summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c')
-rw-r--r--drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c1133
1 files changed, 1133 insertions, 0 deletions
diff --git a/drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c b/drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c
new file mode 100644
index 000000000000..5c9918d01bf9
--- /dev/null
+++ b/drivers/gpu/drm/amd/amdgpu/amdgpu_fence.c
@@ -0,0 +1,1133 @@
+/*
+ * Copyright 2009 Jerome Glisse.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
+ * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
+ * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
+ * USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ */
+/*
+ * Authors:
+ * Jerome Glisse <glisse@freedesktop.org>
+ * Dave Airlie
+ */
+#include <linux/seq_file.h>
+#include <linux/atomic.h>
+#include <linux/wait.h>
+#include <linux/kref.h>
+#include <linux/slab.h>
+#include <linux/firmware.h>
+#include <drm/drmP.h>
+#include "amdgpu.h"
+#include "amdgpu_trace.h"
+
+/*
+ * Fences
+ * Fences mark an event in the GPUs pipeline and are used
+ * for GPU/CPU synchronization. When the fence is written,
+ * it is expected that all buffers associated with that fence
+ * are no longer in use by the associated ring on the GPU and
+ * that the the relevant GPU caches have been flushed.
+ */
+
+/**
+ * amdgpu_fence_write - write a fence value
+ *
+ * @ring: ring the fence is associated with
+ * @seq: sequence number to write
+ *
+ * Writes a fence value to memory (all asics).
+ */
+static void amdgpu_fence_write(struct amdgpu_ring *ring, u32 seq)
+{
+ struct amdgpu_fence_driver *drv = &ring->fence_drv;
+
+ if (drv->cpu_addr)
+ *drv->cpu_addr = cpu_to_le32(seq);
+}
+
+/**
+ * amdgpu_fence_read - read a fence value
+ *
+ * @ring: ring the fence is associated with
+ *
+ * Reads a fence value from memory (all asics).
+ * Returns the value of the fence read from memory.
+ */
+static u32 amdgpu_fence_read(struct amdgpu_ring *ring)
+{
+ struct amdgpu_fence_driver *drv = &ring->fence_drv;
+ u32 seq = 0;
+
+ if (drv->cpu_addr)
+ seq = le32_to_cpu(*drv->cpu_addr);
+ else
+ seq = lower_32_bits(atomic64_read(&drv->last_seq));
+
+ return seq;
+}
+
+/**
+ * amdgpu_fence_schedule_check - schedule lockup check
+ *
+ * @ring: pointer to struct amdgpu_ring
+ *
+ * Queues a delayed work item to check for lockups.
+ */
+static void amdgpu_fence_schedule_check(struct amdgpu_ring *ring)
+{
+ /*
+ * Do not reset the timer here with mod_delayed_work,
+ * this can livelock in an interaction with TTM delayed destroy.
+ */
+ queue_delayed_work(system_power_efficient_wq,
+ &ring->fence_drv.lockup_work,
+ AMDGPU_FENCE_JIFFIES_TIMEOUT);
+}
+
+/**
+ * amdgpu_fence_emit - emit a fence on the requested ring
+ *
+ * @ring: ring the fence is associated with
+ * @owner: creator of the fence
+ * @fence: amdgpu fence object
+ *
+ * Emits a fence command on the requested ring (all asics).
+ * Returns 0 on success, -ENOMEM on failure.
+ */
+int amdgpu_fence_emit(struct amdgpu_ring *ring, void *owner,
+ struct amdgpu_fence **fence)
+{
+ struct amdgpu_device *adev = ring->adev;
+
+ /* we are protected by the ring emission mutex */
+ *fence = kmalloc(sizeof(struct amdgpu_fence), GFP_KERNEL);
+ if ((*fence) == NULL) {
+ return -ENOMEM;
+ }
+ (*fence)->seq = ++ring->fence_drv.sync_seq[ring->idx];
+ (*fence)->ring = ring;
+ (*fence)->owner = owner;
+ fence_init(&(*fence)->base, &amdgpu_fence_ops,
+ &adev->fence_queue.lock, adev->fence_context + ring->idx,
+ (*fence)->seq);
+ amdgpu_ring_emit_fence(ring, ring->fence_drv.gpu_addr,
+ (*fence)->seq,
+ AMDGPU_FENCE_FLAG_INT);
+ trace_amdgpu_fence_emit(ring->adev->ddev, ring->idx, (*fence)->seq);
+ return 0;
+}
+
+/**
+ * amdgpu_fence_check_signaled - callback from fence_queue
+ *
+ * this function is called with fence_queue lock held, which is also used
+ * for the fence locking itself, so unlocked variants are used for
+ * fence_signal, and remove_wait_queue.
+ */
+static int amdgpu_fence_check_signaled(wait_queue_t *wait, unsigned mode, int flags, void *key)
+{
+ struct amdgpu_fence *fence;
+ struct amdgpu_device *adev;
+ u64 seq;
+ int ret;
+
+ fence = container_of(wait, struct amdgpu_fence, fence_wake);
+ adev = fence->ring->adev;
+
+ /*
+ * We cannot use amdgpu_fence_process here because we're already
+ * in the waitqueue, in a call from wake_up_all.
