturation"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0x7fff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="2" valign="top" >exynos</td>
<td valign="top" >CRTC</td>
<td valign="top" >“mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "normal", "blank" }</td>
<td valign="top" >CRTC</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >Overlay</td>
<td valign="top" >“zpos”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=MAX_PLANE-1</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="2" valign="top" >i2c/ch7006_drv</td>
<td valign="top" >Generic</td>
<td valign="top" >“scale”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=2</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="1" valign="top" >TV</td>
<td valign="top" >“mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc"
, "PAL-60", "NTSC-M", "NTSC-J" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="15" valign="top" >nouveau</td>
<td rowspan="6" valign="top" >NV10 Overlay</td>
<td valign="top" >"colorkey"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0x01ffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“contrast”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=8192-1</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“brightness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1024</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“hue”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=359</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“saturation”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=8192-1</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“iturbt_709”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="2" valign="top" >Nv04 Overlay</td>
<td valign="top" >“colorkey”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0x01ffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“brightness”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1024</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="7" valign="top" >Display</td>
<td valign="top" >“dithering mode”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "auto", "off", "on" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“dithering depth”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“underscan”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“underscan hborder”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=128</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“underscan vborder”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=128</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“vibrant hue”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=180</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >“color vibrance”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=200</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >omap</td>
<td valign="top" >Generic</td>
<td valign="top" >“zorder”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=3</td>
<td valign="top" >CRTC, Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >qxl</td>
<td valign="top" >Generic</td>
<td valign="top" >“hotplug_mode_update"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="9" valign="top" >radeon</td>
<td valign="top" >DVI-I</td>
<td valign="top" >“coherent”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >DAC enable load detect</td>
<td valign="top" >“load detection”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=1</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >TV Standard</td>
<td valign="top" >"tv standard"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j"
, "scart-pal", "pal-cn", "secam" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >legacy TMDS PLL detect</td>
<td valign="top" >"tmds_pll"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "driver", "bios" }</td>
<td valign="top" >-</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="3" valign="top" >Underscan</td>
<td valign="top" >"underscan"</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "off", "on", "auto" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"underscan hborder"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=128</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"underscan vborder"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=128</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >Audio</td>
<td valign="top" >“audio”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "off", "on", "auto" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >FMT Dithering</td>
<td valign="top" >“dither”</td>
<td valign="top" >ENUM</td>
<td valign="top" >{ "off", "on" }</td>
<td valign="top" >Connector</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td rowspan="3" valign="top" >rcar-du</td>
<td rowspan="3" valign="top" >Generic</td>
<td valign="top" >"alpha"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=255</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"colorkey"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=0x01ffffff</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
<tr>
<td valign="top" >"zpos"</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=1, Max=7</td>
<td valign="top" >Plane</td>
<td valign="top" >TBD</td>
</tr>
</tbody>
</table>
</sect2>
</sect1>
<!-- Internals: vertical blanking -->
<sect1 id="drm-vertical-blank">
<title>Vertical Blanking</title>
<para>
Vertical blanking plays a major role in graphics rendering. To achieve
tear-free display, users must synchronize page flips and/or rendering to
vertical blanking. The DRM API offers ioctls to perform page flips
synchronized to vertical blanking and wait for vertical blanking.
</para>
<para>
The DRM core handles most of the vertical blanking management logic, which
involves filtering out spurious interrupts, keeping race-free blanking
counters, coping with counter wrap-around and resets and keeping use
counts. It relies on the driver to generate vertical blanking interrupts
and optionally provide a hardware vertical blanking counter. Drivers must
implement the following operations.
</para>
<itemizedlist>
<listitem>
<synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc);
void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
<para>
Enable or disable vertical blanking interrupts for the given CRTC.
</para>
</listitem>
<listitem>
<synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis>
<para>
Retrieve the value of the vertical blanking counter for the given
CRTC. If the hardware maintains a vertical blanking counter its value
should be returned. Otherwise drivers can use the
<function>drm_vblank_count</function> helper function to handle this
operation.