+ */
+ seq = atomic64_read(&fence->ring->fence_drv.last_seq);
+ if (seq >= fence->seq) {
+ ret = fence_signal_locked(&fence->base);
+ if (!ret)
+ FENCE_TRACE(&fence->base, "signaled from irq context\n");
+ else
+ FENCE_TRACE(&fence->base, "was already signaled\n");
+
+ amdgpu_irq_put(adev, fence->ring->fence_drv.irq_src,
+ fence->ring->fence_drv.irq_type);
+ __remove_wait_queue(&adev->fence_queue, &fence->fence_wake);
+ fence_put(&fence->base);
+ } else
+ FENCE_TRACE(&fence->base, "pending\n");
+ return 0;
+}
+
+/**
+ * amdgpu_fence_activity - check for fence activity
+ *
+ * @ring: pointer to struct amdgpu_ring
+ *
+ * Checks the current fence value and calculates the last
+ * signalled fence value. Returns true if activity occured
+ * on the ring, and the fence_queue should be waken up.
+ */
+static bool amdgpu_fence_activity(struct amdgpu_ring *ring)
+{
+ uint64_t seq, last_seq, last_emitted;
+ unsigned count_loop = 0;
+ bool wake = false;
+
+ /* Note there is a scenario here for an infinite loop but it's
+ * very unlikely to happen. For it to happen, the current polling
+ * process need to be interrupted by another process and another
+ * process needs to update the last_seq btw the atomic read and
+ * xchg of the current process.
+ *
+ * More over for this to go in infinite loop there need to be
+ * continuously new fence signaled ie amdgpu_fence_read needs
+ * to return a different value each time for both the currently
+ * polling process and the other process that xchg the last_seq
+ * btw atomic read and xchg of the current process. And the
+ * value the other process set as last seq must be higher than
+ * the seq value we just read. Which means that current process
+ * need to be interrupted after amdgpu_fence_read and before
+ * atomic xchg.
+ *
+ * To be even more safe we count the number of time we loop and
+ * we bail after 10 loop just accepting the fact that we might
+ * have temporarly set the last_seq not to the true real last
+ * seq but to an older one.
+ */
+ last_seq = atomic64_read(&ring->fence_drv.last_seq);
+ do {
+ last_emitted = ring->fence_drv.sync_seq[ring->idx];
+ seq = amdgpu_fence_read(ring);
+ seq |= last_seq & 0xffffffff00000000LL;
+ if (seq < last_seq) {
+ seq &= 0xffffffff;
+ seq |= last_emitted & 0xffffffff00000000LL;
+ }
+
+ if (seq <= last_seq || seq > last_emitted) {
+ break;
+ }
+ /* If we loop over we don't want to return without
+ * checking if a fence is signaled as it means that the
+ * seq we just read is different from the previous on.
+ */
+ wake = true;
+ last_seq = seq;
+ if ((count_loop++) > 10) {
+ /* We looped over too many time leave with the
+ * fact that we might have set an older fence
+ * seq then the current real last seq as signaled
+ * by the hw.
+ */
+ break;
+ }
+ } while (atomic64_xchg(&ring->fence_drv.last_seq, seq) > seq);
+
+ if (seq < last_emitted)
+ amdgpu_fence_schedule_check(ring);
+
+ return wake;
+}
+
+/**
+ * amdgpu_fence_check_lockup - check for hardware lockup
+ *
+ * @work: delayed work item
+ *
+ * Checks for fence activity and if there is none probe
+ * the hardware if a lockup occured.
+ */
+static void amdgpu_fence_check_lockup(struct work_struct *work)
+{
+ struct amdgpu_fence_driver *fence_drv;
+ struct amdgpu_ring *ring;
+
+ fence_drv = container_of(work, struct amdgpu_fence_driver,
+ lockup_work.work);
+ ring = fence_drv->ring;
+
+ if (!down_read_trylock(&ring->adev->exclusive_lock)) {
+ /* just reschedule the check if a reset is going on */
+ amdgpu_fence_schedule_check(ring);
+ return;
+ }
+
+ if (fence_drv->delayed_irq && ring->adev->ddev->irq_enabled) {
+ fence_drv->delayed_irq = false;
+ amdgpu_irq_update(ring->adev, fence_drv->irq_src,
+ fence_drv->irq_type);
+ }
+
+ if (amdgpu_fence_activity(ring))
+ wake_up_all(&ring->adev->fence_queue);
+ else if (amdgpu_ring_is_lockup(ring)) {
+ /* good news we believe it's a lockup */
+ dev_warn(ring->adev->dev, "GPU lockup (current fence id "
+ "0x%016llx last fence id 0x%016llx on ring %d)\n",
+ (uint64_t)atomic64_read(&fence_drv->last_seq),
+ fence_drv->sync_seq[ring->idx], ring->idx);
+
+ /* remember that we need an reset */
+ ring->adev->needs_reset = true;
+ wake_up_all(&ring->adev->fence_queue);
+ }
+ up_read(&ring->adev->exclusive_lock);
+}
+
+/**
+ * amdgpu_fence_process - process a fence
+ *
+ * @adev: amdgpu_device pointer
+ * @ring: ring index the fence is associated with
+ *
+ * Checks the current fence value and wakes the fence queue
+ * if the sequence number has increased (all asics).
+ */
+void amdgpu_fence_process(struct amdgpu_ring *ring)
+{
+ uint64_t seq, last_seq, last_emitted;
+ unsigned count_loop = 0;
+ bool wake = false;
+
+ /* Note there is a scenario here for an infinite loop but it's
+ * very unlikely to happen. For it to happen, the current polling
+ * process need to be interrupted by another process and another
+ * process needs to update the last_seq btw the atomic read and
+ * xchg of the current process.
+ *
+ * More over for this to go in infinite loop there need to be
+ * continuously new fence signaled ie amdgpu_fence_read needs
+ * to return a different value each time for both the currently
+ * polling process and the other process that xchg the last_seq
+ * btw atomic read and xchg of the current process. And the
+ * value the other process set as last seq must be higher than
+ * the seq value we just read. Which means that current process
+ * need to be interrupted after amdgpu_fence_read and before
+ * atomic xchg.
+ *
+ * To be even more safe we count the number of time we loop and
+ * we bail after 10 loop just accepting the fact that we might
+ * have temporarly set the last_seq not to the true real last
+ * seq but to an older one.
+ */
+ last_seq = atomic64_read(&ring->fence_drv.last_seq);
+ do {
+ last_emitted = ring->fence_drv.sync_seq[ring->idx];
+ seq = amdgpu_fence_read(ring);
+ seq |= last_seq & 0xffffffff00000000LL;
+ if (seq < last_seq) {
+ seq &= 0xffffffff;
+ seq |= last_emitted & 0xffffffff00000000LL;
+ }
+
+ if (seq <= last_seq || seq > last_emitted) {
+ break;
+ }
+ /* If we loop over we don't want to return without
+ * checking if a fence is signaled as it means that the
+ * seq we just read is different from the previous on.
+ */
+ wake = true;
+ last_seq = seq;
+ if ((count_loop++) > 10) {
+ /* We looped over too many time leave with the
+ * fact that we might have set an older fence
+ * seq then the current real last seq as signaled
+ * by the hw.
+ */
+ break;
+ }
+ } while (atomic64_xchg(&ring->fence_drv.last_seq, seq) > seq);
+
+ if (wake)
+ wake_up_all(&ring->adev->fence_queue);
+}
+
+/**
+ * amdgpu_fence_seq_signaled - check if a fence sequence number has signaled
+ *
+ * @ring: ring the fence is associated with
+ * @seq: sequence number
+ *
+ * Check if the last signaled fence sequnce number is >= the requested
+ * sequence number (all asics).
+ * Returns true if the fence has signaled (current fence value
+ * is >= requested value) or false if it has not (current fence
+ * value is < the requested value. Helper function for
+ * amdgpu_fence_signaled().
+ */
+static bool amdgpu_fence_seq_signaled(struct amdgpu_ring *ring, u64 seq)
+{
+ if (atomic64_read(&ring->fence_drv.last_seq) >= seq)
+ return true;
+
+ /* poll new last sequence at least once */
+ amdgpu_fence_process(ring);
+ if (atomic64_read(&ring->fence_drv.last_seq) >= seq)
+ return true;
+
+ return false;
+}
+
+static bool amdgpu_fence_is_signaled(struct fence *f)
+{
+ struct amdgpu_fence *fence = to_amdgpu_fence(f);
+ struct amdgpu_ring *ring = fence->ring;
+ struct amdgpu_device *adev = ring->adev;
+
+ if (atomic64_read(&ring->fence_drv.last_seq) >= fence->seq)
+ return true;
+
+ if (down_read_trylock(&adev->exclusive_lock)) {
+ amdgpu_fence_process(ring);
+ up_read(&adev->exclusive_lock);
+
+ if (atomic64_read(&ring->fence_drv.last_seq) >= fence->seq)
+ return true;
+ }
+ return false;
+}
+
+/**
+ * amdgpu_fence_enable_signaling - enable signalling on fence
+ * @fence: fence
+ *
+ * This function is called with fence_queue lock held, and adds a callback
+ * to fence_queue that checks if this fence is signaled, and if so it
+ * signals the fence and removes itself.