</para>
</listitem>
</itemizedlist>
<para>
Drivers must initialize the vertical blanking handling core with a call to
<function>drm_vblank_init</function> in their
<methodname>load</methodname> operation. The function will set the struct
<structname>drm_device</structname>
<structfield>vblank_disable_allowed</structfield> field to 0. This will
keep vertical blanking interrupts enabled permanently until the first mode
set operation, where <structfield>vblank_disable_allowed</structfield> is
set to 1. The reason behind this is not clear. Drivers can set the field
to 1 after <function>calling drm_vblank_init</function> to make vertical
blanking interrupts dynamically managed from the beginning.
</para>
<para>
Vertical blanking interrupts can be enabled by the DRM core or by drivers
themselves (for instance to handle page flipping operations). The DRM core
maintains a vertical blanking use count to ensure that the interrupts are
not disabled while a user still needs them. To increment the use count,
drivers call <function>drm_vblank_get</function>. Upon return vertical
blanking interrupts are guaranteed to be enabled.
</para>
<para>
To decrement the use count drivers call
<function>drm_vblank_put</function>. Only when the use count drops to zero
will the DRM core disable the vertical blanking interrupts after a delay
by scheduling a timer. The delay is accessible through the vblankoffdelay
module parameter or the <varname>drm_vblank_offdelay</varname> global
variable and expressed in milliseconds. Its default value is 5000 ms.
Zero means never disable, and a negative value means disable immediately.
Drivers may override the behaviour by setting the
<structname>drm_device</structname>
<structfield>vblank_disable_immediate</structfield> flag, which when set
causes vblank interrupts to be disabled immediately regardless of the
drm_vblank_offdelay value. The flag should only be set if there's a
properly working hardware vblank counter present.
</para>
<para>
When a vertical blanking interrupt occurs drivers only need to call the
<function>drm_handle_vblank</function> function to account for the
interrupt.
</para>
<para>
Resources allocated by <function>drm_vblank_init</function> must be freed
with a call to <function>drm_vblank_cleanup</function> in the driver
<methodname>unload</methodname> operation handler.
</para>
<sect2>
<title>Vertical Blanking and Interrupt Handling Functions Reference</title>
!Edrivers/gpu/drm/drm_irq.c
!Finclude/drm/drmP.h drm_crtc_vblank_waitqueue
</sect2>
</sect1>
<!-- Internals: open/close, file operations and ioctls -->
<sect1>
<title>Open/Close, File Operations and IOCTLs</title>
<sect2>
<title>Open and Close</title>
<synopsis>int (*firstopen) (struct drm_device *);
void (*lastclose) (struct drm_device *);
int (*open) (struct drm_device *, struct drm_file *);
void (*preclose) (struct drm_device *, struct drm_file *);
void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
<abstract>Open and close handlers. None of those methods are mandatory.
</abstract>
<para>
The <methodname>firstopen</methodname> method is called by the DRM core
for legacy UMS (User Mode Setting) drivers only when an application
opens a device that has no other opened file handle. UMS drivers can
implement it to acquire device resources. KMS drivers can't use the
method and must acquire resources in the <methodname>load</methodname>
method instead.
</para>
<para>
Similarly the <methodname>lastclose</methodname> method is called when
the last application holding a file handle opened on the device closes
it, for both UMS and KMS drivers. Additionally, the method is also
called at module unload time or, for hot-pluggable devices, when the
device is unplugged. The <methodname>firstopen</methodname> and
<methodname>lastclose</methodname> calls can thus be unbalanced.
</para>
<para>
The <methodname>open</methodname> method is called every time the device
is opened by an application. Drivers can allocate per-file private data
in this method and store them in the struct
<structname>drm_file</structname> <structfield>driver_priv</structfield>
field. Note that the <methodname>open</methodname> method is called
before <methodname>firstopen</methodname>.
</para>
<para>
The close operation is split into <methodname>preclose</methodname> and
<methodname>postclose</methodname> methods. Drivers must stop and
cleanup all per-file operations in the <methodname>preclose</methodname>
method. For instance pending vertical blanking and page flip events must
be cancelled. No per-file operation is allowed on the file handle after
returning from the <methodname>preclose</methodname> method.
</para>
<para>
Finally the <methodname>postclose</methodname> method is called as the
last step of the close operation, right before calling the
<methodname>lastclose</methodname> method if no other open file handle
exists for the device. Drivers that have allocated per-file private data
in the <methodname>open</methodname> method should free it here.