+ */
+static bool amdgpu_fence_enable_signaling(struct fence *f)
+{
+ struct amdgpu_fence *fence = to_amdgpu_fence(f);
+ struct amdgpu_ring *ring = fence->ring;
+ struct amdgpu_device *adev = ring->adev;
+
+ if (atomic64_read(&ring->fence_drv.last_seq) >= fence->seq)
+ return false;
+
+ if (down_read_trylock(&adev->exclusive_lock)) {
+ amdgpu_irq_get(adev, ring->fence_drv.irq_src,
+ ring->fence_drv.irq_type);
+ if (amdgpu_fence_activity(ring))
+ wake_up_all_locked(&adev->fence_queue);
+
+ /* did fence get signaled after we enabled the sw irq? */
+ if (atomic64_read(&ring->fence_drv.last_seq) >= fence->seq) {
+ amdgpu_irq_put(adev, ring->fence_drv.irq_src,
+ ring->fence_drv.irq_type);
+ up_read(&adev->exclusive_lock);
+ return false;
+ }
+
+ up_read(&adev->exclusive_lock);
+ } else {
+ /* we're probably in a lockup, lets not fiddle too much */
+ if (amdgpu_irq_get_delayed(adev, ring->fence_drv.irq_src,
+ ring->fence_drv.irq_type))
+ ring->fence_drv.delayed_irq = true;
+ amdgpu_fence_schedule_check(ring);
+ }
+
+ fence->fence_wake.flags = 0;
+ fence->fence_wake.private = NULL;
+ fence->fence_wake.func = amdgpu_fence_check_signaled;
+ __add_wait_queue(&adev->fence_queue, &fence->fence_wake);
+ fence_get(f);
+ FENCE_TRACE(&fence->base, "armed on ring %i!\n", ring->idx);
+ return true;
+}
+
+/**
+ * amdgpu_fence_signaled - check if a fence has signaled
+ *
+ * @fence: amdgpu fence object
+ *
+ * Check if the requested fence has signaled (all asics).
+ * Returns true if the fence has signaled or false if it has not.
+ */
+bool amdgpu_fence_signaled(struct amdgpu_fence *fence)
+{
+ if (!fence)
+ return true;
+
+ if (amdgpu_fence_seq_signaled(fence->ring, fence->seq)) {
+ if (!fence_signal(&fence->base))
+ FENCE_TRACE(&fence->base, "signaled from amdgpu_fence_signaled\n");
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * amdgpu_fence_any_seq_signaled - check if any sequence number is signaled
+ *
+ * @adev: amdgpu device pointer
+ * @seq: sequence numbers
+ *
+ * Check if the last signaled fence sequnce number is >= the requested
+ * sequence number (all asics).
+ * Returns true if any has signaled (current value is >= requested value)
+ * or false if it has not. Helper function for amdgpu_fence_wait_seq.
+ */
+static bool amdgpu_fence_any_seq_signaled(struct amdgpu_device *adev, u64 *seq)
+{
+ unsigned i;
+
+ for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
+ if (!adev->rings[i] || !seq[i])
+ continue;
+
+ if (amdgpu_fence_seq_signaled(adev->rings[i], seq[i]))
+ return true;
+ }
+
+ return false;
+}
+
+/**
+ * amdgpu_fence_wait_seq_timeout - wait for a specific sequence numbers
+ *
+ * @adev: amdgpu device pointer
+ * @target_seq: sequence number(s) we want to wait for
+ * @intr: use interruptable sleep
+ * @timeout: maximum time to wait, or MAX_SCHEDULE_TIMEOUT for infinite wait
+ *
+ * Wait for the requested sequence number(s) to be written by any ring
+ * (all asics). Sequnce number array is indexed by ring id.
+ * @intr selects whether to use interruptable (true) or non-interruptable
+ * (false) sleep when waiting for the sequence number. Helper function
+ * for amdgpu_fence_wait_*().
+ * Returns remaining time if the sequence number has passed, 0 when
+ * the wait timeout, or an error for all other cases.
+ * -EDEADLK is returned when a GPU lockup has been detected.
+ */
+long amdgpu_fence_wait_seq_timeout(struct amdgpu_device *adev, u64 *target_seq,
+ bool intr, long timeout)
+{
+ uint64_t last_seq[AMDGPU_MAX_RINGS];
+ bool signaled;
+ int i, r;
+
+ if (timeout == 0) {
+ return amdgpu_fence_any_seq_signaled(adev, target_seq);
+ }
+
+ while (!amdgpu_fence_any_seq_signaled(adev, target_seq)) {
+
+ /* Save current sequence values, used to check for GPU lockups */
+ for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
+ struct amdgpu_ring *ring = adev->rings[i];
+
+ if (!ring || !target_seq[i])
+ continue;
+
+ last_seq[i] = atomic64_read(&ring->fence_drv.last_seq);
+ trace_amdgpu_fence_wait_begin(adev->ddev, i, target_seq[i]);
+ amdgpu_irq_get(adev, ring->fence_drv.irq_src,
+ ring->fence_drv.irq_type);
+ }
+
+ if (intr) {
+ r = wait_event_interruptible_timeout(adev->fence_queue, (
+ (signaled = amdgpu_fence_any_seq_signaled(adev, target_seq))
+ || adev->needs_reset), AMDGPU_FENCE_JIFFIES_TIMEOUT);
+ } else {
+ r = wait_event_timeout(adev->fence_queue, (
+ (signaled = amdgpu_fence_any_seq_signaled(adev, target_seq))
+ || adev->needs_reset), AMDGPU_FENCE_JIFFIES_TIMEOUT);
+ }
+
+ for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
+ struct amdgpu_ring *ring = adev->rings[i];
+
+ if (!ring || !target_seq[i])
+ continue;
+
+ amdgpu_irq_put(adev, ring->fence_drv.irq_src,
+ ring->fence_drv.irq_type);
+ trace_amdgpu_fence_wait_end(adev->ddev, i, target_seq[i]);
+ }
+
+ if (unlikely(r < 0))
+ return r;
+
+ if (unlikely(!signaled)) {
+
+ if (adev->needs_reset)
+ return -EDEADLK;
+
+ /* we were interrupted for some reason and fence
+ * isn't signaled yet, resume waiting */
+ if (r)
+ continue;
+
+ for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
+ struct amdgpu_ring *ring = adev->rings[i];
+
+ if (!ring || !target_seq[i])
+ continue;
+
+ if (last_seq[i] != atomic64_read(&ring->fence_drv.last_seq))
+ break;
+ }
+
+ if (i != AMDGPU_MAX_RINGS)
+ continue;
+
+ for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
+ if (!adev->rings[i] || !target_seq[i])
+ continue;
+
+ if (amdgpu_ring_is_lockup(adev->rings[i]))
+ break;
+ }
+
+ if (i < AMDGPU_MAX_RINGS) {
+ /* good news we believe it's a lockup */
+ dev_warn(adev->dev, "GPU lockup (waiting for "
+ "0x%016llx last fence id 0x%016llx on"
+ " ring %d)\n",
+ target_seq[i], last_seq[i], i);
+
+ /* remember that we need an reset */
+ adev->needs_reset = true;
+ wake_up_all(&adev->fence_queue);
+ return -EDEADLK;
+ }
+
+ if (timeout < MAX_SCHEDULE_TIMEOUT) {
+ timeout -= AMDGPU_FENCE_JIFFIES_TIMEOUT;
+ if (timeout <= 0) {
+ return 0;
+ }
+ }
+ }
+ }
+ return timeout;
+}
+
+/**
+ * amdgpu_fence_wait - wait for a fence to signal
+ *
+ * @fence: amdgpu fence object
+ * @intr: use interruptable sleep
+ *
+ * Wait for the requested fence to signal (all asics).
+ * @intr selects whether to use interruptable (true) or non-interruptable
+ * (false) sleep when waiting for the fence.
+ * Returns 0 if the fence has passed, error for all other cases.
+ */
+int amdgpu_fence_wait(struct amdgpu_fence *fence, bool intr)
+{
+ uint64_t seq[AMDGPU_MAX_RINGS] = {};
+ long r;
+
+ seq[fence->ring->idx] = fence->seq;
+ r = amdgpu_fence_wait_seq_timeout(fence->ring->adev, seq, intr, MAX_SCHEDULE_TIMEOUT);
+ if (r < 0) {
+ return r;
+ }
+
+ r = fence_signal(&fence->base);
+ if (!r)
+ FENCE_TRACE(&fence->base, "signaled from fence_wait\n");
+ return 0;
+}
+
+/**
+ * amdgpu_fence_wait_any - wait for a fence to signal on any ring
+ *
+ * @adev: amdgpu device pointer
+ * @fences: amdgpu fence object(s)
+ * @intr: use interruptable sleep
+ *
+ * Wait for any requested fence to signal (all asics). Fence
+ * array is indexed by ring id. @intr selects whether to use
+ * interruptable (true) or non-interruptable (false) sleep when
+ * waiting for the fences. Used by the suballocator.
+ * Returns 0 if any fence has passed, error for all other cases.
+ */
+int amdgpu_fence_wait_any(struct amdgpu_device *adev,
+ struct amdgpu_fence **fences,
+ bool intr)
+{
+ uint64_t seq[AMDGPU_MAX_RINGS];
+ unsigned i, num_rings = 0;
+ long r;
+
+ for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
+ seq[i] = 0;
+
+ if (!fences[i]) {
+ continue;
+ }
+
+ seq[i] = fences[i]->seq;
+ ++num_rings;
+ }
+
+ /* nothing to wait for ? */
+ if (num_rings == 0)
+ return -ENOENT;
+
+ r = amdgpu_fence_wait_seq_timeout(adev, seq, intr, MAX_SCHEDULE_TIMEOUT);
+ if (r < 0) {
+ return r;
+ }
+ return 0;
+}
+
+/**
+ * amdgpu_fence_wait_next - wait for the next fence to signal
+ *
+ * @adev: amdgpu device pointer
+ * @ring: ring index the fence is associated with
+ *
+ * Wait for the next fence on the requested ring to signal (all asics).