</para>
<para>
The <methodname>lastclose</methodname> method should restore CRTC and
plane properties to default value, so that a subsequent open of the
device will not inherit state from the previous user. It can also be
used to execute delayed power switching state changes, e.g. in
conjunction with the vga_switcheroo infrastructure (see
<xref linkend="vga_switcheroo"/>). Beyond that KMS drivers should not
do any further cleanup. Only legacy UMS drivers might need to clean up
device state so that the vga console or an independent fbdev driver
could take over.
</para>
</sect2>
<sect2>
<title>File Operations</title>
!Pdrivers/gpu/drm/drm_fops.c file operations
!Edrivers/gpu/drm/drm_fops.c
</sect2>
<sect2>
<title>IOCTLs</title>
<synopsis>struct drm_ioctl_desc *ioctls;
int num_ioctls;</synopsis>
<abstract>Driver-specific ioctls descriptors table.</abstract>
<para>
Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls
descriptors table is indexed by the ioctl number offset from the base
value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the
table entries.
</para>
<para>
<programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting>
<para>
<parameter>ioctl</parameter> is the ioctl name. Drivers must define
the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number
offset from DRM_COMMAND_BASE and the ioctl number respectively. The
first macro is private to the device while the second must be exposed
to userspace in a public header.
</para>
<para>
<parameter>func</parameter> is a pointer to the ioctl handler function
compatible with the <type>drm_ioctl_t</type> type.
<programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data,
struct drm_file *file_priv);</programlisting>
</para>
<para>
<parameter>flags</parameter> is a bitmask combination of the following
values. It restricts how the ioctl is allowed to be called.
<itemizedlist>
<listitem><para>
DRM_AUTH - Only authenticated callers allowed
</para></listitem>
<listitem><para>
DRM_MASTER - The ioctl can only be called on the master file
handle
</para></listitem>
<listitem><para>
DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed
</para></listitem>
<listitem><para>
DRM_CONTROL_ALLOW - The ioctl can only be called on a control
device
</para></listitem>
<listitem><para>
DRM_UNLOCKED - The ioctl handler will be called without locking
the DRM global mutex. This is the enforced default for kms drivers
(i.e. using the DRIVER_MODESET flag) and hence shouldn't be used
any more for new drivers.
</para></listitem>
</itemizedlist>
</para>
</para>
!Edrivers/gpu/drm/drm_ioctl.c
</sect2>
</sect1>
<sect1>
<title>Legacy Support Code</title>
<para>
The section very briefly covers some of the old legacy support code which
is only used by old DRM drivers which have done a so-called shadow-attach
to the underlying device instead of registering as a real driver. This
also includes some of the old generic buffer management and command
submission code. Do not use any of this in new and modern drivers.
</para>
<sect2>
<title>Legacy Suspend/Resume</title>
<para>
The DRM core provides some suspend/resume code, but drivers wanting full
suspend/resume support should provide save() and restore() functions.
These are called at suspend, hibernate, or resume time, and should perform
any state save or restore required by your device across suspend or
hibernate states.
</para>
<synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
int (*resume) (struct drm_device *);</synopsis>
<para>
Those are legacy suspend and resume methods which
<emphasis>only</emphasis> work with the legacy shadow-attach driver
registration functions. New driver should use the power management
interface provided by their bus type (usually through
the struct <structname>device_driver</structname> dev_pm_ops) and set
these methods to NULL.
</para>
</sect2>
<sect2>
<title>Legacy DMA Services</title>
<para>
This should cover how DMA mapping etc. is supported by the core.
These functions are deprecated and should not be used.
</para>
</sect2>
</sect1>
</chapter>
<!-- TODO
- Add a glossary
- Document the struct_mutex catch-all lock
- Document connector properties
- Why is the load method optional?
- What are drivers supposed to set the initial display state to, and how?
Connector's DPMS states are not initialized and are thus equal to
DRM_MODE_DPMS_ON. The fbcon compatibility layer calls
drm_helper_disable_unused_functions(), which disables unused encoders and
CRTCs, but doesn't touch the connectors' DPMS state, and
drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers
that don't implement (or just don't use) fbcon compatibility need to call
those functions themselves?
- KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset()
around mode setting. Should this be done in the DRM core?
- vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset()
call and never set back to 0. It seems to be safe to permanently set it to 1
in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as
well. This should be investigated.
- crtc and connector .save and .restore operations are only used internally in
drivers, should they be removed from the core?
- encoder mid-layer .save and .restore operations are only used internally in
drivers, should they be removed from the core?
- encoder mid-layer .detect operation is only used internally in drivers,
should it be removed from the core?
-->
<!-- External interfaces -->
<chapter id="drmExternals">
<title>Userland interfaces</title>
<para>
The DRM core exports several interfaces to applications,
generally intended to be used through corresponding libdrm
wrapper functions. In addition, drivers export device-specific
interfaces for use by userspace drivers & device-aware
applications through ioctls and sysfs files.
</para>
<para>
External interfaces include: memory mapping, context management,
DMA operations, AGP management, vblank control, fence
management, memory management, and output management.
</para>
<para>
Cover generic ioctls and sysfs layout here. We only need high-level
info, since man pages should cover the rest.
</para>
<!-- External: render nodes -->
<sect1>
<title>Render nodes</title>
<para>
DRM core provides multiple character-devices for user-space to use.
Depending on which device is opened, user-space can perform a different
set of operations (mainly ioctls). The primary node is always created
and called card<num>. Additionally, a currently
unused control node, called controlD<num> is also
created. The primary node provides all legacy operations and
historically was the only interface used by userspace. With KMS, the
control node was introduced. However, the planned KMS control interface
has never been written and so the control node stays unused to date.
</para>
<para>
With the increased use of offscreen renderers and GPGPU applications,
clients no longer require running compositors or graphics servers to
make use of a GPU. But the DRM API required unprivileged clients to
authenticate to a DRM-Master prior to getting GPU access. To avoid this
step and to grant clients GPU access without authenticating, render
nodes were introduced. Render nodes solely serve render clients, that
is, no modesetting or privileged ioctls can be issued on render nodes.
Only non-global rendering commands are allowed. If a driver supports
render nodes, it must advertise it via the DRIVER_RENDER
DRM driver capability. If not supported, the primary node must be used
for render clients together with the legacy drmAuth authentication
procedure.
</para>
<para>
If a driver advertises render node support, DRM core will create a
separate render node called renderD<num>. There will
be one render node per device. No ioctls except PRIME-related ioctls
will be allowed on this node. Especially GEM_OPEN will be
explicitly prohibited. Render nodes are designed to avoid the
buffer-leaks, which occur if clients guess the flink names or mmap
offsets on the legacy interface. Additionally to this basic interface,
drivers must mark their driver-dependent render-only ioctls as
DRM_RENDER_ALLOW so render clients can use them. Driver
authors must be careful not to allow any privileged ioctls on render
nodes.
</para>
<para>
With render nodes, user-space can now control access to the render node
via basic file-system access-modes. A running graphics server which
authenticates clients on the privileged primary/legacy node is no longer
required. Instead, a client can open the render node and is immediately
granted GPU access. Communication between clients (or servers) is done
via PRIME. FLINK from render node to legacy node is not supported. New
clients must not use the insecure FLINK interface.
</para>
<para>
Besides dropping all modeset/global ioctls, render nodes also drop the
DRM-Master concept. There is no reason to associate render clients with
a DRM-Master as they are independent of any graphics server. Besides,
they must work without any running master, anyway.
Drivers must be able to run without a master object if they support
render nodes. If, on the other hand, a driver requires shared state
between clients which is visible to user-space and accessible beyond
open-file boundaries, they cannot support render nodes.
</para>
</sect1>
<!-- External: vblank handling -->
<sect1>
<title>VBlank event handling</title>
<para>
The DRM core exposes two vertical blank related ioctls:
<variablelist>
<varlistentry>
<term>DRM_IOCTL_WAIT_VBLANK</term>
<listitem>
<para>
This takes a struct drm_wait_vblank structure as its argument,
and it is used to block or request a signal when a specified
vblank event occurs.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DRM_IOCTL_MODESET_CTL</term>
<listitem>
<para>
This was only used for user-mode-settind drivers around
modesetting changes to allow the kernel to update the vblank
interrupt after mode setting, since on many devices the vertical
blank counter is reset to 0 at some point during modeset. Modern
drivers should not call this any more since with kernel mode
setting it is a no-op.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
</sect1>
</chapter>
</part>
<part id="drmDrivers">
<title>DRM Drivers</title>
<partintro>
<para>
This second part of the GPU Driver Developer's Guide documents driver
code, implementation details and also all the driver-specific userspace
interfaces. Especially since all hardware-acceleration interfaces to
userspace are driver specific for efficiency and other reasons these
interfaces can be rather substantial. Hence every driver has its own
chapter.
</para>
</partintro>
<chapter id="drmI915">
<title>drm/i915 Intel GFX Driver</title>
<para>
The drm/i915 driver supports all (with the exception of some very early
models) integrated GFX chipsets with both Intel display and rendering
blocks. This excludes a set of SoC platforms with an SGX rendering unit,
those have basic support through the gma500 drm driver.
</para>
<sect1>
<title>Core Driver Infrastructure</title>
<para>
This section covers core driver infrastructure used by both the display
and the GEM parts of the driver.
</para>
<sect2>
<title>Runtime Power Management</title>
!Pdrivers/gpu/drm/i915/intel_runtime_pm.c runtime pm
!Idrivers/gpu/drm/i915/intel_runtime_pm.c
!Idrivers/gpu/drm/i915/intel_uncore.c
</sect2>
<sect2>
<title>Interrupt Handling</title>
!Pdrivers/gpu/drm/i915/i915_irq.c interrupt handling
!Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_init intel_irq_init_hw intel_hpd_init
!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_disable_interrupts
!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_enable_interrupts
</sect2>
<sect2>
<title>Intel GVT-g Guest Support(vGPU)</title>
!Pdrivers/gpu/drm/i915/i915_vgpu.c Intel GVT-g guest support
!Idrivers/gpu/drm/i915/i915_vgpu.c
</sect2>
</sect1>
<sect1>
<title>Display Hardware Handling</title>
<para>
This section covers everything related to the display hardware including
the mode setting infrastructure, plane, sprite and cursor handling and
display, output probing and related topics.
</para>
<sect2>
<title>Mode Setting Infrastructure</title>
<para>
The i915 driver is thus far the only DRM driver which doesn't use the
common DRM helper code to implement mode setting sequences. Thus it
has its own tailor-made infrastructure for executing a display
configuration change.
</para>
</sect2>
<sect2>
<title>Frontbuffer Tracking</title>
!Pdrivers/gpu/drm/i915/intel_frontbuffer.c frontbuffer tracking
!Idrivers/gpu/drm/i915/intel_frontbuffer.c
!Fdrivers/gpu/drm/i915/i915_gem.c i915_gem_track_fb
</sect2>
<sect2>
<title>Display FIFO Underrun Reporting</title>
!Pdrivers/gpu/drm/i915/intel_fifo_underrun.c fifo underrun handling
!Idrivers/gpu/drm/i915/intel_fifo_underrun.c
</sect2>
<sect2>
<title>Plane Configuration</title>
<para>
This section covers plane configuration and composition with the
primary plane, sprites, cursors and overlays. This includes the
infrastructure to do atomic vsync'ed updates of all this state and
also tightly coupled topics like watermark setup and computation,
framebuffer compression and panel self refresh.
</para>
</sect2>
<sect2>
<title>Atomic Plane Helpers</title>
!Pdrivers/gpu/drm/i915/intel_atomic_plane.c atomic plane helpers
!Idrivers/gpu/drm/i915/intel_atomic_plane.c
</sect2>
<sect2>
<title>Output Probing</title>
<para>
This section covers output probing and related infrastructure like the
hotplug interrupt storm detection and mitigation code. Note that the
i915 driver still uses most of the common DRM helper code for output
probing, so those sections fully apply.