+ * Returns 0 if the next fence has passed, error for all other cases.
+ * Caller must hold ring lock.
+ */
+int amdgpu_fence_wait_next(struct amdgpu_ring *ring)
+{
+ uint64_t seq[AMDGPU_MAX_RINGS] = {};
+ long r;
+
+ seq[ring->idx] = atomic64_read(&ring->fence_drv.last_seq) + 1ULL;
+ if (seq[ring->idx] >= ring->fence_drv.sync_seq[ring->idx]) {
+ /* nothing to wait for, last_seq is
+ already the last emited fence */
+ return -ENOENT;
+ }
+ r = amdgpu_fence_wait_seq_timeout(ring->adev, seq, false, MAX_SCHEDULE_TIMEOUT);
+ if (r < 0)
+ return r;
+ return 0;
+}
+
+/**
+ * amdgpu_fence_wait_empty - wait for all fences to signal
+ *
+ * @adev: amdgpu device pointer
+ * @ring: ring index the fence is associated with
+ *
+ * Wait for all fences on the requested ring to signal (all asics).
+ * Returns 0 if the fences have passed, error for all other cases.
+ * Caller must hold ring lock.
+ */
+int amdgpu_fence_wait_empty(struct amdgpu_ring *ring)
+{
+ struct amdgpu_device *adev = ring->adev;
+ uint64_t seq[AMDGPU_MAX_RINGS] = {};
+ long r;
+
+ seq[ring->idx] = ring->fence_drv.sync_seq[ring->idx];
+ if (!seq[ring->idx])
+ return 0;
+
+ r = amdgpu_fence_wait_seq_timeout(adev, seq, false, MAX_SCHEDULE_TIMEOUT);
+ if (r < 0) {
+ if (r == -EDEADLK)
+ return -EDEADLK;
+
+ dev_err(adev->dev, "error waiting for ring[%d] to become idle (%ld)\n",
+ ring->idx, r);
+ }
+ return 0;
+}
+
+/**
+ * amdgpu_fence_ref - take a ref on a fence
+ *
+ * @fence: amdgpu fence object
+ *
+ * Take a reference on a fence (all asics).
+ * Returns the fence.
+ */
+struct amdgpu_fence *amdgpu_fence_ref(struct amdgpu_fence *fence)
+{
+ fence_get(&fence->base);
+ return fence;
+}
+
+/**
+ * amdgpu_fence_unref - remove a ref on a fence
+ *
+ * @fence: amdgpu fence object
+ *
+ * Remove a reference on a fence (all asics).
+ */
+void amdgpu_fence_unref(struct amdgpu_fence **fence)
+{
+ struct amdgpu_fence *tmp = *fence;
+
+ *fence = NULL;
+ if (tmp)
+ fence_put(&tmp->base);
+}
+
+/**
+ * amdgpu_fence_count_emitted - get the count of emitted fences
+ *
+ * @ring: ring the fence is associated with
+ *
+ * Get the number of fences emitted on the requested ring (all asics).
+ * Returns the number of emitted fences on the ring. Used by the
+ * dynpm code to ring track activity.
+ */
+unsigned amdgpu_fence_count_emitted(struct amdgpu_ring *ring)
+{
+ uint64_t emitted;
+
+ /* We are not protected by ring lock when reading the last sequence
+ * but it's ok to report slightly wrong fence count here.
+ */
+ amdgpu_fence_process(ring);
+ emitted = ring->fence_drv.sync_seq[ring->idx]
+ - atomic64_read(&ring->fence_drv.last_seq);
+ /* to avoid 32bits warp around */
+ if (emitted > 0x10000000)
+ emitted = 0x10000000;
+
+ return (unsigned)emitted;
+}
+
+/**
+ * amdgpu_fence_need_sync - do we need a semaphore
+ *
+ * @fence: amdgpu fence object
+ * @dst_ring: which ring to check against
+ *
+ * Check if the fence needs to be synced against another ring
+ * (all asics). If so, we need to emit a semaphore.
+ * Returns true if we need to sync with another ring, false if
+ * not.
+ */
+bool amdgpu_fence_need_sync(struct amdgpu_fence *fence,
+ struct amdgpu_ring *dst_ring)
+{
+ struct amdgpu_fence_driver *fdrv;
+
+ if (!fence)
+ return false;
+
+ if (fence->ring == dst_ring)
+ return false;
+
+ /* we are protected by the ring mutex */
+ fdrv = &dst_ring->fence_drv;
+ if (fence->seq <= fdrv->sync_seq[fence->ring->idx])
+ return false;
+
+ return true;
+}
+
+/**
+ * amdgpu_fence_note_sync - record the sync point
+ *
+ * @fence: amdgpu fence object
+ * @dst_ring: which ring to check against
+ *
+ * Note the sequence number at which point the fence will
+ * be synced with the requested ring (all asics).