</para>
</sect2>
<sect2>
<title>Hotplug</title>
!Pdrivers/gpu/drm/i915/intel_hotplug.c Hotplug
!Idrivers/gpu/drm/i915/intel_hotplug.c
</sect2>
<sect2>
<title>High Definition Audio</title>
!Pdrivers/gpu/drm/i915/intel_audio.c High Definition Audio over HDMI and Display Port
!Idrivers/gpu/drm/i915/intel_audio.c
!Iinclude/drm/i915_component.h
</sect2>
<sect2>
<title>Panel Self Refresh PSR (PSR/SRD)</title>
!Pdrivers/gpu/drm/i915/intel_psr.c Panel Self Refresh (PSR/SRD)
!Idrivers/gpu/drm/i915/intel_psr.c
</sect2>
<sect2>
<title>Frame Buffer Compression (FBC)</title>
!Pdrivers/gpu/drm/i915/intel_fbc.c Frame Buffer Compression (FBC)
!Idrivers/gpu/drm/i915/intel_fbc.c
</sect2>
<sect2>
<title>Display Refresh Rate Switching (DRRS)</title>
!Pdrivers/gpu/drm/i915/intel_dp.c Display Refresh Rate Switching (DRRS)
!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_set_drrs_state
!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_enable
!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_disable
!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_invalidate
!Fdrivers/gpu/drm/i915/intel_dp.c intel_edp_drrs_flush
!Fdrivers/gpu/drm/i915/intel_dp.c intel_dp_drrs_init
</sect2>
<sect2>
<title>DPIO</title>
!Pdrivers/gpu/drm/i915/i915_reg.h DPIO
</sect2>
<sect2>
<title>CSR firmware support for DMC</title>
!Pdrivers/gpu/drm/i915/intel_csr.c csr support for dmc
!Idrivers/gpu/drm/i915/intel_csr.c
</sect2>
<sect2>
<title>Video BIOS Table (VBT)</title>
!Pdrivers/gpu/drm/i915/intel_bios.c Video BIOS Table (VBT)
!Idrivers/gpu/drm/i915/intel_bios.c
!Idrivers/gpu/drm/i915/intel_vbt_defs.h
</sect2>
</sect1>
<sect1>
<title>Memory Management and Command Submission</title>
<para>
This sections covers all things related to the GEM implementation in the
i915 driver.
</para>
<sect2>
<title>Batchbuffer Parsing</title>
!Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser
!Idrivers/gpu/drm/i915/i915_cmd_parser.c
</sect2>
<sect2>
<title>Batchbuffer Pools</title>
!Pdrivers/gpu/drm/i915/i915_gem_batch_pool.c batch pool
!Idrivers/gpu/drm/i915/i915_gem_batch_pool.c
</sect2>
<sect2>
<title>Logical Rings, Logical Ring Contexts and Execlists</title>
!Pdrivers/gpu/drm/i915/intel_lrc.c Logical Rings, Logical Ring Contexts and Execlists
!Idrivers/gpu/drm/i915/intel_lrc.c
</sect2>
<sect2>
<title>Global GTT views</title>
!Pdrivers/gpu/drm/i915/i915_gem_gtt.c Global GTT views
!Idrivers/gpu/drm/i915/i915_gem_gtt.c
</sect2>
<sect2>
<title>GTT Fences and Swizzling</title>
!Idrivers/gpu/drm/i915/i915_gem_fence.c
<sect3>
<title>Global GTT Fence Handling</title>
!Pdrivers/gpu/drm/i915/i915_gem_fence.c fence register handling
</sect3>
<sect3>
<title>Hardware Tiling and Swizzling Details</title>
!Pdrivers/gpu/drm/i915/i915_gem_fence.c tiling swizzling details
</sect3>
</sect2>
<sect2>
<title>Object Tiling IOCTLs</title>
!Idrivers/gpu/drm/i915/i915_gem_tiling.c
!Pdrivers/gpu/drm/i915/i915_gem_tiling.c buffer object tiling
</sect2>
<sect2>
<title>Buffer Object Eviction</title>
<para>
This section documents the interface functions for evicting buffer
objects to make space available in the virtual gpu address spaces.
Note that this is mostly orthogonal to shrinking buffer objects
caches, which has the goal to make main memory (shared with the gpu
through the unified memory architecture) available.
</para>
!Idrivers/gpu/drm/i915/i915_gem_evict.c
</sect2>
<sect2>
<title>Buffer Object Memory Shrinking</title>
<para>
This section documents the interface function for shrinking memory
usage of buffer object caches. Shrinking is used to make main memory
available. Note that this is mostly orthogonal to evicting buffer
objects, which has the goal to make space in gpu virtual address
spaces.