+ */
+void amdgpu_fence_note_sync(struct amdgpu_fence *fence,
+ struct amdgpu_ring *dst_ring)
+{
+ struct amdgpu_fence_driver *dst, *src;
+ unsigned i;
+
+ if (!fence)
+ return;
+
+ if (fence->ring == dst_ring)
+ return;
+
+ /* we are protected by the ring mutex */
+ src = &fence->ring->fence_drv;
+ dst = &dst_ring->fence_drv;
+ for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
+ if (i == dst_ring->idx)
+ continue;
+
+ dst->sync_seq[i] = max(dst->sync_seq[i], src->sync_seq[i]);
+ }
+}
+
+/**
+ * amdgpu_fence_driver_start_ring - make the fence driver
+ * ready for use on the requested ring.
+ *
+ * @ring: ring to start the fence driver on
+ * @irq_src: interrupt source to use for this ring
+ * @irq_type: interrupt type to use for this ring
+ *
+ * Make the fence driver ready for processing (all asics).
+ * Not all asics have all rings, so each asic will only
+ * start the fence driver on the rings it has.
+ * Returns 0 for success, errors for failure.
+ */
+int amdgpu_fence_driver_start_ring(struct amdgpu_ring *ring,
+ struct amdgpu_irq_src *irq_src,
+ unsigned irq_type)
+{
+ struct amdgpu_device *adev = ring->adev;
+ uint64_t index;
+
+ if (ring != &adev->uvd.ring) {
+ ring->fence_drv.cpu_addr = &adev->wb.wb[ring->fence_offs];
+ ring->fence_drv.gpu_addr = adev->wb.gpu_addr + (ring->fence_offs * 4);
+ } else {
+ /* put fence directly behind firmware */
+ index = ALIGN(adev->uvd.fw->size, 8);
+ ring->fence_drv.cpu_addr = adev->uvd.cpu_addr + index;
+ ring->fence_drv.gpu_addr = adev->uvd.gpu_addr + index;
+ }
+ amdgpu_fence_write(ring, atomic64_read(&ring->fence_drv.last_seq));
+ ring->fence_drv.initialized = true;
+ ring->fence_drv.irq_src = irq_src;
+ ring->fence_drv.irq_type = irq_type;
+ dev_info(adev->dev, "fence driver on ring %d use gpu addr 0x%016llx, "
+ "cpu addr 0x%p\n", ring->idx,
+ ring->fence_drv.gpu_addr, ring->fence_drv.cpu_addr);
+ return 0;
+}
+
+/**
+ * amdgpu_fence_driver_init_ring - init the fence driver
+ * for the requested ring.
+ *
+ * @ring: ring to init the fence driver on
+ *
+ * Init the fence driver for the requested ring (all asics).
+ * Helper function for amdgpu_fence_driver_init().
+ */
+void amdgpu_fence_driver_init_ring(struct amdgpu_ring *ring)
+{
+ int i;
+
+ ring->fence_drv.cpu_addr = NULL;
+ ring->fence_drv.gpu_addr = 0;
+ for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
+ ring->fence_drv.sync_seq[i] = 0;
+
+ atomic64_set(&ring->fence_drv.last_seq, 0);
+ ring->fence_drv.initialized = false;
+
+ INIT_DELAYED_WORK(&ring->fence_drv.lockup_work,
+ amdgpu_fence_check_lockup);
+ ring->fence_drv.ring = ring;
+}
+
+/**
+ * amdgpu_fence_driver_init - init the fence driver
+ * for all possible rings.
+ *
+ * @adev: amdgpu device pointer
+ *
+ * Init the fence driver for all possible rings (all asics).
+ * Not all asics have all rings, so each asic will only
+ * start the fence driver on the rings it has using
+ * amdgpu_fence_driver_start_ring().
+ * Returns 0 for success.
+ */
+int amdgpu_fence_driver_init(struct amdgpu_device *adev)
+{
+ init_waitqueue_head(&adev->fence_queue);
+ if (amdgpu_debugfs_fence_init(adev))
+ dev_err(adev->dev, "fence debugfs file creation failed\n");
+
+ return 0;
+}
+
+/**
+ * amdgpu_fence_driver_fini - tear down the fence driver
+ * for all possible rings.
+ *
+ * @adev: amdgpu device pointer
+ *
+ * Tear down the fence driver for all possible rings (all asics).
+ */
+void amdgpu_fence_driver_fini(struct amdgpu_device *adev)
+{
+ int i, r;
+
+ mutex_lock(&adev->ring_lock);
+ for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
+ struct amdgpu_ring *ring = adev->rings[i];
+ if (!ring || !ring->fence_drv.initialized)
+ continue;
+ r = amdgpu_fence_wait_empty(ring);
+ if (r) {
+ /* no need to trigger GPU reset as we are unloading */
+ amdgpu_fence_driver_force_completion(adev);
+ }
+ wake_up_all(&adev->fence_queue);
+ ring->fence_drv.initialized = false;
+ }
+ mutex_unlock(&adev->ring_lock);
+}
+
+/**
+ * amdgpu_fence_driver_force_completion - force all fence waiter to complete
+ *
+ * @adev: amdgpu device pointer
+ *
+ * In case of GPU reset failure make sure no process keep waiting on fence
+ * that will never complete.
+ */
+void amdgpu_fence_driver_force_completion(struct amdgpu_device *adev)
+{
+ int i;
+
+ for (i = 0; i < AMDGPU_MAX_RINGS; i++) {
+ struct amdgpu_ring *ring = adev->rings[i];
+ if (!ring || !ring->fence_drv.initialized)
+ continue;
+
+ amdgpu_fence_write(ring, ring->fence_drv.sync_seq[i]);
+ }
+}
+
+
+/*
+ * Fence debugfs
+ */
+#if defined(CONFIG_DEBUG_FS)
+static int amdgpu_debugfs_fence_info(struct seq_file *m, void *data)
+{
+ struct drm_info_node *node = (struct drm_info_node *)m->private;
+ struct drm_device *dev = node->minor->dev;
+ struct amdgpu_device *adev = dev->dev_private;
+ int i, j;
+
+ for (i = 0; i < AMDGPU_MAX_RINGS; ++i) {
+ struct amdgpu_ring *ring = adev->rings[i];
+ if (!ring || !ring->fence_drv.initialized)
+ continue;
+
+ amdgpu_fence_process(ring);
+
+ seq_printf(m, "--- ring %d ---\n", i);
+ seq_printf(m, "Last signaled fence 0x%016llx\n",
+ (unsigned long long)atomic64_read(&ring->fence_drv.last_seq));
+ seq_printf(m, "Last emitted 0x%016llx\n",
+ ring->fence_drv.sync_seq[i]);
+
+ for (j = 0; j < AMDGPU_MAX_RINGS; ++j) {
+ struct amdgpu_ring *other = adev->rings[j];
+ if (i != j && other && other->fence_drv.initialized)
+ seq_printf(m, "Last sync to ring %d 0x%016llx\n",
+ j, ring->fence_drv.sync_seq[j]);
+ }
+ }
+ return 0;
+}
+
+static struct drm_info_list amdgpu_debugfs_fence_list[] = {
+ {"amdgpu_fence_info", &amdgpu_debugfs_fence_info, 0, NULL},
+};
+#endif
+
+int amdgpu_debugfs_fence_init(struct amdgpu_device *adev)
+{
+#if defined(CONFIG_DEBUG_FS)
+ return amdgpu_debugfs_add_files(adev, amdgpu_debugfs_fence_list, 1);
+#else
+ return 0;
+#endif
+}
+
+static const char *amdgpu_fence_get_driver_name(struct fence *fence)
+{
+ return "amdgpu";
+}
+
+static const char *amdgpu_fence_get_timeline_name(struct fence *f)
+{
+ struct amdgpu_fence *fence = to_amdgpu_fence(f);
+ return (const char *)fence->ring->name;
+}
+
+static inline bool amdgpu_test_signaled(struct amdgpu_fence *fence)
+{
+ return test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->base.flags);
+}
+
+struct amdgpu_wait_cb {
+ struct fence_cb base;
+ struct task_struct *task;
+};
+
+static void amdgpu_fence_wait_cb(struct fence *fence, struct fence_cb *cb)
+{
+ struct amdgpu_wait_cb *wait =
+ container_of(cb, struct amdgpu_wait_cb, base);
+ wake_up_process(wait->task);
+}
+
+static signed long amdgpu_fence_default_wait(struct fence *f, bool intr,
+ signed long t)
+{
+ struct amdgpu_fence *fence = to_amdgpu_fence(f);
+ struct amdgpu_device *adev = fence->ring->adev;
+ struct amdgpu_wait_cb cb;
+
+ cb.task = current;
+
+ if (fence_add_callback(f, &cb.base, amdgpu_fence_wait_cb))
+ return t;
+
+ while (t > 0) {
+ if (intr)
+ set_current_state(TASK_INTERRUPTIBLE);
+ else
+ set_current_state(TASK_UNINTERRUPTIBLE);
+
+ /*
+ * amdgpu_test_signaled must be called after
+ * set_current_state to prevent a race with wake_up_process
+ */
+ if (amdgpu_test_signaled(fence))
+ break;
+
+ if (adev->needs_reset) {
+ t = -EDEADLK;
+ break;
+ }
+
+ t = schedule_timeout(t);
+
+ if (t > 0 && intr && signal_pending(current))
+ t = -ERESTARTSYS;
+ }
+
+ __set_current_state(TASK_RUNNING);
+ fence_remove_callback(f, &cb.base);
+
+ return t;
+}
+
+const struct fence_ops amdgpu_fence_ops = {
+ .get_driver_name = amdgpu_fence_get_driver_name,
+ .get_timeline_name = amdgpu_fence_get_timeline_name,
+ .enable_signaling = amdgpu_fence_enable_signaling,
+ .signaled = amdgpu_fence_is_signaled,
+ .wait = amdgpu_fence_default_wait,
+ .release = NULL,
+};