</para>
!Idrivers/gpu/drm/i915/i915_gem_shrinker.c
</sect2>
</sect1>
<sect1>
<title>GuC</title>
<sect2>
<title>GuC-specific firmware loader</title>
!Pdrivers/gpu/drm/i915/intel_guc_loader.c GuC-specific firmware loader
!Idrivers/gpu/drm/i915/intel_guc_loader.c
</sect2>
<sect2>
<title>GuC-based command submission</title>
!Pdrivers/gpu/drm/i915/i915_guc_submission.c GuC-based command submission
!Idrivers/gpu/drm/i915/i915_guc_submission.c
</sect2>
<sect2>
<title>GuC Firmware Layout</title>
!Pdrivers/gpu/drm/i915/intel_guc_fwif.h GuC Firmware Layout
</sect2>
</sect1>
<sect1>
<title> Tracing </title>
<para>
This sections covers all things related to the tracepoints implemented in
the i915 driver.
</para>
<sect2>
<title> i915_ppgtt_create and i915_ppgtt_release </title>
!Pdrivers/gpu/drm/i915/i915_trace.h i915_ppgtt_create and i915_ppgtt_release tracepoints
</sect2>
<sect2>
<title> i915_context_create and i915_context_free </title>
!Pdrivers/gpu/drm/i915/i915_trace.h i915_context_create and i915_context_free tracepoints
</sect2>
<sect2>
<title> switch_mm </title>
!Pdrivers/gpu/drm/i915/i915_trace.h switch_mm tracepoint
</sect2>
</sect1>
</chapter>
!Cdrivers/gpu/drm/i915/i915_irq.c
</part>
<part id="vga_switcheroo">
<title>vga_switcheroo</title>
<partintro>
!Pdrivers/gpu/vga/vga_switcheroo.c Overview
</partintro>
<chapter id="modes_of_use">
<title>Modes of Use</title>
<sect1>
<title>Manual switching and manual power control</title>
!Pdrivers/gpu/vga/vga_switcheroo.c Manual switching and manual power control
</sect1>
<sect1>
<title>Driver power control</title>
!Pdrivers/gpu/vga/vga_switcheroo.c Driver power control
</sect1>
</chapter>
<chapter id="api">
<title>API</title>
<sect1>
<title>Public functions</title>
!Edrivers/gpu/vga/vga_switcheroo.c
</sect1>
<sect1>
<title>Public structures</title>
!Finclude/linux/vga_switcheroo.h vga_switcheroo_handler
!Finclude/linux/vga_switcheroo.h vga_switcheroo_client_ops
</sect1>
<sect1>
<title>Public constants</title>
!Finclude/linux/vga_switcheroo.h vga_switcheroo_handler_flags_t
!Finclude/linux/vga_switcheroo.h vga_switcheroo_client_id
!Finclude/linux/vga_switcheroo.h vga_switcheroo_state
</sect1>
<sect1>
<title>Private structures</title>
!Fdrivers/gpu/vga/vga_switcheroo.c vgasr_priv
!Fdrivers/gpu/vga/vga_switcheroo.c vga_switcheroo_client
</sect1>
</chapter>
<chapter id="handlers">
<title>Handlers</title>
<sect1>
<title>apple-gmux Handler</title>
!Pdrivers/platform/x86/apple-gmux.c Overview
!Pdrivers/platform/x86/apple-gmux.c Interrupt
<sect2>
<title>Graphics mux</title>
!Pdrivers/platform/x86/apple-gmux.c Graphics mux
</sect2>
<sect2>
<title>Power control</title>
!Pdrivers/platform/x86/apple-gmux.c Power control
</sect2>
<sect2>
<title>Backlight control</title>
!Pdrivers/platform/x86/apple-gmux.c Backlight control
</sect2>
<sect2>
<title>Public functions</title>
!Iinclude/linux/apple-gmux.h
</sect2>
</sect1>
</chapter>
!Cdrivers/gpu/vga/vga_switcheroo.c
!Cinclude/linux/vga_switcheroo.h
!Cdrivers/platform/x86/apple-gmux.c
</part>
</book>
|